首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Model substrates for an RNA enzyme   总被引:45,自引:0,他引:45  
M1 RNA, the catalytic RNA subunit of Escherichia coli ribonuclease P, can cleave novel transfer RNA (tRNA) precursors that lack specific domains of the normal tRNA sequence. The smallest tRNA precursor that was cleaved efficiently retained only the domain of the amino acid acceptor stem and the T stem and loop. The importance of the 3' terminal CCA nucleotide residues in the processing of both novel and normal tRNA precursors implies that the same enzymatic function of M1 RNA is involved.  相似文献   

2.
3.
The intervening sequence RNA of Tetrahymena is an enzyme   总被引:40,自引:0,他引:40  
A shortened form of the self-splicing ribosomal RNA (rRNA) intervening sequence of Tetrahymena thermophila acts as an enzyme in vitro. The enzyme catalyzes the cleavage and rejoining of oligonucleotide substrates in a sequence-dependent manner with Km = 42 microM and kcat = 2 min-1. The reaction mechanism resembles that of rRNA precursor self-splicing. With pentacytidylic acid as the substrate, successive cleavage and rejoining reactions lead to the synthesis of polycytidylic acid. Thus, the RNA molecule can act as an RNA polymerase, differing from the protein enzyme in that it uses an internal rather than an external template. At pH 9, the same RNA enzyme has activity as a sequence-specific ribonuclease.  相似文献   

4.
The intervening sequence of the ribosomal RNA precursor of Tetrahymena is a catalytic RNA molecule, or ribozyme. Acting as a sequence-specific endoribonuclease, it cleaves single-stranded RNA substrates with concomitant addition of guanosine. The chemistry of the reaction has now been studied by introduction of a single phosphorothioate in the substrate RNA at the cleavage site. Kinetic studies show no significant effect of this substitution on kcat (rate constant) or Km (Michaelis constant), providing evidence that some step other than the chemical step is rate-limiting. Product analysis reveals that the reaction proceeds with inversion of configuration at phosphorus, consistent with an in-line, SN2 (P) mechanism. Thus, the ribozyme reaction is in the same mechanistic category as the individual displacement reactions catalyzed by protein nucleotidyltransferases, phosphotransferases, and nucleases.  相似文献   

5.
U6 is one of the five small nuclear RNA's (snRNA's) that are required for splicing of nuclear precursor messenger RNA (pre-mRNA). The size and sequence of U6 RNA are conserved among organisms as diverse as yeast and man, and so it has been proposed that U6 RNA functions as a catalytic element in splicing. A procedure for in vitro reconstitution of functional yeast U6 small nuclear ribonucleoproteins (snRNP's) with synthetic U6 RNA was applied in an attempt to elucidate the function of yeast U6 RNA. Two domains in U6 RNA were identified, each of which is required for in vitro splicing. Single nucleotide substitutions in these two domains block splicing either at the first or the second step. Invariably, U6 RNA mutants that block the first step of splicing do not enter the spliceosome. On the other hand, those that block the second step of splicing form a spliceosome but block cleavage at the 3' splice site of the intron. In both domains, the positions of base changes that block the second step of splicing correspond exactly to the site of insertion of pre-mRNA-type introns into the U6 gene of two yeast species, providing a possible explanation for the mechanism of how these introns originated and adding further evidence for the proposed catalytic role of U6 RNA.  相似文献   

6.
7.
For self-splicing of Tetrahymena ribosomal RNA precursor, guanosine binding is required for 5' splice-site cleavage and exon ligation. Whether these two reactions use the same or different guanosine-binding sites has been debated. A double mutation in a previously identified guanosine-binding site within the intron resulted in preference for adenosine (or adenosine triphosphate) as the substrate for cleavage at the 5' splice site. However, splicing was blocked in the exon ligation step. Blockage was reversed by a change from guanine to adenine at the 3' splice site. These results indicate that a single determinant specifies nucleoside binding for both steps of splicing. Furthermore, it suggests that RNA could form an active site specific for adenosine triphosphate.  相似文献   

8.
The design and catalytic properties of a simplified ribonuclease P RNA   总被引:21,自引:0,他引:21  
Ribonuclease P (RNase P) RNA is the catalytic moiety of the ribonucleoprotein enzyme that removes precursor sequences from the 5' ends of pre-transfer RNAs in eubacteria. Phylogenetic variation according to recently proposed secondary structure models was used to identify structural elements of the RNase P RNA that are dispensable for catalysis. A simplified RNase P RNA that consists only of evolutionarily conserved features was designed, synthesized, and characterized. Although the simplified RNA (Min 1 RNA) is only 263 nucleotides in length, in contrast to the 354 to 417 nucleotides of naturally occurring RNase P RNAs, its specificity of pre-tRNA cleavage is identical to that of the native enzymes. Moreover, the catalytic efficiencies of the Min 1 RNA and the native RNA enzymes are similar. These results focus the search for the catalytic elements of RNase P RNAs to their conserved structure.  相似文献   

9.
10.
A catalytic RNA and its gene from Salmonella typhimurium   总被引:16,自引:0,他引:16  
M Baer  S Altman 《Science (New York, N.Y.)》1985,228(4702):999-1002
  相似文献   

11.
12.
Engineering enzyme specificity by "substrate-assisted catalysis"   总被引:8,自引:0,他引:8  
A novel approach to engineering enzyme specificity is presented in which a catalytic group from an enzyme is first removed by site-directed mutagenesis causing inactivation. Activity is then partially restored by substrates containing the missing catalytic functional group. Replacement of the catalytic His with Ala in the Bacillus amyloliquefaciens subtilisin gene (the mutant is designated His64Ala) by site-directed mutagenesis reduces the catalytic efficiency (kcat/Km) by a factor of a million when assayed with N-succinyl-L-Phe-L-Ala-L-Ala-L-Phe-p-nitroanilide (sFAAF-pNA). Model building studies showed that a His side chain at the P2 position of a substrate bound at the active site of subtilisin could be virtually superimposed on the catalytic His side chain of this serine protease. Accordingly, the His64Ala mutant hydrolyzes a His P2 substrate (sFAHF-pNA) up to 400 times faster than a homologous Ala P2 or Gln P2 substrate (sFAAF-pNA or sFAQF-pNA) at pH 8.0. In contrast, the wild-type enzyme hydrolyzes these three substrates with similar catalytic efficiencies. Additional data from substrate-dependent pH profiles and hydrolysis of large polypeptides indicate that the His64Ala mutant enzyme can recover partially the function of the lost catalytic histidine from a His P2 side chain on the substrate. Such "substrate-assisted catalysis" provides a new basis for engineering enzymes with very narrow and potentially useful substrate specificities. These studies also suggest a possible functional intermediate in the evolution of the catalytic triad of serine proteases.  相似文献   

13.
A specific amino acid binding site composed of RNA   总被引:20,自引:0,他引:20  
M Yarus 《Science (New York, N.Y.)》1988,240(4860):1751-1758
A specific, reversible binding site for a free amino acid is detectable on the intron of the Tetrahymena self-splicing ribosomal precursor RNA. The site selects arginine among the natural amino acids, and prefers the L- to the D-amino acid. The dissociation constant is in the millimolar range, and amino acid binding is at or in the catalytic rG splicing substrate site. Occupation of the G site by L-arginine therefore inhibits splicing by inhibiting the binding of rG, without inhibition of later reactions in the splicing reaction sequence. Arginine binding specificity seems to be directed at the side chain and the guanidino radical, and the alpha-amino and carboxyl groups are dispensable for binding. The arginine site can be placed within the G site by structural homology, with consequent implications for RNA-amino acid interaction, for the origin of the genetic code, for control of RNA activities, and for further catalytic capabilities for RNA.  相似文献   

14.
15.
Lee G  Bratkowski MA  Ding F  Ke A  Ha T 《Science (New York, N.Y.)》2012,336(6089):1726-1729
Rrp44 (Dis3) is a key catalytic subunit of the yeast exosome complex and can processively digest structured RNA one nucleotide at a time in the 3' to 5' direction. Its motor function is powered by the energy released from the hydrolytic nuclease reaction instead of adenosine triphosphate hydrolysis as in conventional helicases. Single-molecule fluorescence analysis revealed that instead of unwinding RNA in single base pair steps, Rrp44 accumulates the energy released by multiple single nucleotide step hydrolysis reactions until about four base pairs are unwound in a burst. Kinetic analyses showed that RNA unwinding, not cleavage or strand release, determines the overall RNA degradation rate and that the unwinding step size is determined by the nonlinear elasticity of the Rrp44/RNA complex, but not by duplex stability.  相似文献   

16.
采用RT-PCR方法克隆了黄瓜花叶病毒西番莲致死分离物(CMV-PE)全长RNA3.经核苷酸序列测定,明确PE分离物 RNA3全长2216 nt,含有2个开放阅读框(ORF),其中5'端的ORF(121-963 nt)编码279 aa的3a蛋白,3'端ORF(1260-1916 nt )编码218 aa的CP蛋白.5'端非编码区(NR)长120 nt,基因间隔区(IR)长296 nt,3'端NR区含301个碱基.PE分离物编码的3a蛋白中最明显的特征是在136-141位有一个独特的VWCLSS区域.将CMV-PE的RNA3的核苷酸序列及其编码蛋白的氨基酸序列与同属CMV亚组I的其它分离物进行比较,发现症状相似的CMV分离物的非编码区具有很高的序列同源性,说明非编码区序列与症状有关.  相似文献   

17.
  相似文献   

18.
We report the crystal structure of the catalytic domain of human ADAR2, an RNA editing enzyme, at 1.7 angstrom resolution. The structure reveals a zinc ion in the active site and suggests how the substrate adenosine is recognized. Unexpectedly, inositol hexakisphosphate (IP6) is buried within the enzyme core, contributing to the protein fold. Although there are no reports that adenosine deaminases that act on RNA (ADARs) require a cofactor, we show that IP6 is required for activity. Amino acids that coordinate IP6 in the crystal structure are conserved in some adenosine deaminases that act on transfer RNA (tRNA) (ADATs), related enzymes that edit tRNA. Indeed, IP6 is also essential for in vivo and in vitro deamination of adenosine 37 of tRNAala by ADAT1.  相似文献   

19.
Role of the protein moiety of ribonuclease P, a ribonucleoprotein enzyme   总被引:39,自引:0,他引:39  
The Bacillus subtilis ribonuclease P consists of a protein and an RNA. At high ionic strength the reaction is protein-independent; the RNA alone is capable of cleaving precursor transfer RNA, but the turnover is slow. Kinetic analyses show that high salt concentrations facilitate substrate binding in the absence of the protein, probably by decreasing the repulsion between the polyanionic enzyme and substrate RNAs, and also slow product release and enzyme turnover. It is proposed that the ribonuclease P protein, which is small and basic, provides a local pool of counter-ions that facilitates substrate binding without interfering with rapid product release.  相似文献   

20.
Xue S  Calvin K  Li H 《Science (New York, N.Y.)》2006,312(5775):906-910
The RNA splicing endonuclease cleaves two phosphodiester bonds within folded precursor RNAs during intron removal, producing the functional RNAs required for protein synthesis. Here we describe at a resolution of 2.85 angstroms the structure of a splicing endonuclease from Archaeglobus fulgidus bound with a bulge-helix-bulge RNA containing a noncleaved and a cleaved splice site. The endonuclease dimer cooperatively recognized a flipped-out bulge base and stabilizes sharply bent bulge backbones that are poised for an in-line RNA cleavage reaction. Cooperativity arises because an arginine pair from one catalytic domain sandwiches a nucleobase within the bulge cleaved by the other catalytic domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号