首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis mordax) eggs exhibited different spatial structure on the scale of 0.75–2.5 km in two egg patches sampled in the Southern California Bight in April 2000. Plankton samples were collected at 4‐min intervals with a Continuous Underway Fish Egg Sampler (CUFES) on 5 × 5 km grids centered on surface drifters. Variograms were calculated for sardine and anchovy eggs in Lagrangian coordinates, using abundances of individual developmental stages grouped into daily cohorts. Model variograms for sardine eggs have a low nugget effect, about 10% of the total variance, indicating high autocorrelation between adjacent samples. In contrast, model variograms for anchovy eggs have a high nugget effect of 50–100%, indicating that most of the variance at the scales sampled is spatially unstructured. The difference between observed spatial patterns of sardine and anchovy eggs on this scale may reflect the behavior of the spawning adults: larger, faster, more abundant fish may organize into larger schools with greater structure and mobility that create smoother egg distributions. Size and mobility vary with population size in clupeoids. The current high abundance of sardines and low abundance of anchovy off California agree with the greater autocorrelation of sardine egg samples and the observed tendency for locations of anchovy spawning to be more persistent on the temporal scale of days to weeks. Thus the spatial pattern of eggs and the persistence of spawning areas are suggested to depend on species, population size and age structure, spawning intensity and characteristic physical scales of the spawning habitat.  相似文献   

2.
In the mid 1970s, the fishery catch of postlarval Japanese anchovy (Engraulis japonica) in a shelf region of the Enshu‐nada Sea, off the central Pacific coast of Japan, started to decline corresponding to a rapid increase of postlarval sardine (Sardinops melanostictus). In late 1980s, sardine started to decline, and it was replaced by anchovy in the 1990s. This alternating dominance of postlarval sardine and anchovy corresponded to the alternation in egg abundance of these two species in the spawning habitat of this sea. It was also noteworthy that during the period of sardine decline, sardine spawning occurred in April–May, a delay of two months compared with spawning in the late 1970s. The implication of oceanographic changes in the spawning habitat for the alternating dominance of sardine and anchovy eggs was explored using time‐series data obtained in 1975–1998, focusing on the effect of the Kuroshio meander. Large meanders of the Kuroshio may have enhanced the onshore intrusion of the warm water into the shelf region and contributed to an increase in temperature in the spawning habitat. This might favour sardine, because its egg abundance in the shelf region was more dependent on the temperature in early spring than was that of anchovy. In addition, enhanced onshore intrusion could contribute to transport of sardine larvae from upstream spawning grounds of the Kuroshio region. On the other hand, anchovy egg abundance was more closely related to lower transparency at the shelf edge, which may indicate the prevalence and prolonged residence of the coastal water, and therefore higher food availability, frequently accompanying non‐meandering Kuroshio. The expansion/shrinkage of the spawning habitat of sardine and anchovy in the shelf region, apparently responding to the change in the Kuroshio, possibly makes the alternation in dominance of postlarval sardine and anchovy most prominent in the Enshu‐nada Sea, in combination with changes in the abundance of spawning adults, which occurred almost simultaneously in the overall Kuroshio region. The implication of this rather regional feature for the alternating dominance of sardine and anchovy populations on a larger spatial scale is also discussed.  相似文献   

3.
Large amplitude variations in recruitment of small pelagic fish result from interactions between a fluctuating environment and population dynamics processes such as spawning. The spatial extent and location of spawning, which is critical to the fate of eggs and larvae, can vary strongly from year to year, as a result of changing population structure and environmental conditions. Spawning habitat can be divided into ‘potential spawning habitat’, defined as habitat where the hydrographic conditions are suitable for spawning, ‘realized spawning habitat’, defined as habitat where spawning actually occurs, and ‘successful spawning habitat’, defined as habitat from where successful recruitment has resulted. Using biological data collected during the period 2000–2004, as well as hydrographic data, we investigate the role of environmental parameters in controlling the potential spawning habitat of anchovy and sardine in the Bay of Biscay. Anchovy potential spawning habitat appears to be primarily related to bottom temperature followed by surface temperature and mixed‐layer depth, whilst surface and bottom salinity appear to play a lesser role. The possible influence of hydrographic factors on the spawning habitat of sardine seems less clear than for anchovy. Modelled relationships between anchovy and sardine spawning are used to predict potential spawning habitat from hydrodynamical simulations. The results show that the seasonal patterns in spawning are well reproduced by the model, indicating that hydrographic changes may explain a large fraction of spawning spatial dynamics. Such models may prove useful in the context of forecasting potential impacts of future environmental changes on sardine and anchovy reproductive strategy in the north‐east Atlantic.  相似文献   

4.
Numerical particle-tracking experiments were performed to investigate the transport and variability in environmental temperature experienced by eggs and larvae of Pacific stocks of the Japanese anchovy ( Engraulis japonicus ) and Japanese sardine ( Sardinops melanostictus ) using high-resolution outputs of the Ocean General Circulation Model for the Earth Simulator (OFES) and the observed distributions of eggs collected from 1978 to 2004. The modeled anchovy individuals tend to be trapped in coastal waters or transported to the Kuroshio–Oyashio transition region. In contrast, a large proportion of the sardines are transported to the Kuroshio Extension. The egg density-weighted mean environmental temperature until day 30 of the experiment was 20–24°C for the anchovy and 17–20°C for the sardine, which can be explained by spawning areas and seasons, and interannual oceanic variability. Regression analyses revealed that the contribution of environmental temperature to the logarithm of recruitment per spawning (expected to have a negative relationship with the mean mortality coefficient) was significant for both the anchovy and sardine, especially until day 30, which can be regarded as the initial stages of their life cycles. The relationship was quadratic for the anchovy, with an optimal temperature of 21–22°C, and linear for the sardine, with a negative coefficient. Differences in habitat areas and temperature responses between the sardine and anchovy are suggested to be important factors in controlling the dramatic out-of-phase fluctuations of these species.  相似文献   

5.
European anchovy egg occurrence and density data from summer surveys (1998–2007) and oceanographic data were examined to study the mechanisms that control the spatial distribution of anchovy spawning habitat in the Strait of Sicily. Quotient analysis indicated habitat preference for temperature (18–19°C), bottom depth (50–100 m), water column stability (13–14 cycle h?1), fluorescence (0.10–0.15 μg m?3 Chl a), salinity (37.5–37.6 PSU), current speed (0.20–0.25 m s?1) and density (26.7–26.8 kg m?3, σt). Canonical discriminant analysis identified temperature, column stability and fluorescence as major drivers of anchovy spawning habitat. Three of the 4 years which had lower egg abundance were warmer years, with low values of primary productivity. A geostrophic current flowing through the Strait (the Atlantic Ionic Stream, AIS) was confirmed as the main source of environmental variability in structuring the anchovy spawning ground by its influence on both the oceanography and distribution of anchovy eggs. This 10‐yr data series demonstrates recurrent but also variable patterns of oceanographic flows and egg distribution. A lack of freshwater flow in this area appears to depress productivity in the region, but certain and variable combinations of environmental conditions can elevate production in some sub‐areas in most years or other sub‐areas in fewer years. These temporal and spatial patterns are consistent with an ocean triad theory postulating that processes of oceanographic enrichment, concentration, and retention may help predict fishery yields.  相似文献   

6.
Previous studies have suggested that sardine, Sardinops sagax, off eastern Australia spawns across its entire range when habitat conditions are suitable. However, recent studies have suggested that separate sub‐populations and spawning groups may occur in the region. Spawning patterns off eastern Australia were investigated using data collected during nine ichthyoplankton surveys conducted between 1997–2015, and adult reproductive data obtained from ad hoc commercial sampling off New South Wales (NSW). The egg surveys covered the known distribution of sardine off eastern Australia and included year‐round sampling in the northern and southern parts of this range. Egg distributions and analysis of gonadosomatic indices identified two spatio‐temporally separate spawning groups; one occurring off southern Queensland to northern NSW during late winter and early spring, and a smaller group off eastern Tasmania to southern NSW during summer. Most eggs were collected from waters 50–90 m deep, with sea surface temperatures of 18–23°C. Additive modelling indicated depth was the most significant factor driving selection of spawning habitat, followed by the interaction of month and latitude. Low egg densities were recorded in waters between 34–37°S, despite conditions within the ranges suitable for spawning. The presence of two spawning groups of sardine off eastern Australia supports recent findings that two sub‐populations occur in the region. Findings of this study will help to optimise the spatio‐temporal extent of future egg surveys and further confirm the need to coordinate future management of each sub‐population among relevant jurisdictions.  相似文献   

7.
The spatial pattern of sardine spawning as revealed by the presence of sardine eggs is examined in relation to sea surface temperature (SST) and mean volume backscatter strength (MVBS) measured by a 150 kHz acoustic Doppler current profiler (ADCP) during four spring surveys off central and southern California in 1996–99. Studies in other regions have shown that MVBS provides an excellent measure of zooplankton distribution and density. Zooplankton biomass as measured by survey net tows correlates well with concurrently measured MVBS. The high along‐track resolution of egg counts provided by the Continuous Underway Fish Egg Sampler (CUFES) is a good match to the ADCP‐based data. Large interannual differences in the pattern and density of sardine eggs are clearly related to the concurrently observed patterns of surface temperature and MVBS. The strong spatial relationship between sardine eggs and MVBS is particularly evident because of the large contrast in zooplankton biomass between the 1998 El Niño and 1999 La Niña. The inshore distribution of sardine spawning appears to be limited by the low temperatures of freshly upwelled waters, although the value of the limiting temperature varies between years. Often there is an abrupt offshore decrease in MVBS that is coincident with the offshore boundary of sardine eggs. Possible reasons for this association of sardine eggs and high zooplankton biomass include an evolved strategy that promotes improved opportunity of an adequate food supply for subsequent larval development, and/or adult nutrient requirements for serial spawning. Hence, the distribution of these parameters can be used as an aid for delineating the boundaries of sardine spawning habitat.  相似文献   

8.
Identification of the potential habitat of European anchovy (Engraulis encrasicolus) at different life stages in relation to environmental conditions is an interesting subject from both ecological and management points of view. For this purpose, acoustic data from different seasons and different parts of the Mediterranean Sea along with satellite environmental and bathymetry data were modelled using generalized additive models. Similarly, egg distribution data from summer ichthyoplankton surveys were used to model potential spawning habitat. Selected models were used to produce maps presenting the probability of anchovy presence (adults, juveniles and eggs) in the entire Mediterranean basin, as a measure of habitat adequacy. Bottom depth and sea surface chlorophyll concentration were the variables found important in all models. Potential anchovy habitats were located over the continental shelf for all life stages examined. An expansion of the potential habitat from the peak spawning (early summer) to the late spawning season (early autumn) was observed. However, the most suitable areas for the presence of anchovy spawners seem to maintain the same size between seasons. Potential juvenile habitats were associated with highly productive inshore waters, being less extended and closer to coast during winter than late autumn. Potential spawning habitat in June and July based on ichthyoplankton surveys overlapped but were wider in extent compared with adult potential habitat from acoustics in the same season. Similarities and dissimilarities between the anchovy habitats as well as comparisons with sardine habitats in the oligotrophic Mediterranean Sea and other ecosystems with higher productivity are discussed.  相似文献   

9.
Gonosomatic indices and egg and larval densities observed from 1986 to 2001 suggest that the peak spawning season of the Australian anchovy (Engraulis australis) in South Australia occurs during January to March (summer and autumn). This coincides with the spawning season of sardine (Sardinops sagax) and the period when productivity in shelf waters is enhanced by upwelling. Anchovy eggs were abundant throughout gulf and shelf waters, but the highest densities occurred in the northern parts of Spencer Gulf and Gulf St Vincent where sea surface temperatures (SST) were 24–26°C. In contrast, larvae >10 mm total length (TL) were found mainly in shelf waters near upwelling zones where SSTs were relatively low (<20°C) and levels of chlorophyll a (chl a) relatively high. Larvae >15 mm TL were collected only from shelf waters near upwelling zones. The high levels of larval abundance in the upwelling zones may reflect higher levels of recruitment to later stages in these areas compared with the gulfs. The sardine spawns mainly in shelf waters; few eggs and no larvae were collected from the northern gulfs. The abundance of anchovy eggs and larvae in shelf waters increased when sardine abundance was reduced by large‐scale mortality events, and decreased as the sardine numbers subsequently recovered. We hypothesize that the upwelling zones provide optimal conditions for the survival of larval anchovy in South Australia, but that anchovy can only utilize these zones effectively when the sardine population is low. At other times, northern gulf waters of South Australia may provide a refuge for the anchovy that the sardine cannot utilize.  相似文献   

10.
The size and specific gravity of eggs of marine pelagic fish partly determine their dispersal and survival. Using an original dataset of anchovy and sardine eggs, sampled in spring over the last decade in the Bay of Biscay, we provide a parameterization of these properties on ambient water temperature and salinity. We used the density gradient column for measurement of egg specific gravity. The column was also filled with homogeneous water for sinking velocity experiments. For anchovy, these experiments confirm that the effect of egg permeability through the chorion could be neglected when modelling sinking, while it has to be considered for sardine, its perivitelline space representing 78.6% (±6.2%) of the total egg volume, as opposed to 5–10% for most teleosts species. We estimated a coefficient of permeability of the chorion of 0.0038 mm s?1. However, permeability should not affect the measurement of sardine egg specific gravity in a gradient column, provided a minimum duration before reading is respected for equilibrium to be reached. In relation to their environment, we found that the egg specific gravity is largely determined by sea surface salinity for both species, whereas egg size is weakly but significantly impacted by temperature, for sardine only. On average, the estimated difference in specific gravity between egg and surface water is ?0.92 σT for anchovy and ?1.06 σT for sardine. The detailed parameterization of the relationship between eggs and water properties should prove useful, in particular to modellers dealing with the dispersal of fish early life stages.  相似文献   

11.
We use trivariate kernel density estimation to define spawning habitat of northern anchovy ( Engraulis mordax ) and Pacific sardine ( Sardinops sagax ) in the California Current using satellite data and in situ egg samples from the Continuous Underway Fish Egg Sampler (CUFES) deployed during surveys in April by the California Cooperative Oceanic Fisheries Investigations (CalCOFI). Observed egg distributions were compared with monthly composite satellite sea surface temperature (SST) and surface chlorophyll a (chl a ) data. Based on the preferred spawning habitat, as defined in SST and chl a space, the satellite data were used to predict potential spawning habitat along two areas of the west coast of North America. Data from the southern area (21.5 to 39°N) were compared to observations from the CUFES data for the period 1998–2005. Northern anchovy and Pacific sardine exhibited distinctly different spawning habitat distributions. A significant relationship was found between satellite-based spawning area and that measured during surveys for sardine. CUFES area estimated for sardine was similar in magnitude to that estimated from satellite data (∼60 000 km2). In contrast, spawning habitat of anchovy averaged between 1000 and 200 000 km2 for the period 1998–2005, for CUFES and satellite estimates, respectively. Interannual variability in the area (km2) and duration (months) of estimates of suitable habitat varied between species and between the northern (39 to 50.5°N) and southern portions of the California Current. Long-term monitoring of habitat variability using remote sensing data is possible in the southern portion of the California Current, and could be improved upon in the northern area with the addition of surveys better timed to describe relationships between observed and estimated spawning habitats.  相似文献   

12.
Engraulis encrasicolus and Sardina pilchardus stocks are highly variable in terms of recruitment, biomass and spatial distribution. Changes in habitat conditions may influence both the survival of the early life stages and the adult stages. Detailed studies on the spatial distribution and habitat selection of such species have been performed in different areas of the world, highlighting the importance of environmental processes. The present study analyzes the spatial distribution of anchovy and sardine in the Tyrrhenian Sea in relation to environmental heterogeneity. Four acoustic surveys were carried out in this area in the period 2009–2014. Analysis of the environmental dataset permitted identification, in two specific areas, of a pattern of variables driving enrichment processes and impacting on the habitat suitability of the two species. In the northern and central parts of the study area, both anchovy and sardine showed a marked preference for shallower areas characterized by lower salinity. In these areas, PCA results on an environmental dataset highlighted a strong link between primary production, particulate organic carbon, distance from the mouth of the river, salinity and depth. A less clear picture was obtained for the southern part of the Tyrrhenian sea, characterized by a narrow continental shelf, moderately complex coastline morphology and the presence of very small rivers. Most of the anchovy biomass was found to be located in enclosed areas (gulfs) under the influence of relatively small rivers. This finding, taking into account that the surveys were carried out during the anchovy spawning period, highlights for such species a positive effect of the interaction between coastal morphology and riverine input, probably favoring food supply and retention of spawning products.  相似文献   

13.
The distribution of egg and larvae of mackerel, horse mackerel, sardine, hake, megrim, blue whiting and anchovy along the European Atlantic waters (south Portugal to Scotland) during 1998 is described. Time of the year, sea surface temperature and bottom depth are used to define the spawning habitat of the different species. Mackerel, horse mackerel, and sardine eggs and larvae presented the widest distribution, whereas megrim and anchovy showed a limited distribution, restricted to the Celtic Sea and the Bay of Biscay respectively. Correspondingly mackerel, horse mackerel and sardine showed the highest aggregation indices. Blue whiting larvae were found at the lowest temperatures, whereas anchovy eggs and larvae were found in the warmest waters. The analysis is a basis for evaluation of ongoing changes in the pelagic ecosystem of the north‐east Atlantic.  相似文献   

14.
  1. Single nucleotide polymorphism (SNP) markers in anchovy (Engraulis encrasicolus) egg samples were analysed to detect their origin on a small spatial scale (200 km) by assigning genotypes to adult anchovy stocks. The novelty of this work is the application of a rapid high‐throughput method for genotyping each single anchovy egg, in a single execution, using a set of 96 genome‐wide SNPs in a dynamic array system with microfluidic technology (Fluidigm 96.96).
  2. The existence of two ecotypes in E. encrasicolus had already been identified based on SNP polymorphism in the Atlantic Ocean and in the Mediterranean Sea, showing that habitat type (offshore versus coastal/estuarine) is the most important component of genetic differentiation among populations of anchovy.
  3. In this work, anchovy egg genotypes from areas of the Western Mediterranean were assigned to adult populations. Only two localities in which adult anchovies were sampled represented donor populations for the coastal/estuarine egg genotypes. Although some degree of mixing among the hauls could exist, the assignment of egg groups to adult populations led to distinguishing the contributions of distinct ecotypes to new wild generations. We can conclude that the high rate of egg dispersion caused by marine currents and the different degrees of local retention could explain the genetic heterogeneity observed in the adult populations, where eggs from neighbouring spawning sites tend to mix.
  4. The results highlight that this technique represents a new and useful tool for addressing evolutionary questions, breed recognition, assignment, and connectivity assessment of individual eggs, and anchovy population dynamics, for the management of stocks.
  相似文献   

15.
Three indexes of spatial aggregation are developed and used to examine the aggregation pattern of sardine (Sardinops sagax) and anchovy (Engraulis ringens) in the Peruvian Humboldt Current System, determined from 36 acoustic surveys conducted from 1983 through 2003 by the Peruvian Marine Institute (IMARPE). Each index assesses a different aspect of aggregation: the concentration, the percent occupancy of space and the clustering of high‐fish abundance. Both time‐series correlation and tree‐based clustering‐regression method, classification and regression trees (CART), were used to relate each of the indexes to environmental variables (season, temperature anomaly and year). Additionally, a measure of onshore–offshore distribution, the average distance from the coast, and abundance variables (the average acoustic backscatter per occupied sampling unit, and the acoustically estimated total abundance of sardine and anchovy from IMARPE) were related to environmental factors by using CART. We show that the 1983–2003 time series can be divided into three different periods: with shifts in 1992 and in 1997–98. Sardine and anchovy showed large differences in both abundance and aggregation among these periods. Although upwelling ecosystems support dramatic and sudden changes in environmental conditions, fish responses are sometimes smoother than usually suggested and there are transition periods with concomitant high biomasses of anchovy and sardine, but with different spatial aggregation patterns. Observed relationships between environmental proxies and aggregation patterns support the habitat‐based hypothesis that environmentally mediated alterations in range lead to population changes.  相似文献   

16.
Time series analyses (Box–Jenkins models) were used to study the influence of river runoff and wind mixing index on the productivity of the two most abundant species of small pelagic fish exploited in waters surrounding the Ebre (Ebro) River continental shelf (north‐western Mediterranean): anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus). River flow and wind were selected because they are known to enhance fertilization and local planktonic production, thus being crucial for the survival of fish larvae. Time series of the two environmental variables and landings of the two species were analysed to extract the trend and seasonality. All series displayed important seasonal and interannual fluctuations. In the long term, landings of anchovy declined while those of sardine increased. At the seasonal scale, landings of anchovy peaked during spring/summer while those of sardine peaked during spring and autumn. Seasonality in landings of anchovy was stronger than in sardine. Concerning the environmental series, monthly average Ebre runoff showed a progressive decline from 1960 until the late 1980s, and the wind mixing index was highest during 1994–96. Within the annual cycle, the minimum river flow occurs from July to October and the wind mixing peaks in winter (December–April, excluding January). The results of the analyses showed a significant correlation between monthly landings of anchovy and freshwater input of the Ebre River during the spawning season of this species (April–August), with a time lag of 12 months. In contrast, monthly landings of sardine were significantly positively correlated with the wind mixing index during the spawning season of this species (November–March), with a lag of 18 months. The results provide evidence of the influence of riverine inputs and wind mixing on the productivity of small pelagic fish in the north‐western Mediterranean. The time lags obtained in the relationships stress the importance of river runoff and wind mixing for the early stages of anchovy and sardine, respectively, and their impact on recruitment.  相似文献   

17.
Generalized additive models (GAMs) were fitted to sardine (Sardina pilchardus) egg distribution data from three daily egg production method surveys. The results showed that the area of egg cover off Portugal decreased significantly from 11 800 km2 in 1988 to 7000 km2 in 1997 and 7400 km2 in 1999. This is because of a significant reduction in sardine egg presence off northern Portugal, GAM estimated areas being similar or higher in the late 1990s for southwestern and southern Portugal. The distributional area covered by larvae was not estimated for 1988 (larval distribution extended beyond the survey area), although it was probably higher than the 9600 km2 for 1997 and 5500 km2 for 1999. In 1997 and 1999, the Gulf of Cadiz was also sampled, indicating extensive areas with sardine eggs and larvae (more than 50% of the total area of distribution off Portugal). Standardized data from 15 ichthyoplankton surveys between 1985 and 2000 show a decline in the mean probability of egg presence within the Portuguese continental shelf from the mid‐1980s to the late‐1990s, because of a marked reduction in egg presence off northern Portugal. Sardine larval data from the same surveys suggest that the reduction in mean probability of presence in the north is less marked than for eggs (although this comparison ignores the presence of sardine larvae beyond the continental shelf in the 1980s). Similar changes off northern Portugal and western Galicia are observed in commercial sardine catches and the acoustically estimated area of fish distribution. It is possible that the observed decline in spawning area off northwestern Iberia during the 1990s is indirectly reflecting the prevalence of environmental conditions detrimental to sardine recruitment (northerly winds during winter that favour coastal upwelling and offshore transport), which have reduced the spawning contribution of young fish in that area.  相似文献   

18.
Understanding of density‐dependent effects is key to achieving sustainable management of self‐regulating biological resources such as fish stocks. Traditionally, density‐dependent effects on population abundance in fish have been considered to occur from hatching to recruitment, based on the paradigm of proportionality between spawning stock biomass and total egg production. Here, we demonstrate how the existence of intraspecific and interspecific density dependence in egg production changes the current understanding of density‐dependent processes in the life history of fish, by disentangling density‐dependent effects on egg production and survival from egg to recruitment, using sardine (Sardinops melanostictus, Clupeidae) and anchovy (Engraulis japonicus, Engraulidae) as model species. For sardine, strong intraspecific density‐dependent effects occurred in egg production, but no density‐dependent effects occurred or if any they were weak enough to be masked by environmental factors from hatching to recruitment. In contrast, for anchovy, interspecific density‐dependent effects occurred in egg production. In the survival after hatching, anchovy experienced stronger intraspecific density‐dependent effects than currently recognized. This analysis could overturn the current understanding of density‐dependent effects in the life history, highlighting contrasts between the effects on individual quality and population abundance and between the model species. We propose to reconsider the basis of fisheries management and recruitment studies based on the revised understanding of density‐dependent effects in the life history of the respective species.  相似文献   

19.
Sequential ichthyoplankton surveys were used to determine the spatial and temporal distribution of eggs and larvae over coastal spawning grounds of Atlantic cod (Gadus morhua) in Smith Sound, Trinity Bay, Newfoundland, during the spring and summer of 2006 and 2007. Egg densities showed similar patterns for both years with two peaks in abundance in spring (March–April) and late summer (late July). A clear progression of development stages (1–4) was observed in spring and summer in 2006 and summer in 2007, suggesting retention of eggs within the Sound during these periods. Modelled predictions of vertical egg distributions indicated eggs were broadly distributed near the surface during spring (March–April), but were concentrated below the pycnocline (>10 m) within the inner portions of the Sound during the summer months (July–August). Back‐calculated peaks in spawning based on water temperatures were estimated at 11 and 4 April for 2006 and 2007, respectfully, with late season peaks centred on 21–24 July for both years. Environmental data indicated cooler water temperatures and periods of high wind stress in spring, and warmer, calmer periods late summer, consistent with higher retention and faster development times on the spawning grounds later in the season. We conclude that spring and summer spawning events result in different distributions of early life stages and may lead to different distributions of juvenile and adult fish.  相似文献   

20.
In the last decades, the fish Vinciguerria lucetia (Garman) has been of important interest to the fisheries sector; nonetheless, the spawning and nursery zones in the Humboldt Current System (HCS) have not yet been defined. By using a temporal series of 23 oceanographic surveys from austral spring of 1998 to autumn 2004 off northern Chile, the spatial and temporal distribution and abundance of eggs and larvae of V. lucetia were studied. The relationships with environmental conditions (sea surface temperature, water column stratification, salinity, dissolved oxygen) were modeled using generalized additive models (GAMs). Seasonal variations in eggs and larval abundances were recorded, and higher abundances were observed in spring and summer, respectively. The main spawning areas were located at approximately between 40 and 80 nautical miles offshore. The largest abundances of V. lucetia eggs were found during spring 2003; however, larval abundances reached the highest values following the strongest ENSO event 1997–98. GAMs predicted that offshore location, sea surface temperature, and the deepening of the oxygen minimum zone, characteristics of the subtropical waters (22–24°C, >34.9, 3–6 ml/L) drove eggs and larval distributions of V. lucetia in the HCS during 1998–2004, toward areas with scarce food availability for larvae. These results suggest that spawning and larval development of this oceanic species occur in oligotrophic waters as a loophole strategy, in order to reduce predation risk during early life stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号