首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
2.
3.
4.
5.
The structure of a T7 RNA polymerase (T7 RNAP) initiation complex captured transcribing a trinucleotide of RNA from a 17-base pair promoter DNA containing a 5-nucleotide single-strand template extension was determined at a resolution of 2.4 angstroms. Binding of the upstream duplex portion of the promoter occurs in the same manner as that in the open promoter complex, but the single-stranded template is repositioned to place the +4 base at the catalytic active site. Thus, synthesis of RNA in the initiation phase leads to accumulation or "scrunching" of the template in the enclosed active site pocket of T7 RNAP. Only three base pairs of heteroduplex are formed before the RNA peels off the template.  相似文献   

6.
7.
8.
9.
10.
Global warming is an irreversible process resulting in the deterioration of living conditions for various organisms, including the most important agricultural species. So-called σ32 factor of Escherichia coli is embedded into the RNA thermosensor in the λ cIII gene and plays an important role in the regulation of bacterial response to heightened temperatures. Expression of heat/cold shock genes and some virulence genes in response to temperature changes is coordinated by the genome. There are some known RNA thermosensors with different structures that provide a functional control of the diversity of cellular processes. The most common RNA thermosensor is the ROSE element suppressing expression of heat shock genes. A common feature of all ROSE elements is the presence of the G residue opposite to the SD sequence since this nucleotide is functionally important and its elimination makes the RNA thermosensor insensitive to high temperatures. In this paper, we describe molecular sequences (RNA thermosensors) whose chemical compounds influence on the homeostatic temperature regulation, namely, on the corresponding enzymes. Though the data on RNA thermosensors were obtained for microorganisms, it may be possible in the long run to change the animal genome at the molecular level by the insertion of these sequences or cultivation of symbiotic microorganisms, which may be used for production of biologically active compounds. In addition, such insertions would probably be able to reduce the negative effect of high environmental temperatures on living organisms.  相似文献   

11.
12.
The glmS ribozyme is the only natural catalytic RNA known to require a small-molecule activator for catalysis. This catalytic RNA functions as a riboswitch, with activator-dependent RNA cleavage regulating glmS messenger RNA expression. We report crystal structures of the glmS ribozyme in precleavage states that are unliganded or bound to the competitive inhibitor glucose-6-phosphate and in the postcleavage state. All structures superimpose closely, revealing a remarkably rigid RNA that contains a preformed active and coenzyme-binding site. Unlike other riboswitches, the glmS ribozyme binds its activator in an open, solvent-accessible pocket. Our structures suggest that the amine group of the glmS ribozyme-bound coenzyme performs general acid-base and electrostatic catalysis.  相似文献   

13.
14.
Nonhexameric helicases use adenosine triphosphate (ATP) to unzip base pairs in double-stranded nucleic acids (dsNAs). Studies have suggested that these helicases unzip dsNAs in single-base pair increments, consuming one ATP molecule per base pair, but direct evidence for this mechanism is lacking. We used optical tweezers to follow the unwinding of double-stranded RNA by the hepatitis C virus NS3 helicase. Single-base pair steps by NS3 were observed, along with nascent nucleotide release that was asynchronous with base pair opening. Asynchronous release of nascent nucleotides rationalizes various observations of its dsNA unwinding and may be used to coordinate the translocation speed of NS3 along the RNA during viral replication.  相似文献   

15.
Specific interactions in RNA enzyme-substrate complexes   总被引:27,自引:0,他引:27  
Analysis of crosslinked complexes of M1 RNA, the catalytic RNA subunit of ribonuclease P from Escherichia coli, and transfer RNA precursor substrates has led to the identification of regions in the enzyme and in the substrate that are in close physical proximity to each other. The nucleotide in M1 RNA, residue C92, which participates in a crosslink with the substrate was deleted and the resulting mutant M1 RNA was shown to cleave substrates lacking the 3' terminal CCAUCA sequence at sites several nucleotides away from the normal site of cleavage. The presence or absence of the 3' terminal CCAUCA sequence in transfer RNA precursor substrates markedly affects the way in which these substrates interact with the catalytic RNA in the enzyme-substrate complex. The contacts between wild-type M1 RNA and its substrate are in a region that resembles part of the transfer RNA "E" (exit) site in 23S ribosomal RNA. These data demonstrate that in RNA's with very different cellular functions, there are domains with similar structural and functional properties and that there is a nucleotide in M1 RNA that affects the site of cleavage by the enzyme.  相似文献   

16.
Polyadenylate [poly(A)] polymerase (PAP) catalyzes the addition of a polyadenosine tail to almost all eukaryotic messenger RNAs (mRNAs). The crystal structure of the PAP from Saccharomyces cerevisiae (Pap1) has been solved to 2.6 angstroms, both alone and in complex with 3'-deoxyadenosine triphosphate (3'-dATP). Like other nucleic acid polymerases, Pap1 is composed of three domains that encircle the active site. The arrangement of these domains, however, is quite different from that seen in polymerases that use a template to select and position their incoming nucleotides. The first two domains are functionally analogous to polymerase palm and fingers domains. The third domain is attached to the fingers domain and is known to interact with the single-stranded RNA primer. In the nucleotide complex, two molecules of 3'-dATP are bound to Pap1. One occupies the position of the incoming base, prior to its addition to the mRNA chain. The other is believed to occupy the position of the 3' end of the mRNA primer.  相似文献   

17.
18.
根据GenBank中登录的T7RNA聚合酶基因参考序列,设计合成了1对特异性引物扩增对T7RNA聚合酶基因进行扩增,将测序正确的T7RNA聚合酶基因和真核表达载体pIRES2-EGFP双酶切后进行连接构建pIRES2-EGFP-T7RNA RNA质粒。再将构建正确的pIRES2-EGFP-T7RNA质粒经用脂质体法转染猪睾丸细胞,通过G418筛选和单细胞克隆化,同时构建pET-32a-RED原核表达质粒载体,用其检测T7启动子控制下的红色荧光蛋白的表达。结果表明,建立的ST/T7RNA细胞系经20次传代仍然能稳定表达T7RNA聚合酶。结果显示,成功建立能稳定表达T7RNA聚合酶的猪睾丸细胞系,为猪瘟病毒反向遗传操作平台奠定了基础。  相似文献   

19.
20.
The crystal structure of the high-affinity Escherichia coli MetNI methionine uptake transporter, a member of the adenosine triphosphate (ATP)-binding cassette (ABC) family, has been solved to 3.7 angstrom resolution. The overall architecture of MetNI reveals two copies of the adenosine triphosphatase (ATPase) MetN in complex with two copies of the transmembrane domain MetI, with the transporter adopting an inward-facing conformation exhibiting widely separated nucleotide binding domains. Each MetI subunit is organized around a core of five transmembrane helices that correspond to a subset of the helices observed in the larger membrane-spanning subunits of the molybdate (ModBC) and maltose (MalFGK) ABC transporters. In addition to the conserved nucleotide binding domain of the ABC family, MetN contains a carboxyl-terminal extension with a ferredoxin-like fold previously assigned to a conserved family of regulatory ligand-binding domains. These domains separate the nucleotide binding domains and would interfere with their association required for ATP binding and hydrolysis. Methionine binds to the dimerized carboxyl-terminal domain and is shown to inhibit ATPase activity. These observations are consistent with an allosteric regulatory mechanism operating at the level of transport activity, where increased intracellular levels of the transported ligand stabilize an inward-facing, ATPase-inactive state of MetNI to inhibit further ligand translocation into the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号