首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 760 毫秒
1.
Herring (Clupea harengus) enter and remain within North Sea estuaries during well‐defined periods of their early life history. The costs and benefits of the migrations between offshore spawning grounds and upper, low‐salinity zones of estuarine nurseries are identified using a dynamic state‐variable model, in which the fitness of an individual is maximized by selecting the most profitable habitat. Spatio‐temporal gradients in temperature, turbidity, food availability and predation risk simulate the environment. We modeled predation as a function of temperature, the optical properties of the ambient water, the time allocation of feeding and the abundance of whiting (Merlangius merlangus). Growth and metabolic costs were assessed using a bioenergetic model. Model runs using real input data for the Scheldt estuary (Belgium, The Netherlands) and the southern North Sea show that estuarine residence results in fitter individuals through a considerable increase in survival probability of age‐0 fish. Young herring pay for their migration into safer estuarine water by foregoing growth opportunities at sea. We suggest that temperature and, in particular, the time lag between estuarine and seawater temperatures, acts as a basic cue for herring to navigate in the heterogeneous space between the offshore spawning grounds at sea and the oligohaline nursery zone in estuaries.  相似文献   

2.
Reference points based on fishing mortality (F) and spawning stock biomass (SSB) are a requirement of many fisheries management frameworks. SSB is assumed to be a proxy for stock reproductive potential (SRP). Limit reference points based on SSB are used to indicate the level of biomass below which productivity is affected. SSB fails to account for changes in fecundity, egg viability and sex ratio, and it has been argued that total egg production (TEP) provides a better reflection of SRP. We explore how accounting for TEP impacts limit reference points and evidence for a relationship between stock and recruit. Time series of SSB and TEP are compared for three North Sea stocks: cod (Gadus morhua), herring (Clupea harengus) and plaice (Pleuronectes platessa). Dynamics based on TEP are different from those based on SSB for cod and plaice, but the stock–recruit relationships were not ‘improved’ using TEP. Shifts in productivity (spawner per recruit) occur in all three time series and SSB underestimated uncertainty. Yet again, it was shown that assumptions of stationarity about fish population productivity are incorrect. We argue that the use of TEP does improve the realism in our understanding of stock dynamics, and demographically, more complex management strategy evaluation is required to develop management procedures that are robust to uncertainty and integrate F and the demographic health of a stock. Empirical feedback control systems based on fisheries independent indices including surveys of eggs, larvae, recruits, juveniles or spawning adults should be evaluated and compared to traditional approaches.  相似文献   

3.
The reproductive success of marine ectotherms is especially vulnerable in warming oceans due to alterations in adult physiology, as well as embryonic and larval survival prospects. These vital responses may, however, differ considerably across the species' geographical distribution. Here we investigated the life history, focusing on reproductive ecology, of three spatially distant populations (stocks) of Atlantic cod (Gadus morhua, Gadidae) (50–80° N), in the Irish/Celtic Seas-English Channel Complex, North and Barents Seas, under past and projected climate. First, experimental tracking of spawning behaviour evidenced that the ovulation cycle is highly distressed at ≥9.6 (±0.25)°C (Tup). This knife-edge threshold resulted in erratic spawning frequencies, whereas vitellogenin sequestration remained unaffected, indicating endocrine rather than aerobic scope constraints. Cod in the Celtic Sea-English Channel are, therefore, expected to show critical stock depensation over the next decades as spawning grounds warm above Tup, with Irish Sea cod subsequently at risk. Second, in the relatively cooler North Sea, the northward retraction of Calanus finmarchicus (Calanidae) and Para-Pseudocalanus spp. (Clausocalanidae) (1958–2017) limit cod larvae feeding opportunities, particularly in the southernmost subarea. However, the contrasting increase in Calanus helgolandicus (Calanidae) does not counteract this negative effect, likely because cod larvae hatch ahead of its abundance peaks. Overfishing again comes as a twin effect. Third, in the still relatively cold Barents Sea, the sustainably harvested cod benefit from improved food conditions in the recent ice-free polar region but at the energetic cost of lengthier and faster spawning migrations. Consequently, under climate change local stocks are stressed by different mechanistic factors of varying management severity.  相似文献   

4.
Large amplitude variations in recruitment of small pelagic fish result from interactions between a fluctuating environment and population dynamics processes such as spawning. The spatial extent and location of spawning, which is critical to the fate of eggs and larvae, can vary strongly from year to year, as a result of changing population structure and environmental conditions. Spawning habitat can be divided into ‘potential spawning habitat’, defined as habitat where the hydrographic conditions are suitable for spawning, ‘realized spawning habitat’, defined as habitat where spawning actually occurs, and ‘successful spawning habitat’, defined as habitat from where successful recruitment has resulted. Using biological data collected during the period 2000–2004, as well as hydrographic data, we investigate the role of environmental parameters in controlling the potential spawning habitat of anchovy and sardine in the Bay of Biscay. Anchovy potential spawning habitat appears to be primarily related to bottom temperature followed by surface temperature and mixed‐layer depth, whilst surface and bottom salinity appear to play a lesser role. The possible influence of hydrographic factors on the spawning habitat of sardine seems less clear than for anchovy. Modelled relationships between anchovy and sardine spawning are used to predict potential spawning habitat from hydrodynamical simulations. The results show that the seasonal patterns in spawning are well reproduced by the model, indicating that hydrographic changes may explain a large fraction of spawning spatial dynamics. Such models may prove useful in the context of forecasting potential impacts of future environmental changes on sardine and anchovy reproductive strategy in the north‐east Atlantic.  相似文献   

5.
The distribution of juvenile fish in Norwegian waters in spring and summer provides evidence that some of these are transported into Norwegian coastal waters from spawning grounds outside the ecosystems which comprise the central and northern Norwegian coast, the Barents Sea and the Spitsbergen area. The relevant species are capelin (Mallotus villosus Müller), haddock (Melanogrammus aeglefinus L.), herring (Clupea hareri' gus L.) and saithe (Pollachius virens L.). A substantial part of the saithe and haddock stock along the central and northern Norwegian coast is considered to be recruited from spawning grounds in the northern North Sea. A contribution of these species from the spawning grounds around the Faeroe Islands and west of Scotland may also occur in some years. Herring from the northern North Sea are found scattered off the Norwegian coast north to 70oN. It seems likely that pelagic species such as capelin and herring are transported by the prevailing currents from Iceland.  相似文献   

6.
Atlantic cod (Gadus morhua) is one of the commercially most important fish species in the North Atlantic and plays a central role in several ecosystems. Fishing pressure has been heavy over a prolonged period and the recent decades have shown dramatic decline in abundance of many stocks. The Arcto‐Norwegian (or North‐east Arctic) cod stock in the Barents Sea is now the largest stock of Atlantic cod. Recruitment to this stock has varied extensively during the last 60 yr. There is evidence for fluctuations in climate, particularly sea temperature, being a main cause for this variability, higher temperatures being favourable for survival throughout the critical early life stages. Our studies of time series present compelling evidence for a strengthening of the climate–cod recruitment link during the last decades. We suggest this is an effect of the age and length composition of the spawning stock having changed distinctly. The age of the average spawner has decreased by more than 3 yr from between 10 and 11 in the late 1940s to 7–8 in the 1990s, average length from just above 90 cm to around 80 cm. The number of age classes contributing to the spawning stock has also decreased, while the number of length groups present increased slightly. Significant decrease in age of spawners has frequently been described for other heavily fished stocks worldwide. We therefore find it likely that the proposed mechanism of increased influence of climate on recruitment through changes in the spawning stock age and size composition is of a general nature and might be found in other systems.  相似文献   

7.
Spawning of fishes takes place across a wide area of the North Sea. However, more intense spawning is seen in restricted areas, indicating that such areas present favorable conditions. To update information on fish spawning in the North Sea and analyze potential linkages to hydrographic characteristics, an internationally coordinated survey was conducted in the winter/spring of 2004. Oblique hauls for fish eggs and larvae and vertical profiles of temperature and salinity were carried out at 393 stations across the entire North Sea. The hydrography was strongly influenced by the interfacing of water masses of different salinity, and frontal zones were seen along all coastal areas and off the Dogger and Fisher Banks. Total abundances of eggs and larvae, including fish species such as cod, haddock, plaice, long rough dab and sandeel, peaked in the vicinity of the frontal areas. Hence our findings indicate that the main spawning locations of fish are linked to recurrent hydrographic features such as salinity fronts. Such a linkage may provide survival advantages, as the fronts present favorable feeding conditions, and the related physical processes may confine egg and larval dispersal and transport them towards suitable nursery habitats.  相似文献   

8.
To study the transport of plaice (Pleuronectes platessa L.) eggs and larvae in the eastern Irish Sea, we constructed a 3D‐baroclinic physical model and coupled it to a particle‐tracking scheme that allowed aspects of larval behaviour to be simulated. Starting positions for eggs were based upon data from a series of ichthyoplankton surveys and final positions were compared with results of settled plaice distributions from two beam trawl surveys conducted on beaches around the eastern Irish Sea. If simulated larval behaviour was limited to passive drift or horizontal swimming, the particles diffused away from the spawning areas but failed to reach nursery grounds in significant numbers (85–90% remaining offshore). In contrast, switching on circatidal vertical swimming significantly increased the numbers of larvae reaching the coast (only 23–30% remained offshore). Particles tended to accumulate in bays and estuaries and this pattern compared well with the distribution of settled plaice from the field surveys. Studies in the southern North Sea (where spawning and nursery grounds are widely separated) have also demonstrated the importance of selective tidal stream transport for successful recruitment of settling plaice to nursery grounds. Although our understanding of the ontogeny of this behaviour is still poor, the model results presented suggest that this aspect of behaviour is a key factor influencing plaice settlement success.  相似文献   

9.
In the mid 1970s, the fishery catch of postlarval Japanese anchovy (Engraulis japonica) in a shelf region of the Enshu‐nada Sea, off the central Pacific coast of Japan, started to decline corresponding to a rapid increase of postlarval sardine (Sardinops melanostictus). In late 1980s, sardine started to decline, and it was replaced by anchovy in the 1990s. This alternating dominance of postlarval sardine and anchovy corresponded to the alternation in egg abundance of these two species in the spawning habitat of this sea. It was also noteworthy that during the period of sardine decline, sardine spawning occurred in April–May, a delay of two months compared with spawning in the late 1970s. The implication of oceanographic changes in the spawning habitat for the alternating dominance of sardine and anchovy eggs was explored using time‐series data obtained in 1975–1998, focusing on the effect of the Kuroshio meander. Large meanders of the Kuroshio may have enhanced the onshore intrusion of the warm water into the shelf region and contributed to an increase in temperature in the spawning habitat. This might favour sardine, because its egg abundance in the shelf region was more dependent on the temperature in early spring than was that of anchovy. In addition, enhanced onshore intrusion could contribute to transport of sardine larvae from upstream spawning grounds of the Kuroshio region. On the other hand, anchovy egg abundance was more closely related to lower transparency at the shelf edge, which may indicate the prevalence and prolonged residence of the coastal water, and therefore higher food availability, frequently accompanying non‐meandering Kuroshio. The expansion/shrinkage of the spawning habitat of sardine and anchovy in the shelf region, apparently responding to the change in the Kuroshio, possibly makes the alternation in dominance of postlarval sardine and anchovy most prominent in the Enshu‐nada Sea, in combination with changes in the abundance of spawning adults, which occurred almost simultaneously in the overall Kuroshio region. The implication of this rather regional feature for the alternating dominance of sardine and anchovy populations on a larger spatial scale is also discussed.  相似文献   

10.
Identification of the potential habitat of European anchovy (Engraulis encrasicolus) at different life stages in relation to environmental conditions is an interesting subject from both ecological and management points of view. For this purpose, acoustic data from different seasons and different parts of the Mediterranean Sea along with satellite environmental and bathymetry data were modelled using generalized additive models. Similarly, egg distribution data from summer ichthyoplankton surveys were used to model potential spawning habitat. Selected models were used to produce maps presenting the probability of anchovy presence (adults, juveniles and eggs) in the entire Mediterranean basin, as a measure of habitat adequacy. Bottom depth and sea surface chlorophyll concentration were the variables found important in all models. Potential anchovy habitats were located over the continental shelf for all life stages examined. An expansion of the potential habitat from the peak spawning (early summer) to the late spawning season (early autumn) was observed. However, the most suitable areas for the presence of anchovy spawners seem to maintain the same size between seasons. Potential juvenile habitats were associated with highly productive inshore waters, being less extended and closer to coast during winter than late autumn. Potential spawning habitat in June and July based on ichthyoplankton surveys overlapped but were wider in extent compared with adult potential habitat from acoustics in the same season. Similarities and dissimilarities between the anchovy habitats as well as comparisons with sardine habitats in the oligotrophic Mediterranean Sea and other ecosystems with higher productivity are discussed.  相似文献   

11.
Oceanographic and predation processes are important modulators of fish larvae survival and mortality. This study addresses the hypothesis that immature Norwegian spring‐spawning herring (Clupea harengus), when abundant in the Barents Sea, determine the capelin reproduction success through consumption of Barents Sea capelin (Mallotus villosus) larvae. Combining a hydrodynamic model and particle‐tracking individual‐based model, a realistic spatio‐temporal overlap between capelin larvae and predatory immature herring was modelled for the summer seasons of 2001–2003. Capelin larvae originating from western spawning grounds became widely dispersed during the summer season, whereas those originating from eastern spawning grounds experienced a rapid drift into the southeastern Barents Sea. Herring caused a 3% mortality of the capelin larvae population in 2001 and a 16% mortality in 2003, but the effect of predation from herring on capelin larvae was negligible in 2002. Despite a strong capelin larvae cohort and a virtual absence of predatory herring, the recruitment from the capelin 2002 year class was relatively poor from a long‐term perspective. We show that the choice of capelin spawning grounds has a major impact on the subsequent capelin larvae drift patterns, constituting an important modulator of the capelin larvae survival. Variation in drift patterns during the summer season is likely to expose the capelin larvae to a wide range of hazards, including predation from young cod, sandeel and other predators. Such alternative predators might thus have contributed to the poor capelin recruitment during 2001–2003, leading to the collapse of the capelin stock in the subsequent years.  相似文献   

12.
The spatial extent of small pelagic fish spawning habitat is influenced by environmental factors and by the state of the adult population. In return, the configuration of spawning habitat affects recruitment and therefore the future structure of the adult population. Interannual changes in spatial patterns of spawning reflect variations in adult population structures and their environment. The present study describes the historical changes in the spatial distribution of spawning of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) in the Bay of Biscay during two periods: 1967–72 and 2000–2004. Using data from egg surveys conducted in spring, the spatial distributions of anchovy and sardine eggs are characterized by means of geostatistics. For each survey, a map of probability of egg presence is constructed. The maps are then compared to define (1) recurrent spawning areas, (2) occasional spawning areas and (3) unfavourable spawning areas during each period. Sardine spawning habitat is generally fragmented and appears spatially limited by the presence of cold bottom water. It is confined to coastal or shelf break refuge areas in years of restricted spawning extent. For anchovy, recurrent spawning sites are found in Gironde and Adour estuaries whilst spawning can extend further offshore in years of more intense spawning. For both species, the mean pattern of spawning has changed between 1967–72 and 2000–2004. Noticeably, the spatial distribution of anchovy eggs in spring has expanded northward. This trend possibly results from changes in environmental conditions during the last four decades.  相似文献   

13.
We investigated the effects of three sea surface oceanographic variables (temperature, salinity, and chlorophyll a) on the abundance of eggs and larvae of two summer‐spawning species in the NW Mediterranean Sea, the anchovy Engraulis encrasicolus and the round sardinella Sardinella aurita, based on data from ichthyoplankton surveys carried out in the 1980s, 2000s, and 2010s. The environmental data showed an increase in seawater temperature and salinity along time, coupled with a decrease in chlorophyll a (proxy for primary production). These long‐term directional changes in environmental conditions helped explain the important reduction observed in the abundance of eggs and larvae of anchovy, as well as shrinking of spawning habitat in this species. At the same time, the probability of occurrence of round sardinella has increased from practically zero in the 1980s to probabilities near 1 along the coastal area of the study region in the two decades of the 21st century. Given that the trends observed in the environmental variables along the three decades of study are expected to continue during the 21st century, as a consequence of climate change, the spawning habitat of anchovy is expected to continue decreasing, while round sardinella habitat can expand. Considering that anchovy is of high commercial importance in NW Mediterranean fisheries, while round sardinella has very low commercial interest, our results show that the viability of small pelagic fisheries in the area may be compromised.  相似文献   

14.
Eleven ichthyoplankton cruises were undertaken covering most of the Irish Sea during the period February to June, 1995. To identify spawning localities and investigate temporal trends in egg production, the data on stage 1 A egg distributions of cod ( Gadus morhua ), plaice ( Pleuronectes platessa ) and sole ( Solea solea ) have been modelled using generalized additive models (GAMs). A two-stage approach was adopted where presence/absence was firstly modelled as a binary process and a GAM surface subsequently fitted to egg production (conditional on presence). We demonstrate that this approach can be used to model egg production both in space and in time. The spawning sites for cod, plaice and sole in the Irish Sea were defined in terms of the probability of egg occurrence. For cod, we demonstrate that by integrating under predicted egg production surfaces, a cumulative production curve can be generated and used to define percentiles of production and thus delimit the extent of the spawning season. However, for plaice and sole, the surveys did not fully cover the spawning season and the limitations that this imposes on GAM modelling of these data are discussed. Comparison of the spawning sites in 1995 with historical data suggests that the locations of cod, plaice and sole egg production in the Irish Sea have probably remained relatively constant over the last 30 years.  相似文献   

15.
The survival of fish eggs and larvae, and therefore recruitment success, can be critically affected by transport in ocean currents. Combining a model of early‐life stage dispersal with statistical stock–recruitment models, we investigated the role of larval transport for recruitment variability across spatial scales for the population complex of North Sea cod (Gadus morhua). By using a coupled physical–biological model, we estimated the egg and larval transport over a 44‐year period. The oceanographic component of the model, capable of capturing the interannual variability of temperature and ocean current patterns, was coupled to the biological component, an individual‐based model (IBM) that simulated the cod eggs and larvae development and mortality. This study proposes a novel method to account for larval transport and success in stock–recruitment models: weighting the spawning stock biomass by retention rate and, in the case of multiple populations, their connectivity. Our method provides an estimate of the stock biomass contributing to recruitment and the effect of larval transport on recruitment variability. Our results indicate an effect, albeit small, in some populations at the local level. Including transport anomaly as an environmental covariate in traditional stock–recruitment models in turn captures recruitment variability at larger scales. Our study aims to quantify the role of larval transport for recruitment across spatial scales, and disentangle the roles of temperature and larval transport on effective connectivity between populations, thus informing about the potential impacts of climate change on the cod population structure in the North Sea.  相似文献   

16.
The introduction of 200 n.m. exclusive economic zones (EEZs) in the late 1970s required increased collaboration among neighbouring coastal states to manage transboundary and straddling fish stocks. The established agreements ranged from bilateral to multilateral, including high‐seas components, as appropriate. However, the 1982 United Nations Convention on the Law of the Sea does not specify how quotas of stocks crossing EEZs should be allocated, nor was it written for topical scenarios, such as climate change with poleward distribution shifts that differ across species. The productive Northeast Atlantic is a hot spot for such shifts, implying that scientific knowledge about zonal distribution is crucial in quota negotiations. This diverges from earlier, although still valid, agreements that were predominately based on political decisions or historical distribution of catches. The bilateral allocations for Barents Sea and North Sea cod remain robust after 40 years, but the management situation for widely distributed stocks, as Northeast Atlantic mackerel and Norwegian spring‐spawning herring, appears challenging, with no recent overall agreements. Contrarily, quotas of Northern hake are, so far, unilaterally set by the EU despite the stock's expansion beyond EU waters into the northern North Sea. Negotiations following the introduction of EEZs were undertaken at the end of the last cooler Atlantic Multidecadal Oscillation (AMO) period, that is, with stock distributions generally in a southerly mode. Hence, today's lack of management consensus for several widely distributed fish stocks typically relates to more northerly distributions attributed to the global anthropogenic signal accelerating the spatial effect of the current warmer AMO.  相似文献   

17.
The inter-annual variability in year class strength (1976–2000) of North Sea herring (Clupea harengus) was investigated using Paulik diagrams based on survey data and Virtual Population Analysis. The herring life cycle was split into five stages: spawning stock biomass (SSB), egg production, larvae, fish with 0 winter rings on the otolith (0-wr), 1-wr and 2-wr. Surveys were used as indices and Paulik analysis revealed relationships between stages. In 80% of the years, year class strength reflected SSB. Poorer than expected year classes were determined during the larva to 0-wr phase, whilst stronger than expected year classes were apparently determined during the 0-wr to 1-wr stage. There was no clear relationship between survival of young stages of herring and the abundance of Calanus finmarchicus but the year class strength of 0-wr and 1-wr had a negative relationship to bottom water temperature. Lower sea water temperatures in the North Sea are associated with higher Calanus abundance. The analysis shows that the strength of aberrant year classes of North Sea herring is determined between the pelagic larval and the juvenile stages.  相似文献   

18.
An intensive sampling program for yolk-sac herring larvae and microzooplankton was carried out in the main spawning area of Norwegian spring-spawning herring during March to April 1990 (between 62o and 63o30'N) to estimate their hatching period and the abundance of copepod eggs and nauplii. Additional investigations were carried out in the Skagerrak area during January-March and on the Norwegian Shelf in May to study the otolith microstructure of the herring larvae. In May both autumn- and spring-spawned herring larvae were found in the samples from the Norwegian Shelf. They were easily distinguished by differences in otolith microstructure. The pattern in increment widths in the otoliths of the autumn-spawned larvae indicated that these larvae had not been transported through the Skagerrak area, but more likely were carried directly from the northern North Sea across the Norwegian Trench and into the Norwegian Coastal Current system. The calculated hatching of the spring-spawned larvae sampled in May occurred significantly later than the observed hatching over the spawning grounds. The results suggest a mismatch between the abundance of first-feeding herring larvae and their prey organisms, resulting in a higher survival of those herring larvae hatching during the latest part of the spawning period. This coincides with a general increase towards the middle of April in the abundance of prey organisms, from 1 to 4 1_1. There were no differences in otolith microstructure among spring-spawned herring larvae sampled on the shelf in May, indicating that these larvae originated from the same cohort and were well mixed throughout the whole shelf area.  相似文献   

19.
Climate change and anthropogenic disturbances may affect marine populations and ecosystems through multiple pathways. In this study we present a framework in which we integrate existing models and knowledge on basic regulatory processes to investigate the potential impact of future scenarios of fisheries exploitation and climate change on the temporal dynamics of the central Baltic herring stock. Alternative scenarios of increasing sea surface temperature and decreasing salinity of the Baltic Sea from a global climate model were combined with two alternative fishing scenarios, and their direct and ecosystem‐mediated effects (i.e., through predation by cod and competition with sprat) on the herring population were evaluated for the period 2010–2050. Gradual increase in temperature has a positive impact on the long‐term productivity of the herring stock, but it has the potential to enhance the recovery of the herring stock only in combination with sustainable fisheries management (i.e., Fmsy). Conversely, projections of herring spawning stock biomass (SSB) were generally low under elevated fishing mortality levels (Fhigh), comparable with those experienced by the stock during the 1990s. Under the combined effects of long‐term warming and high fishing mortality uncertainty in herring SSB projections was higher and increasing for the duration of the forecasts, suggesting a synergistic effect of fishery exploitation and climate forcing on fish populations dynamics. Our study shows that simulations of long‐term fish dynamics can be an informative tool to derive expectations of the potential long‐term impact of alternative future scenarios of exploitation and climate change.  相似文献   

20.
The understanding of spatio‐temporal dynamics of marine ecosystems is crucial for ecosystem‐based fisheries management and climate change impact assessments. We quantified temporal changes in the distribution of 0‐group cod (Gadus morhua) and grey gurnard (Eutriglia gurnardus), a primary predator of 0‐group cod, with the help of regression kriging and assessed the temporal dynamics of the related spatial predator–prey overlap of these two species at different spatial scales. We analysed the robustness of relationships among abiotic habitat properties (temperature, salinity and depth) and abundance. Small cod was mainly found in low salinity areas of the Skagerrak but larger year classes were able to expand their distribution area towards the central and northern North Sea. In contrast, grey gurnard was mainly found in waters with salinities above 33 and temperatures above 14°C. This species has expanded its high density areas in the central North Sea northward over the last two decades. Recruitment success of cod was negatively correlated to a Moran's I cross‐correlation index, a proxy for the degree of spatial overlap between both species. Strong cod year classes overlapped less with grey gurnard at the large and medium spatial scale. In general, the relationships between abiotic habitat properties and abundance showed an increased inter‐annual variability, which was likely caused by underlying factors not taken into account in the distribution models. Thus assemblage modeling approaches combining the strength of different model types should be considered in the future to predict potential distribution patterns under climate change scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号