首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
挪威北部土壤微生物活性的季节变化   总被引:9,自引:0,他引:9  
Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moisture. The study was performed during spring thaw from three cultivated meadows and two non-cultivated forest sites near Alta, in northern Norway. Samples from all five sites showed increasing respiration rates directly after the spring thaw with soil respiration activity best related to soil organic matter content. However, distributions of bacteria] biomass showed fewer similarities to these two parameters. This could be explained by variations of litter exploitation through the biomass. Microbial activity started immediately after the thaw while root growth had a longer time lag. An influence of root development on soil microbes was proposed for sites where microorganisms and roots had a tight relationship caused by a more intensive root structure. Also a reduction of microbial activity due to soil compaction in the samples from a wheel track could not be observed under laboratory conditions. New methodological approaches of differential staining for live and dead organisms were applied in order to follow changes within the microbial community. Under laboratory conditions freeze and thaw cycles showed a damaging influence on parts of the soil bacteria. Additionally, different patterns for active vs. non-active bacteria were noticeable after freeze-thaw cycles.  相似文献   

2.
Rapid nitrogen(N) transformations and losses occur in the rice rhizosphere through root uptake and microbial activities. However,the relationships between rice roots and rhizosphere microbes for N utilization are still unclear. We analyzed different N forms(NH+4,NO-3, and dissolved organic N), microbial biomass N and C, dissolved organic C, CH4 and N2O emissions, and abundance of microbial functional genes in both rhizosphere and bulk soils after 37-d rice growth in a greenhouse pot experiment. Results showed that the dissolved organic C was significantly higher in the rhizosphere soil than in the non-rhizosphere bulk soil, but microbial biomass C showed no significant difference. The concentrations of NH+4, dissolved organic N, and microbial biomass N in the rhizosphere soil were significantly lower than those of the bulk soil, whereas NO-3in the rhizosphere soil was comparable to that in the bulk soil. The CH4 and N2O fluxes from the rhizosphere soil were much higher than those from the bulk soil. Real-time polymerase chain reaction analysis showed that the abundance of seven selected genes, bacterial and archaeal 16 S rRNA genes, amoA genes of ammonia-oxidizing archaea and ammonia-oxidizing bacteria, nosZ gene, mcrA gene, and pmoA gene, was lower in the rhizosphere soil than in the bulk soil, which is contrary to the results of previous studies. The lower concentration of N in the rhizosphere soil indicated that the competition for N in the rhizosphere soil was very strong, thus having a negative effect on the numbers of microbes. We concluded that when N was limiting, the growth of rhizosphere microorganisms depended on their competitive abilities with rice roots for N.  相似文献   

3.
The responses of soil microbes to global warming and nitrogen enrichment can profoundly affect terrestrial ecosystem functions and the ecosystem feedbacks to climate change. However, the interactive effect of warming and nitrogen enrichment on soil microbial community is unclear. In this study, individual and interactive effects of experimental warming and nitrogen addition on the soil microbial community were investigated in a long-term field experiment in a temperate steppe of northern China. The field experiment started in 2006 and soils were sampled in 2010 and analyzed for phospholipid fatty acids to characterize the soil microbial communities. Some soil chemical properties were also determined. Five-year experimental warming significantly increased soil total microbial biomass and the proportion of Gram-negative bacteria in the soils. Long-term nitrogen addition decreased soil microbial biomass at the 0-10 cm soil depth and the relative abundance of arbuscular mycorrhizal fungi in the soils. Little interactive effect on soil microbes was detected when experimental warming and nitrogen addition were combined. Soil microbial biomass positively correlated with soil total C and N, but basically did not relate to the soil C/N ratio and pH. Our results suggest that future global warming or nitrogen enrichment may significantly change the soil microbial communities in the temperate steppes in northern China.  相似文献   

4.
The potential influences of cadmium (Cd) on the biochemical processes of the soil nitrogen (N) cycle, along with the dynamics of ammonification, nitrification, and denitrification processes in the rhizosphere and non-rhizosphere (bulk soil), respectively, were investigated in a Cd-stressed system during an entire soybean growing season. In terms of Cd pollution at the seedling stage, the ammonifying bacteria proved to be the most sensitive microorganisms, whereas the effects of Cd on denitrification were not obvious. Following the growth of soybeans, the influences of Cd on ammonification in the bulk soil were: toxic impacts at the seedling stage, stimulatory effects during the early flowering stage, and adaptation to the pollutant during the podding and ripening stages. Although nitrification and den itrification in the bulk soil decreased throughout the entire growth cycle, positive adaptation to Cd stress was observed during the ripening stage. Moreover, during the ripening stage, denitrification in the bulk soil under high Cd treatment (20 mg kg^-1) was even higher than that in the control, indicating a probable change in the ecology of the denitrifying microbes in the Cd-stressed system. Changes in the activity of microbes in the rhizosphere following plant growth were similar to those in the non-rhizosphere in Cd treatments; however, the tendency of change in the rhizosphere seemed to be more moderate. This suggested that there was some mitigation of Cd stress in the rhizosphere.  相似文献   

5.
Indigenous grasses have been effectively used to rehabilitate degraded African drylands. Despite their success, studies examining their effects on soil bioindicators such as microbial biomass carbon(C) and enzyme activities are scarce. This study elucidates the effects of drought stress and phenological stages of a typical indigenous African grass, Enteropogon macrostachyus, on microbial biomass and enzyme activities(β-glucosidase, cellobiohydrolase, and chitinase) in the rhizosphere soil. Enteropogon macrostachyus was grown under controlled conditions. Drought stress(partial watering) was simulated during the last 10 d of plant growth, and data were compared with those from optimum moisture conditions. The rhizosphere soil was sampled after 40 d(seedling stage), 70 d(elongation stage), and 80 d(simulated drought stress). A high root:shoot ratio at seedling stage compared with elongation and reproduction stages demonstrated that E. macrostachyus invested more on root biomass in early development, to maximise the uptake of nutrients and water. Microbial biomass and enzyme activities increased with root biomass during plant growth. Ten-day drought at reproduction stage increased the microbial biomass and enzyme activities, accompanying a decrease in binding affinity and catalytic efficiency. In conclusion, drought stress controls soil organic matter decomposition and nutrient mobilization, as well as the competition between plant and microorganisms for nutrient uptake.  相似文献   

6.
黄河三角洲退化湿地微生物群落特性研究   总被引:4,自引:0,他引:4  
Five different sites with a soluble salt gradient of 3.0--17.7 g kg-1 dry soil from the coast to the inland were selected, and the microbial population size, activity and diversity in the rhizospheres of five common plant species and the adjacent bulk soils (non-rhizosphere) were compared in a degraded wetland of the Yellow River Delta, Shandong Province, China to study the effects of soil environment (salinity, seasonality, depth, and rhizosphere) on microbial communities and the wetland’s ecological function, thus providing basic data for the bioremediation of degraded wetlands. There was a significant negative linear relationship between the salinity and the total number of microorganisms, overall microbial activity, or culturable microbial diversity. Salinity adversely affected the microbial community, and higher salinity levels resulted in smaller and less active microbial communities. Seasonal changes were observed in microbial activity but did not occur in the size and diversity. The microbial size, activity and diversity decreased with increasing soil depth. The size, activity and diversity of culturable microorganisms increased in the rhizospheres. All rhizospheres had positive effects on the microbial communities, and common seepweed had the highest rhizosphere effect. Three halophilic bacteria (Pseudomonas mendocina, Burkholderia glumae, and Acinetobacter johnsonii) were separated through BIOLOG identification, and common seepweed could be recommended for bioremediation of degraded wetlands in the Yellow River Delta.  相似文献   

7.
Two pot experiments with a completely random design and 4 replications were performed in a greenhouse to examine the response difference of 17 cultivars of pakchoi (Brassica chinensis L.) grown in a Cu-spiked and a clean soil to Cu.The response of pakchoi to Cu toxicity varied with the cultivars. The biomass in cultivars of ‘Caogengbai‘, ‘Siyueman‘ and ‘Suzhouqing‘ were sensitive to soil Cu pollution, but the cultivars of ‘Heixinwu‘, ‘Huoqingcai‘ and ‘HKcaixin‘ were relatively tolerant. When the 17 cultivars of pakchoi grew in clean garden soil, the Cu concentrations in the aboveground part were positively correlated (r = 0.6693) with their root Cu concentrations. However, when they grew in the Cu-spiked soil a highly negative correlation coefficient (r = -0.5376) was obtained in the Cu concentration between the aboveground part and the root. This meant that the Cu tolerant cultivars had a weak ability to transfer Cu from their root to their aboveground part, and therefore stored much more Cu in their root than the Cu sensitive cultivars.  相似文献   

8.
The culturable bacterial population and phospholipid fatty acid (PLFA) profile of casing soil were investigated at different mushroom (Agaricus bisporus) cropping stages. The change in soil bacterial PLFAs was always accompanied by a change in the soil culturable bacterial population in the first flush. Comparatively higher culturable bacterial population and bacterial PLFAs were found in the casing soil at the primordia formation stage of the first flush. There was a significant increase in the ratio of fungal to bacterial PLFAs during mushroom growth. Multivariate analysis of PLFA data demonstrated that the mushroom cropping stage could considerably affect the microbial community structure of the casing soil. The bacterial population increased significantly from casing soil application to the primordia formation stage of the first flush. Casing soil application resulted in an increase in the ratio of gram-negative bacterial PLFAs to gram-positive bacterial PLFAs, suggesting that some gram-negative bacteria might play an important role in mushroom sporophore initiation.  相似文献   

9.
Physicochemical properties, total and DTPA (diethylenetriaminepentaacetic acid)-extractable Cu, Zn, Pb and Cd contents, microbial biomass carbon (C) content and the organic C mineralization rate of the soils in a long-term trace metal-contaminated paddy region of Guangdong, China were determined to assess the sensitivity of microbial indices to moderately metal-contaminated paddy soils. The mean contents of total Cu, Zn, Pb and Cd were 251, 250, 171, and 2.4 mg kg^-1 respectively. DTPA-extractable metals were correlated positively and significantly with total metals, CEC, and organic C (except for DTPA-extractable Cd), while they were negatively and highly significantly correlated with pH, totall Fe and Mn. Metal stress resulted in relatively low ratios of microbial biomass C to organic C and in remarkable inhibition of the microbial metabolic quotient and C mineralization rate, which eventually led to increases in soil organic C and C/N. Moreover, microbial respiratory activity showed a stronger correlation to DTPA-extractable metals than to total metal content. Likewise, in the acid paddy soils some “linked” microbial activity indices, such as metabolic quotient and ratios of basal respiration to organic C, especially during initial incubation, were found to be more sensitive indicators of soil trace metal contamination than microbial biomass C or basal respiration alone.  相似文献   

10.
不同肥力水平和利用历史的红壤磷脂脂肪酸图谱   总被引:4,自引:0,他引:4  
Analysis of phospholipid fatty acids(PLFAs) was used to estimate the microbial community structures of eight Chinese red soils with different fertility levels and land use histories.The total amounts of PLFAs in the soils were significantly correltaed with soil organic carbon, total nitrogen,microbial biomass C and basal respiration,indicating that total PLFA was closely related to fertility and sustainbility in these highly weathered soils.Soils of the eroded wastelan were rich in Gram-positive species .When the eroded soils were planted with citrus trees,the soil microbial population had changed little in 4 years but took up to 8-12 yearss before it reached a significantly different population,Multivariate analysis of PLFAs demonstrated that land use history and plant cover type had a significant impact on microbial community structure.Howver,the difference of soil microbial community structure in the paddy field compared to other land uses was not larger than expected in this experiment.  相似文献   

11.
Root-derived rhizodeposits of recent photosynthetic carbon (C) are the foremost source of energy for microbial growth and development in rhizosphere soil. A substantial amount of photosynthesized C by the plants is translocated to belowground and is released as root exudates that influence the structure and function of soil microbial communities with potential inference in nutrient and C cycling in the ecosystem. We applied the 13C pulse chase labeling technique to evaluate the incorporation of rhizodeposit-C into the phospholipid fatty acids (PLFAs) in the bulk and rhizosphere soils of switchgrass (Panicum virgatum L.). Soil samples of bulk and rhizosphere were taken at 1, 5, 10 and 20 days after labeling and analyzed for 13C enrichment in the microbial PLFAs. Temporal differences of 13C enrichment in PLFAs were more prominent than spatial differences. Among the microbial PLFA biomarkers, fungi and Gram-negative (GM-ve) bacterial PLFAs showed rapid enrichment with 13C compared to Gram-positive (GM+ve) and actinomycetes in rhizosphere soil. The 13C enrichment of actinomycetes biomarker PLFA significantly increased along with sampling time in both soils. PLFAs indicative to fungi, GM-ve and GM+ve showed a significant decrease in 13C enrichment over sampling time in the rhizosphere, but a decrease was also observed in GM-ve (16:1ω5c) and fungal biomarker PLFAs in the bulk soil. The relative 13C concentration in fungal PLFA decreased on day 10, whereas those of GM-ve increased on day 5 and GM+ve remained constant in the rhizosphere soil. However, the relative 13C concentrations of GM-ve and GM+ve increased on days 5 and 10, respectively, and those of fungal remain constant in the bulk soil. The present study demonstrates the usefulness of 13C pulse chase labeling together with PLFA analysis to evaluate the active involvement of microbial community groups for utilizing rhizodeposit-C.  相似文献   

12.
The rhizosphere and the detritusphere are hot spots of microbial activity, but little is known about the interface between rhizosphere and detritusphere. We used a three-compartment pot design to study microbial community structure and enzyme activity in this interface. All three compartments were filled with soil from a long-term field trial. The two outer compartments were planted with maize (root compartment) or amended with mature wheat shoot residues from a free air CO2 enrichment experiment (residue compartment) and were separated by a 50 μm mesh from the inner compartment. Soil, residues and maize differed in 13C signature (δ13C soil −26.5‰, maize roots −14.1‰ and wheat residues −44.1‰) which allowed tracking of root- and residue-derived C into microbial phospholipid fatty acids (PLFA). The abundance of bacterial and fungal PLFAs showed clear gradients with highest abundance in the first 1–2 mm of the root and residue compartment, and generally higher values in the vicinity of the residue compartment. The δ13C of the PLFAs indicated that soil microorganisms incorporated more carbon from the residues than from the rhizodeposits and that the microbial use of wheat residue carbon was restricted to 1 mm from the residue compartment. Carbon incorporation into soil microorganisms in the interface was accompanied by strong microbial N immobilisation evident from the depletion of inorganic N in the rhizosphere and detritusphere. Extracellular enzyme activities involved in the degradation of organic C, N and P compounds (β-glucosidase, xylosidase, acid phosphatase and leucin peptidase) did not show distinct gradients in rhizosphere or detritusphere. Our microscale study showed that rhizosphere and detritusphere differentially influenced microbial C cycling and that the zone of influence depended on the parameter assessed. These results are highly relevant for defining the size of different microbial hot spots and understanding microbial ecology in soils.  相似文献   

13.
Our study is one of the first attempts to document the copper (Cu) speciation in the rhizosphere of forest soils and to determine the importance and the influence of the microbial community on Cu speciation. In order to do this, bulk and rhizosphere samples were collected from field sites located close to industrial facilities. The rhizosphere materials were sampled under trembling aspen (Populus tremuloides Michx.) and separated from the bulk soils in the field. A characterization of the microbial populations was made by measuring microbial biomass C and N, urease and dehydrogenase activities. In soil water extracts, chemical properties were also measured, as well as total water-soluble Cu concentration (CuWS) and free-ion Cu activity (Cu2+). The residual Cu speciation was obtained by modelling, using MINEQL+ 4.5. In all cases, the Cu speciation was dominated by organic forms of Cu, the proportion of which increases with increasing pH. The reverse pH effect was observed for Cu2+. Moreover, almost systematically higher concentrations for all Cu variables were reported in the rhizosphere as compared to the bulk soils. The results also showed that microbial variables explained 22% of the distribution of CuWS and Cu2+ in bulk samples, a proportion that reached 61.5% in rhizospheric samples. In the rhizosphere, relationships between pH, microbial biomass N and Cu2+ indicated that microorganisms influenced Cu by modifying the pH of the solution through nitrogen assimilation. Furthermore, links found between urease activity, biomass variables, solid- and liquid-phase organic carbon and CuWS suggested that microbial mineralization could partly supply Cu to the solution fraction of the rhizosphere through root decay. This study reveals that microorganisms have a strong influence on Cu speciation in the rhizosphere of forest soils and suggests that a realistic understanding and representation of Cu dynamic in the rhizosphere must take microbial activity into account. Further investigations are needed to identify and establish precisely how microbial processes impact on Cu speciation.  相似文献   

14.
  目的  土壤微生物是土壤健康的敏感“指示器”,但不同的土壤微生物类群对连续施用有机肥和石灰的响应规律及不同指标的敏感性仍不明确。  方法  本文选取中亚热带双季稻区的紫泥田作为研究对象,研究连续5年施用有机肥或石灰后,土壤微生物“黑箱指标”(微生物生物量碳氮、微生物熵和土壤呼吸速率)和土壤活体微生物(PLFAs)组成的响应规律与差异。  结果  与对照相比,连续施用有机肥后,土壤微生物生物量碳(MBC)、氮(MBN)含量和土壤呼吸速率分别提高37%、28%和44% ~ 59%,微生物多样性也显著提高,土壤细菌结构发生改变,尤其是革兰氏阴性菌(G?)的PLFAs绝对量提高了100%,但真菌类群的响应不敏感。相反,连续施用石灰5年后,土壤微生物生物量碳、氮含量均呈下降趋势,微生物熵和土壤呼吸速率分别降低11%和26% ~ 52%,微生物多样性显著降低,细菌、放线菌和绝大多数真菌类群PLFAs绝对量下降30% ~ 58%。相关性分析结果表明,土壤有机质含量与土壤微生物总PLFAs和细菌PLFAs含量呈显著正相关关系;而土壤pH仅与Simpson多样性指数呈显著正相关关系。施有机肥显著提高了土壤有机质含量进而导致细菌MBC、MBN、G?和土壤呼吸速率显著增加;而施石灰后土壤微生物群落结构及活性降低与土壤pH有关。  结论  连续5年施用有机肥、石灰后,土壤微生物指标分别表现为正面、负面响应。与“黑箱指标”相比,某些特定微生物类群(如G?)的敏感性指数值更高,在土壤健康评价中极具应用潜力。  相似文献   

15.
The input dynamics of labeled C into pools of soil organic matter and CO2 fluxes from soil were studied in a pot experiment with the pulse labeling of oats and corn under a 13CO2 atmosphere, and the contribution of the root and microbial respiration to the emission of CO2 from the soil was determined from the fluxes of labeled C in the microbial biomass and the evolved carbon dioxide. A considerable amount of 13C (up to 96% of the total amount of the label found in the rhizosphere soil) was incorporated into the biomass of the rhizosphere microorganisms. The diurnal fluctuations of the labeled C pools in the microbial biomass, dissolved organic carbon, and CO2 released in the rhizosphere of oats and corn were related to the day/night changes, i.e., to the on and off periods of the photosynthetic activity of the plants. The average contribution of the corn root respiration (70% of the total CO2 emission from the soil surface) was higher than that of the oats roots (44%), which was related to the lower incorporation of rhizodeposit carbon into the microbial biomass in the soil under the corn plants than in the soil under the oats plants.  相似文献   

16.
通过在石河子大学农学院试验站开展加工番茄连作定点微区试验,采用氯仿熏蒸和磷脂脂肪酸(PLFA)法相结合,研究了不同连作处理(种植1 a、连作3 a、5 a和7 a)对新疆加工番茄花果期和成熟期根际土壤微生物群落结构及土壤微生物量的影响。结果表明,连作导致土壤微生物量碳(SMBC)、微生物量氮(SMBN)和微生物熵(q MB)下降,SMBC/SMBN升高,而微生物量磷(SMBP)随连作年限和生育期的变化而不同。连作显著增加了真菌PLFAs含量,降低了细菌PLFAs含量、土壤PLFAs总量及细菌/真菌PLFAs的比值,而放线菌PLFAs含量变化无规律。连作7 a时,成熟期的细菌PLFAs含量、土壤PLFAs总量较对照分别减少62.9%、50.3%(P0.05),而真菌PLFAs含量较对照升高60.2%(P0.05)。从多样性指数分析看,Shannon-Wiener指数、Simpson指数、Brillouin指数和Pielou指数均随连作年限的延长呈先升后降的变化,其中连作3 a时各项指数最大,连作7 a时最小,表明在本试验年限范围内,连作使得微生物群落多样性与均匀程度皆出现了一定程度的降低。相关性分析表明,土壤微生物各类群PLFAs量、微生物量及土壤肥力之间存在相关性,说明土壤微生物量与土壤肥沃程度相关,可作为评价土壤肥力的生物学指标。可见,加工番茄连作改变了土壤微生物群落结构,降低了土壤微生物量,最终在根际土壤微生态系统和环境因子等因素的综合作用下产生连作障碍。  相似文献   

17.
Zhang  Wenyuan  Liu  Shun  Zhang  Manyun  Li  Yinan  Sheng  Keyin  Xu  Zhihong 《Journal of Soils and Sediments》2019,19(7):2913-2926
Purpose

Rhizosphere and fertilization might affect soil microbial activities, biomass, and community. This study aimed to evaluate the impacts of Phyllostachys edulis (moso bamboo) rhizospheres on soil nutrient contents and microbial properties in a moso bamboo forest with different fertilizer applications and to link soil microbial activities with abiotic and biotic factors.

Materials and methods

The experiment included three treatments: (1) application of 45% slag fertilizer (45%-SF); (2) application of special compound fertilizer for bamboos (SCF); and (3) the control without any fertilizer application (CK). Simultaneously, bulk soils and 0.5, 2.5, 4.5, and 6.5-year-old (y) bamboo rhizosphere soils were selected. Soil nutrient contents were analyzed. Microbial activities were evaluated based on the activities of soil enzymes including β-glucosidase, urease, protease, phosphatase, and catalase. The total microbial biomass and community were assessed with the phospholipid fatty acids (PLFAs) method.

Results and discussion

In the CK and SCF treatments, organic matter contents of rhizosphere soils were significantly higher than those of bulk soils. Soil β-glucosidase, urease, protease, phosphatase, and catalase activities in rhizosphere soils were higher than those of bulk soils, with the sole exception of β-glucosidase of 0.5 y rhizosphere soil in the 45%-SF treatment. Compared with the CK treatment, fertilizer applications tended to increase soil total PLFAs contents and changed soil microbial community. Moso bamboo rhizospheres did not significantly increase the total microbial biomass. In the SCF treatment, the Shannon index of bulk soil was significantly lower than those of rhizosphere soils.

Conclusions

Our results suggested that both rhizospheres and fertilizer applications could change the soil microbial community structures and that moso bamboo rhizosphere could increase microbial activity rather than biomass in the forest soils with different fertilizer applications.

  相似文献   

18.
对河滨缓冲带常见的3种水生植物根系形态特点、活力特征及其土壤微生物群落多样性进行了研究,并对其农业面源污染物的去除效果进行了调查。结果表明,3种水生植物根系形态和活力特征具有显著差异。根系活力表现为水生鸢尾菖蒲千屈菜,与根尖数呈显著相关。同时,3种水生植物具有显著的根际效益,根际土壤微生物生物量显著高于非根际土壤;根际土壤微生物群落数量为细菌放线菌真菌;土壤微生物群落多样性指数为水生鸢尾菖蒲千屈菜,这与3种水生植物根系活力特征表现一致。3种水生植物河滨缓冲区对农业面源污染物TN、TP和CODCr的去除效果表现为水生鸢尾菖蒲千屈菜。说明不同水生植物根系结构导致根系活力不同,由此引起的土壤微生物群落多样性差异对水生植物农业面源污染物去除效果有一定影响。  相似文献   

19.
Considerable progress has been made during the last decade towards understanding and quantifying the input and turnover of plant carbon in the rhizosphere. This was made possible by the development (partially by the authors) and combination of appropriate new methods, such as:
  • –homogeneous labelling of whole plants with 14C
  • –distinction between root and microbial respiration
  • –separation of soil zones of known distances from the roots
  • –determination of microbial soil biomass.
These methods were applied to study the following aspects:
  • –release of organic plant carbon into the soil by growing roots
  • –utilization of this plant carbon by the microbial biomass in the rhizosphere
  • –related influence on the turnover of soil organic matter, and
  • –spatial range of such root influence in the soil.
About 19% of the total photosynthetic production of the investigated plants was released into the rhizosphere as organic material. Most of this (15%) was transformed by the rhizosphere microorganisms into CO2, while only a small fraction (4%) remained in the soil, mainly as microbial cells (2.5%). As a result, microbial rhizosphere biomass increased considerably. Relative to the organic C-input, however, the incorporation of root derived carbon by the microbial biomass was remarkably low (13%). Along with the increase in microbial rhizosphere biomass, the presence of plant roots also enhanced the decomposition of soil organic matter and affected soil aggregate stability. Root carbon and root influences were even detected up to 20 mm away from the roots. This may be partially attributed to the contribution of root derived volatiles. Accordingly, both the actual volume of the rhizosphere and its metabolic significance is greater than what has so far been assumed. Possible interactions involving root, soil and microbial carbon are discussed.  相似文献   

20.
The stimulation of rhizosphere microorganisms by exudates released from roots is important for nutrient cycling and differs between plant species. The reasons for this between-species variability are poorly understood. We studied correlations between shoot biomass, soluble and non-soluble root C concentrations and rhizosphere bacterial abundance (CFU: colony forming units) and an index of microbial activity (in vitro utilization of [U-14C]glucose by soil microorganisms). We studied Briza media and Rumex acetosella (nutrient-poor habitats), Epilobium hirsutum, Eupatorium cannabinum, Rumex obtusifolius and Urtica dioica (nutrient rich habitats) cultivated in a greenhouse for 5 weeks in a forest soil. We found significant differences among species for the bacterial abundance and microbial activity in the rhizosphere. These differences poorly reflected the nutrient richness of the common habitats for these species, possibly because the soil conditions were not optimal. Nevertheless, microbial activity was positively correlated with root soluble C concentration and shoot biomass and negatively correlated with the concentration of non-soluble C in roots. These preliminary results suggest that the carbon economy could be an important control of the between-species variability of microbial activity in the rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号