首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
AIM: To investigate the effect of rhein on bleomycin-induced pulmonary fibrosis and the expression of microRNA-21 (miR-21) and transforming growth factor-β1 (TGF-β1)/Smad signaling molecules in rats. METHODS: A single dose of bleomycin was intratracheal injected into the SD rats to induce pulmonary fibrosis. After injection of bleomycin, the rats were randomly divided into low-, medium-and high-dose rhein treatment groups and model group. The rats that were instilled with normal saline intratracheally served as control group. After the treatment for 28 d, the pulmonary pathologic changes were observed under microscope with hematoxylin-eosin staining. The lung coefficient and hydroxyproline content were also measured. The expression of miR-21 and the mRNA levels of TGF-β1 and Smad7 in the lung tissues were detected by real-time PCR. The protein levels of TGF-β1 and Smad7 were determined by Western blot. RESULTS: Rhein significantly attenuated the experimental alveolitis, pulmonary fibrosis, lung coefficient and hydroxyproline contents in the rats. Rhein obviously decreased the expression of miR-21,and the mRNA and protein levels of TGF-β1, but significantly increased the mRNA and protein levels of Smad7 in the lung tissues. CONCLUSION: Rhein effectively prevents bleomycin-induced pulmonary fibrosis by inhibiting the expression of miR-21 and promoting the expression of Smad7, thus regulating the TGF/Smad signaling pathway to decrease extracellular matrix deposition.  相似文献   

2.
AIM: To verify the hypothesis that treatment with insulin to control the blood glucose (BG) may relieve or slow down the development of diabetic nephropathy (DN) in diabetic rats by increasing the expression of Smad7. METHODS:The diabetic rat model was established by tail-vein injection of streptozotocin. Sixteen rats were divided into 2 groups. Eight of these animals in diabetes mellitus (DM) group had no treatment. The remaining eight of them in insulin treatment (INS) group were injected with insulin. After 13 weeks, the rats in INS group were given individual treatment with insulin to let the blood glucose level keep within 4 to 7 mmol/L. Meanwhile, 8 rats were used for normal control (NC group). After 16 weeks, the rats were sacrificed to detect the relevant biochemical parameters, and to observe the histophathological changes of the kidney and pancreas. In addition, immunohistochemical staining and Western blotting were employed to detect the protein expression of transforming growth factor β1 (TGF-β1), Smad ubiquitin regulatory factor 2 (Smurf2), Smad7, E-cadherin, α-sooth muscle actin (α-SMA), fibronectin (FN) and collagen I. RESULTS:Compared with NC group, the body weight was significantly reduced in DM group, whereas the body weight in INS group increased gradually. Compared with NC group, the levels of 24 h urine protein (24 h UP), BG and triglyceride (TG) were remarkably increased in DM group. Pathological detection on pancreas indicated that the islet was destroyed. The levels of TGF-β1, Smurf2, α-SMA, FN and collagenⅠ in the kidneys were increased in DM group, and the expression of Smad7 and E-cadherin, which were mainly located in renal tubular epithelial cells, was significantly reduced. Compared with DM group, the levels of 24 h UP and BG were significantly reduced in INS group, and the alleviated renal fibrosis was observed under light microscope. In addition, the protein levels of TGF-β1, Smurf2, α-SMA, FN and collagenⅠ in INS group were decreased compared with DM group, and the expression of Smad7 and E-cadherin was increased significantly. CONCLUSION:Target glucose control with insulin treatment restores the protein expression of Smad7 in the kidney of diabetic rats, reduces the accumulation of extracellular matrix and slows down DN progress. The decrease in TGF-β1 and Smurf2 expression, and the attenuation of Smad7 ubiquitination in renal tissues are the crucial parts in this process.  相似文献   

3.
AIM: To investigate the preventive effect and mechanism of anti-insulin-like growth factor binding protein related protein 1(IGFBPrP1) antibody on hepatic fibrosis induced by thioacetamide (TAA) in mice.METHODS: Twenty-four male C57BL/6 wild-type mice were randomly divided into 3 groups (n= 8 in each group): normal control group, TAA group (4 weeks) and TAA+anti-IGFBPrP1 antibody group (4 weeks). The morphological changes of liver tissues were observed. The expression levels of α-smooth muscle actin (α-SMA), transforming growth factor beta 1 (TGF-β1), Smad3, phosphorylated Smad2/3 (p-Smad2/3), fibronectin (FN), collagen I, collagen Ⅲ and IGFBPrP1 were detected by the methods of immunohistochemistry and Western blotting.RESULTS: In TAA group (4 weeks), obvious injury of liver was observed, and the expression levels of α-SMA, TGF-β1, Smad3, p-Smad2/3, FN, collagen Ⅰ, collagen Ⅲ and IGFBPrP1 were significantly increased as compared with normal control group (P<0.01). Compared with TAA group (4 weeks), the injury of the liver was alleviated and the expression levels of the proteins above were decreased in TAA+anti-IGFBPrP1 antibody group (4 weeks, P<0.01). IGFBPrP1 was positively correlated with TGF-β1, Smad3, p-Smad2/3, FN and collagen I (P<0.01). CONCLUSION: Anti-IGFBPrP1 antibody prevents TAA-induced hepatic fibrosis in mice by inhibiting the activation of hepatic stellate cells, reducing the expression of p-Smad2/3 and inhibiting the TGF-β1/ Smad3 signal transduction, thereby depressing the deposition of extracellular matrix in liver tissues.  相似文献   

4.
AIM:To construct a lentiviral vector carrying mitofusin 2 (Mfn2), and to investigate the inhibitory effect of Mfn2 on the activation of rat hepatic stellate cells and its mechanism of reducing the formation of hepatic fibrosis-related factors. METHODS:The lentiviral over-expression vector CV072-pCMV-Mfn2-EGFP containing Mfn2 was constructed and transfected into the hepatic stellate cells. The expression of green fluorescent protein was observed under fluorescence microscope, and the transfection efficiency was evaluated. The protein levels of Bax, Bcl-2, cleaved caspase-3, α-SMA, TGF-β1, Smad2 and Smad3 were detected by Western blot. The levels of type I collagen, type Ⅲ collagen and type IV collagen in the cell culture supernatants were determined by ELISA. RESULTS:Compared with control group, the apoptosis of the hepatic stellate cells transfected with lentivirus over-expression vector CV072-pCMV-Mfn2-EGFP was increased, and the protein levels of proapoptotic molecules Bax and cleaved caspase-3 were increased (P<0.01). TGF-β1/Smad pathway-related proteins TGF-β1, p-Smad2 and p-Smad3 were decreased, and the levels of fibrosis-related proteins α-SMA, type I collagen, type Ⅲ collagen and type IV collagen were decreased (P<0.01). CONCLUSION:Transfection of lentiviral over-expression vector CV072-pCMV-Mfn2-EGFP effectively inhibits hepatic stellate cell activation in vitro and may reduce the production of hepatic fibrosis-related factors by inhibiting TGF-β1/Smad pathway.  相似文献   

5.
AIM: To investigate the role of microRNA-29b (miR-29b)-mediated TGF-β/Smad signaling pathway in the activation of hepatic stellate cells (HSC) and its effect on the progression of hepatic fibrosis in rats.METHODS: Hepatic liver fibrosis rat model was established, and its HSC were isolated. Normal rat HSC were also obtained and identified in vitro. RT-qPCR and Western blot were used to detect the alterations of miR-29b, TGF-β/Smad signaling pathway-related proteins and liver fibrosis marker proteins in the acquired cells. Finally, the direct targeting binding of miR-29b to TGF-β1 was identified by dual-luciferase reporter assay system.RESULTS: With the activation of HSC, the expression of miR-29b gradually decreased (P<0.01), while the expression of collagen type I and α-smooth muscle actin gradually increased (P<0.01). At the same time, the expression of Smad2/3/4 was significantly increased, and the expression of Smad7 was significantly decreased (P<0.01). Dual-luciferase reporter assay showed that miR-29b bound directly to "UCUCUCCGU" in the 3'UTR of TGF-β1, indicating that TGF-β1 was a downstream target gene of miR-29b.CONCLUSION: miR-29b may be involved in the inhibition of HSC activation and migration, thereby inhibiting the process of liver fibrosis. The biological function of miR-29b may be through the direct targeting of TGF-β1, thus regulating and inhibiting the TGF-β/Smad signaling pathway.  相似文献   

6.
AIM: To study the preventive and curative roles of Danshensu (DA) in bleomycin (BLM)-induced pulmonary fibrosis in rats. METHODS: Pulmonary fibrosis was induced in SD rats by intratracheal instillation of BLM. The rats were intraperitoneally injected with dexamethasone (1 mg·kg-1·d-1, DXM group), DA (15 mg·kg-1·d-1, DA group), or physiological saline (2 mL·d-1, BLM group). Normal controls (NC group) received physiological saline both intratracheally and intraperitoneally. At the 28th day after modeling, the histological changes of the lungs were evaluated by hematoxylin-eosin (HE) and Masson’s trichrome staining. The protein levels of α-smooth muscle actin (α-SMA) in the lung tissues were detected by the method of immunohistochemistry. The mRNA expression of transforming growth factor beta 1 (TGF-β1), Smad3 and Smad7 was assessed by real-time fluorescence quantitative PCR. RESULTS: Compared with BLM group, the degree of inflammation and fibrosis of the lung in DA group was obviously reduced, and so was the expression of α-SMA in the lung tissues. The mRNA expression of TGF-β1 and Smad3 in the lung tissues of the rats decreased and the mRNA expression of Smad7 increased. CONCLUSION: DA alleviates BLM-induced pulmonary fibrosis in rats in the early stage by inhibiting the expression of TGF-β1/Smad3 and stimulating the expression of Smad7 in the lung tissues.  相似文献   

7.
AIM: To investigate the effect of microRNA-124 (miR-124) over-expression mediated by adeno-associated virus (AAV) on right ventricular remodeling in rats with pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). METHODS: Male SD rats (n=32) were randomly divided into 4 groups:normal control (control) group, MCT+normal saline (NS) group, MCT+AAV-GFP (MCT+GFP) group and MCT+AAV-miR-124 (MCT+miR-124) group. The rats in the latter 3 groups were instilled slowly with 100 μL NS, AAV-GFP and AAV-miR-124 by orotracheal instillation after anesthesia, respectively. Three weeks later, MCT (60 mg/kg) was intraperitoneally injected to establish the PAH model. Right ventricular systolic blood pressure (RVSP) and mean arterial pressure of the rats were measured, and right ventricular hypertrophy index (RVHI) and right ventricular weight index (RVWI) were calculated. The pathological sections of the right heart were stained with Sirius red, and the pathological changes of myocardium were observed under a microscope. The expression of miR-124 in the lung tissues was detected by RT-qPCR. The protein levels of transforming growth factor-β1(TGF-β1) and p-Smad2 in right heart tissues were determined by Western blot. RESULTS: Compared with control group, RVSP, RVHI, RVWI and the protein levels of TGF-β1 and p-Smad2 in MCT+NS group and MCT+GFP group were significantly increased (P<0.05), the right ventricular myocytes were significantly enlarged, and collagen deposition was significantly increased. However, compared with MCT+GFP group, RVSP, RVHI, RVWI and the protein levels of TGF-β1 and p-Smad2 in MCT+miR-124 group were significantly decreased (P<0.05), the degree of right ventricular myocyte hypertrophy was significantly reduced, and collagen deposition was significantly reduced. CONCLUSION: Over-expression of miR-124 obviously reduces RVSP of rats induced by MCT and relieves myocardial remodeling, which may be related to the down-regulation of TGF-β1 and p-Smad2.  相似文献   

8.
AIM: To investigate the effect of apyrase on the experimental silicosis. METHODS: C57BL/6 male mice were randomly divided into control group, silica treatment group, silica+apyrase group and silica+NS group. A mouse model of lung fibrosis was induced by crystalline silica particles (50 mg/kg, via oropharyngeal instillation), and were sacrificed at 3 h, 7 d, 14 d and 28 d. Apyrase was delivered by oropharyngeal aspiration at the same time and 4 h after silica challenge. The lung indexes were calculated and the concentration of ATP was detected by bioluminescent assay. The mRNA expression levels of collagen type Ⅰ(Col Ⅰ), collagen type Ⅲ (Col Ⅲ) and transforming growth factor β1 (TGF-β1) were examined by real-time PCR. The protein levels of TGF-β1 in bronchoalveolar lavage fluid were measured by ELISA. RESULTS: The elevated lung index and collagen levels showed that silicosis model was established successfully. Compared with silica group, apyrase treatment significantly alleviated silica-induced inflammation, reduced inflammation score on day 7, and decreased the lung index, collagen volume fraction and the mRNA expression of Col Ⅰand Col Ⅲ on day 28. Treatment with apyrase effectively down-regulated the mRNA levels of TGF-β1 in the lung tissues and TGF-β1 protein levels in bronchoalveolar lavage fluid on day 7.CONCLUSION: Apyrase attenuates the pulmonary inflammation and fibrosis of silicosis, which may be related with down-regulation of ATP and TGF-β1 in the lung tissues.  相似文献   

9.
AIM:To observe the changes of microRNA-133a and transforming growth factor β1 (TGF-β1) protein in the myocardium of spontaneously hypertensive rats (SHR). METHODS:Male SHR (18 weeks old, n=12) and male Wistar-Kyoto rats (WKY, 18 weeks old, n=12) served as SHR group and control group, respectively. Caudal arterial blood pressure was detected by a noninvasive blood pressure measurement and analysis system. Myocardial collagen volume fraction (CVF) and perivascular collagen area ratio (PVCA) were determined by Masson staining. The level of miR-133a in the heart was detected by real-time quantitative PCR. The protein level of TGF-β1 in the heart was also analyzed by the methods of immunohistochemisty and Western blotting. RESULTS:Compared with control group, systolic and diastolic blood pressure, CVF and PVCA significantly increased, the expression of TGF-β1 protein was significantly up-regulated, and the level of miR-133a was significantly reduced in SHR group. In SHR group, the expression of miR-133a was decreased to (23.9±4.6)% in control group. A negative correlation between the levels of miR-133a and TGF-β1 protein in SHR group was observed (r=-0.791, P<0.01). CONCLUSION:The level of miR-133a is down-regulated along with the up-regulation of TGF-β1 protein expression and collagen synthesis in the myocardial tissues of SHR. miR-133a and TGF-β1 may be involved in myocardial fibrosis in SHR.  相似文献   

10.
AIM: To investigate the effect of up-regulated expression of microRNA-133a (miR-133a) on myocardial fibrosis in spontaneously hypertensive rats (SHR). METHODS: Wistar-Kyoto (WKY) rats with homologous normal blood pressure served as the normal control group. SHR were divided into SHR group, SHR+ adeno-associated virus (AAV) group and SHR+miR-133a-AAV group randomly. miR-133a carried by miR-133a-AAV was transfected into SHR heart by coronary perfusion. The rat tail artery pressure was monitored. The myocardial collagen deposition was observed by Masson staining. The expression of miR-133a in myocardial tissue was detected by real-time PCR. The protein levels of transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) were determined by immunohistochemistry and Western blot. RESULTS: Compared with the WKY rats, the tail artery pressure of the SHR increased significantly. The expression of miR-133a in heart decreased, and the expression levels of TGF-β1 and CTGF increased (P<0.05), and myocardial fibrosis occurred. After up-regulating the expression level of miR-133a in the heart of SHR, the myocardial fibrosis was significantly reduced, and the expression levels of TGF-β1 and CTGF decreased (P<0.05). CONCLUSION: Up-regulation of the miR-133a expression improves myocardial fibrosis induced by hypertension, which may be related to inhibiting the protein expression of TGF-β1 and CTGF in myocardium.  相似文献   

11.
AIM: To observe the effect of piceatannol on the kidney of diabetic nephropathy rats in early stage, and to explore the possible mechanisms.METHODS: The rats were randomly divided into 5 groups:control group, model group, low dose of piceatannol treatment group, medium dose of piceatannol treatment group and high dose of piceatannol treatment group. The rat model of diabetic nephropathy was induced accordingly, and the rats received 20 mg/kg, 40 mg/kg or 60 mg/kg of piceatannol by gavage once a day for 4 weeks. Blood glucose was detected by glucometer. The urea nitrogen and creatinine levels in the serum were measured by urease-glutamate dehydrogenase enzymatic and inosine acid oxidase methods, respectively, and 24 h urinary microalbumin was analyzed by immune transmission turbidimetry test. Moreover, the pathological changes of the kidney tissues were observed under microscope with HE staining. The protein expression of TGF-β1 and Smad 7 and the phosphorylation levels of Smad2 and Smad3 were determined by Western blot. RESULTS: Compared with model group, piceatannol treatment significantly decreased the levels of blood glucose, blood urea nitrogen and urinary microalbumin, but had no effects on serum creatinine. Furthermore, HE staining showed that the increased mesangial cells, matrix hyperplasia and degenerated epithelial cells in model group were markedly inhibited after piceatannol treatment. Additionally, piceatannol treatment also reduced the protein expression of TGF-β1 and Smad 7, and the phosphorylation levels of Smad2 and Smad3. CONCLUSION: Piceatannol attenuates pathological progression in the kidney of diabetic nephropathy rats in early stage, which may be through inhibiting TGF-β/Smad signaling pathway.  相似文献   

12.
AIM: To investigate the effects of insulin-like growth factor binding protein related protein 1(IGFBPrP1) and thioacetamide (TAA) on the liver tissues, and to identify the role of IGFBPrP1 in liver fibrosis. METHODS: Thirty-two male C57BL/6 wild-type mice were randomly divided into 4 groups (n=8 in each group): control group, recombinant murine IGFBPrP1(rmIGFBPrP1) 4 weeks group, TAA 2 weeks group and TAA 4 weeks group. The methods of hematoxylin-eosin (HE) staining, picric acid-Sirius red staining, immunohistochemistry and Western blotting were performed. RESULTS: The extensive fatty degeneration of liver cells in rmIGFBPrP1 4 weeks group was observed. The collagen deposition was found in TAA 2 weeks group. In TAA 4 weeks group, the degree of hepatic fibrosis was more serious than that in TAA 2 weeks group. The expression levels of IGFBPrP1, transforming growth factor beta 1(TGF-β1), Smad3, p-Smad2/3, collagen Ⅲ, collagenⅠand fibronectin (FN) in liver tissues were higher in rmIGFBPrP1 4 weeks group, TAA 2 weeks group and TAA 4 weeks group than those in control group. No significant difference of the expression levels of IGFBPrP1, collagen I and FN between rmIGFBPrP1 4 weeks group and TAA 2 weeks group was observed. CONCLUSION: IGFBPrP1 plays an important role in the process of thioacetamide-induced liver fibrosis. Meanwhile, IGFBPrP1 induces excessive deposition of extracellular matrix through TGF-β1/Smad3 pathway.  相似文献   

13.
AIM: To investigate the relationship between transforming growth factor-β (TGF-β)/Smads signaling pathway and pulmonary arterial endothelial-mesenchymal transition (EndoMT) in hypoxia-hypercapnia pulmonary hypertension (HHPH) process and the regulatory effect of Yiqi-Wenyang-Huoxue-Huatan formula (YWHHF). METHODS: Healthy male SD rats were randomly divided into 5 groups:normal control (N) group, hypoxia-hypercapnia (HH) group, high-dose YWHHF (YH) group, middle-dose YWHHF (YM) group and low-dose YWHHF (YL) group. The rats in N group was housed in normoxic environment, and the rats in the other 4 groups were housed in hypoxia-hypercapnia environment (9%~11% O2 and 5%~6% CO2) for 4 weeks, 8 h/d, 6 d/week. The excess water vapor was absorbed by anhydrous CaCl2, and CO2 was absorbed by sodium hydroxide. The rats in YWHHF groups were put into the oxygen chamber before the same volume of YWHHF at different concentrations were given (200 g/L for YH group, 100 g/L for YM group and 50 g/L for YL group). The average pulmonary artery pressure and the average carotid artery pressure were measured during the operation. After operation, the right ventricular free wall and left ventricle plus interventricular septum were collected for determining the right ventricular hypertrophy index. Moreover, the morphological changes of the lung tissues were observed under light microscope. The mRNA and protein levels of α-smooth muscle actin (α-SMA), CD31, TGF-β1 and Smad2/3, and the protein level of p-Smad2/3 were detected by RT-PCR and Western blot. RESULTS: Compared with N group, the pulmonary artery mean pressure, the mRNA and protein expression of α-SMA, TGF-β1 and Smad2/3, and the protein level of p-Smad2/3 were increased, the levels of CD31 were decreased (P<0.05), and the lung tissue damage was observed in the other 4 groups. Compared with HH group, the pulmonary artery mean pressure, the mRNA and protein expression of α-SMA, TGF-β1 and Smad2/3, and the protein level of p-Smad2/3 were decreased, while the mRNA and protein levels of CD31 were increased. Moreover, the lung tissue damage was reduced in YH, YM and YL groups. CONCLUSION: TGF-β/Smads pathway may be involved in the process of EndoMT under hypoxia and hypercapnia condition, and YWHHF may reduce EndoMT by inhibiting the expression of TGF-β/Smads pathway-related molecules.  相似文献   

14.
AIM:To study the effects of Ginkgo biloba extract (EGB) on myocardial TGF-β1 and collagen expression and interstitial fibrosis in type I diabetic cardiomyopathy rats. METHODS:Thirty male SD rats were randomly divided into normal control group (CON), diabetes mellitus group (DM) and EGB treatment group (EGB). Streptozocin was intraperitoneally injected into the animals in the latter 2 groups to induce type I diabetic rat model. The rats in EGB group were intraperitoneally injected with EGB. At the end of the 12th week, the body weight of each rat and its left ventri-cular weight, blood glucose, glycosylated hemoglobin and serum insulin concentration were measured. The left ventricular end-diastolic volume (LVEDV), the left ventricular end-systolic volume (LVESV), the left ventricular ejection fraction (LVEF) and the stroke volume (SV) were determined by echocardiography. The content of collagen in left ventricular myocardium, and the expression of transforming growth factor β1 (TGF-β1), procollagen type I and collagen type III were assayed by Sirius red staining, immunohistochemical staining and RT-PCR, respectively. Left ventricular myocardial cells of the neonatal SD rats were isolated and cultured in vitro with low-glucose culture medium (LG group), high-glucose culture medium (HG group) or high-glucose culture medium plus EGB (HG+EGB group). The mRNA levels of TGF-β1, procollagen type I and collagen type III were detected by RT-PCR. RESULTS:Compared with CON group, blood glucose, glycosylated hemoglobin, left ventricular weight index, the content of collagen, and the expression of TGF-β1, procollagen type I and collagen type III in left ventricular myocardial tissues of DM group were significantly increased, while the levels of blood insulin, LVEDV and SV were significantly decreased. However, compared with DM group, blood glucose, glycosylated hemoglobin, left ventricule weight index, the content of collagen, and the expression levels of TGF-β1, procollagen type I and collagen type III in the left ventricular myocardial tissues of EGB-treated rats were significantly decreased, while the levels of blood insulin, LVEDV and SV were significantly increased. Compared with LG group, the mRNA expression levels of TGF-β1, procollagen type I and collagen type III were significantly increased. However, compared with HG group, the mRNA expression levels of TGF-β1, procollagen type I and collagen type III were significantly decreased after treated with EGB. CONCLUSION: EGB retards the process of myocardial fibrosis and improves the cardiac functions in type I diabetic cardiomyopathy rats by down-regulating the expression of TGF-β1, reducing the synthesis and deposition of collagen type I and collagen type III.  相似文献   

15.
AIM: To study the inhibitory effect of metformin on alveolar epithelial-mesenchymal transition (EMT) in rats with pulmonary fibrosis and the possible mechanism. METHODS: SD rats (n=48) were used, 12 of which were set up as normal control group, and 36 of which were induced by bleomycin (5 mg/kg) by tracheal instillation to establish pulmonary fibrosis. The pulmonary fibrosis rats were randomly divided into bleomycin group, low dose (100 mg/kg) of metformin group, and high dose (300 mg/kg) of metformin group. The rats in metformin groups were given the corresponding dose of metformin daily for 4 weeks. HE staining and Masson staining were used to observe the changes of lung histopathology and collagen deposition. Real-time PCR, Western blot and innunohistochemical staining were used to detect the mRNA and protein expression of α-smooth muscle actin (α-SMA), E-cadherin, vimentin, zonula occludens-1 (ZO-1), collagen I, collagen III and transforming growth factor-β1 (TGF-β1), and the protein phosphorylation levels of Smad2/3 and extracellular signal-regulated kinase 1/2 (ERK1/2) were also determined. RESULTS: Metformin up-regulated the expression of E-cadherin and ZO-1, down-regulated the expression of α-SMA, vimentin, collagen I and collagen III, and the protein phosphorylation levels of Smad2/3 and ERK1/2 were also decreased (P<0.05). CONCLUSION: Metformin inhibits alveolar EMT in the rats with pulmonary fibrosis, and its mechanism may be related to the inhibition of TGF-β1 signal transduction pathway.  相似文献   

16.
HUANG Tian  CAI Xi  ZHONG Ling 《园艺学报》2017,33(8):1460-1466
AIM: To investigate the effect of epidermal growth factor receptor (EGFR) inhibitor erlotinib on kidney injury in diabetic nephropathy (DN) rat and the underlying mechanism. METHODS: The rat model of DN was induced by intraperitoneal injection of streptozotocin (STZ) at dose of 55 mg/kg. One week after STZ injection, the rats with blood glucose level exceeding 16.7 mmol/L were identified as diabetic. Diabetic rats were randomly divided into 2 groups:STZ group and STZ+erlotinib group. In addition, the normal rats were used as control group. The rats in STZ+erlotinib group were treated with erlotinib at 100 mg·kg-1·d-1 for 4 weeks(5th~8th week). The fasting blood glucose (FBG), serum creatinine (SCr) and 24 h urine protein were measured. The pathological changes of the kidney were observed by HE staining and Masson staining. The protein levels of EGFR, p-EGFR, transforming growth factor β1 (TGFβ1), Smad2/3, p-Smad2/3, collagen Ⅳ (ColⅣ) and fibronectin in the kidney tissues were determined by Western blot. The reactive oxygen species (ROS) level and malondialdehyde (MDA) content in the renal tissues were futher analyzed. RESULTS: Compared with control group, the levels of FBG, 24 h urine protein and Scr were significantly increased in STZ group (P<0.01). Compared with STZ group, the levels of FBG, 24 h urine protein and SCr in STZ+erlotinib group were markedly decreased (P<0.05). In additon, the glomerular structure was restored to normal, the proliferative degree of mesangial cells markedly attenuated, and the epithelial cells were in alignment in STZ+erlotinib group. Moreover, erlotinib significantly inhibited the protein levels of p-EGFR, TGFβ1, p-Smad2/3, ColⅣ and fibronectin in the kidney tissues of STZ rats. In addition, erlotinib also significantly inhibited the levels of ROS and MDA in the kidney tissues of STZ rats. CONCLUSION: Erlotinib ameliorates STZ-induced diabetic nephropathy possibly through inhibiting the activation of EGFR/TGFβ1-Smad2/3 signaling pathway in association with suppression of fibrosis and oxidative stress.  相似文献   

17.
AIM: To investigate the effect of rhynchophylline (Rhy) on blood pressure, cardiac hypertrophy and myocardial fibrosis in spontaneously hypertensive rats (SHR). METHODS: Spontaneously hypertensive rats were randomly divided into model group, high dose (10 mg·kg-1·d-1) and low dose (2.5 mg·kg-1·d-1) group of rhynchophylline, captopril group (17.5 mg·kg-1·d-1). Wistar-Kyoto rats were used as normal control. Respectively, systolic blood pressure was measured by tail cuff every 2 weeks. After 10 weeks, heart weight index and left ventricular weight index were calculated. The myocardial hydroxyproline and plasma angiotensin Ⅱ were detected. Moreover, basic myocardial histopathological changes and myocardial collagen fibres were observed by HE staining and Masson staining, respectively. The protein expression of TGF-β1 and Smad3 in the myocardium was measured by the methods of immunohistochemistry and Western blot. RESULTS: Compared with SHR model group, Rhy significantly reduced blood pressure (P<0.05), the levels of HYP in the myocardium (P<0.05) and the levels of AngⅡ in the plasma (P<0.01). The pathological damages of the myocardial tissues and collagen deposition were attenuated. The protein expression of TGF-β1 and Smad3 was significantly reduced by the treatment with Rhy (P<0.01). CONCLUSION: Rhynchophylline reduces blood pressure and adjusts to improve ventricular remodeling of SHR. The mechanism may be involved in the TGF-β1/Smad pathway and reducing AngⅡ content.  相似文献   

18.
AIM: To investigate the effect and potential mechanism of microRNA-181a (miR-181a) on cigarette smoke extract (CSE)-induced the productions of pro-inflammatory factors and the expression of collagen IV, fibronectin and α-smooth muscle actin (α-SMA) in human bronchial epithelial cells (HBECs). METHODS: CSE-induced miR-181a expression was detected by RT-qPCR in the HBECs. After tansfected with miR-181a mimic, the releases of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6 and transforming growth factor-β1 (TGF-β1) were measured by ELISA, the protein expression of collagen IV, fibronectin and α-SMA was determined by Western blot. The activation of NF-κB/TGF-β1/Smad3 pathway was also evaluated by Western blot. RESULTS: CSE increased the levels of TNF-α, IL-1β, IL-6 and TGF-β1 and the expression of collagen IV, fibronectin and α-SMA, and decreased the expression of miR-181a in the HBECs (P<0.05). However, transfected with miR-181a mimic partially prevented the releases of TNF-α, IL-1β, IL-6 and TGF-β1, and inhibited the expression of collagen IV, fibronectin and α-SMA (P<0.05). Additionally, the activation of NF-κB/TGF-β1/Smad3 evoked by CSE was attenuated after transfected with miR-181a mimic. CONCLUSION: Up-regulation of miR-181a prevents the releases of CSE-induced pro-inflammatory factors and expression of collagen IV, fibronectin and α-SMA in the HBECs, and its mechanism may be related to the inhibition of NF-κB/TGF-β1/Smad3 pathway.  相似文献   

19.
AIM: To investigate the effect of cellular Sloan-Kettering Institute (c-SKI) on the proliferation and endothelial-mesenchymal transition of human coronary artery endothelial cells (HCAECs). METHODS: HCAECs were treated with transforming growth factor-β1 (TGF-β1) at varying concentrations for different time points. Western blot was used to test the expression of c-SKI and mesenchymal markers such as α-smooth muscle actin (α-SMA) and vimentin. Meanwhile, the endothelial marker E-cadherin was also detected. HCAECs were transfected with c-ski gene mediated by lentivirus (LV), the efficiency of LV-SKI transfection was detected by RT-qPCR. The HCAECs were divided into 4 groups:control group, TGF-β1 (5 μg/L) group, LV-SKI+ TGF-β1 group, LV-NC+ TGF-β1 group. The cell viability and colony formation were measured by MTT assay and colony formation assay. The protein levels of vimentin, α-SMA, E-cadherin, Smad2, Smad3, p-Smad2 and p-Smad3 were determined by Western blot. RESULTS: The expression of c-SKI was down-regulated in the HCAECs treated with TGF-β1 (P<0.01). Over-expression of c-SKI inhibited the proliferation of HCAECs (P<0.01). Compared with LV-NC group, over-expression of c-SKI down-regulated the expression of α-SMA and vimentin (P<0.01), up-regulated the expression of E-cadherin (P<0.01), and inhibited the protein phosphorylation of Smad2 and Smad3 (P<0.01), reversed the endothelial-mesenchymal transition induced by TGF-β1. CONCLUSION: The expression of c-SKI in the HCAECs is down-regulated in the process of endothelial-mesenchymal transition. Over-expression of c-SKI inhibits proliferation and endothelial-mesenchymal transition of HCAECs, the mechanism may be related to regulation of the TGF-β1/Smad signaling pathway.  相似文献   

20.
AIM: To study the effects of exogenous bone mesenchymal stem cell (BMSC) transplantation on silicosis fibrosis in rats, and to explore the dose-effect relationship. METHODS: BMSCs were isolated and cultured from male 5-week-old SD rats in vitro. Fifty healthy female SD rats were randomly divided into 5 groups: control group, silicosis model group, BMSCs treatment A group (1×109 cells/L), BMSCs treatment B group (3×109 cells/L) and BMSCs treatment C group (5×109 cells/L). The silicosis model was made by one-time infusion of silica dust suspension using the non-exposed tracheal intubation, and different doses of BMSCs were given for intervention therapy. All the rats were sacrificed on the 21st day after the model was established. The morphological changes of the lung tissues were observed by HE staining and Masson staining. The localization and distribution of tumor necrosis factor α (TNF-α) and transforming growth factor β (TGF-β) were determined by the method of immunohistochemistry. The protein levels of TNF-α, TGF-β, collagen type I and collagen type III were detected by Western blotting. The sex-determining region (SRY) protein was searched by an immunofluorescence method to confirm the homing of BMSCs. RESULTS: Compared with control group, the silicosis model group had significant alveolitis changes, silicon nodule formation, collagen deposition and other pathological characteristics. Compared with silicosis model group, the pathological changes in BMSCs treatment A group were improved. The conditions of BMSCs treatment B group were also improved significantly. However,the pathological changes in BMSCs treatment C group were increased obviously. The protein levels of TNF-α, TGF-β, collagen type I and collagen type III in the lung tissues ranked as follows: BMSCs treatment C group > silicosis model group > BMSCs treatment A group > BMSCs treatment B group > control group. The difference between BMSCs treatment C group and silicosis model group was not statistically significant, and the differences between the other groups were statistically significant. The SRY-positive cells were observed in BMSCs treatment B group, but no significant expression in the heart, liver, spleen and kidney tissues was observed. CONCLUSION: The exogenous BMSC transplantation antagonizes the development of silicosis fibrosis in rats, which has dose-effect relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号