首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review describes environmental factors that influence severity of crop disease epidemics, especially in the UK and north-west Europe, in order to assess the effects of climate change on crop growth and yield and severity of disease epidemics. While work on some diseases, such as phoma stem canker of oilseed rape and fusarium ear blight of wheat, that combine crop growth, disease development and climate change models is described in detail, climate-change projections and predictions of the resulting biotic responses to them are complex to predict and detailed models linking climate, crop growth and disease development are not available for many crop-pathogen systems. This review uses a novel approach of comparing pathogen biology according to ‘ecotype’ (a categorization based on aspects such as epidemic type, dissemination method and infection biology), guided by detailed disease progress models where available to identify potential future research priorities for disease control. Consequences of projected climate change are assessed for factors driving elements of disease cycles of fungal pathogens (nine important pathogens are assessed in detail), viruses, bacteria and phytoplasmas. Other diseases classified according to ‘ecotypes’ were reviewed and likely changes in their severity used to guide comparable diseases about which less information is available. Both direct and indirect effects of climate change are discussed, with an emphasis on examples from the UK, and considered in the context of other factors that influence diseases and particularly emergence of new diseases, such as changes to farm practices and introductions of exotic material and effects of other environment changes such as elevated CO2. Good crop disease control will contribute to climate change mitigation by decreasing greenhouse gas emissions from agriculture while sustaining production. Strategies for adaptation to climate change are needed to maintain disease control and crop yields in north-west Europe.  相似文献   

2.
This review summarizes the most significant results from the so far existing, but fragmented studies on the potential effects of climate change on wheat pathogens and the diseases they cause. The analysis demonstrates that predictions are uncertain and future disease risk trends must be differentiated on a geographic and time scale. For example, disease incidence of Fusarium head blight in the United Kingdom might increase middle of this century, whereas disease severity of Septoria tritici blotch might decrease in France end of this century. Thus, wheat disease problems caused by a changing climate will probably not consistently worsen, as climatic changes may also improve the crop health situation in wheat depending on the location. The results of long-term simulations of future disease risk must be taken with caution, because different climate models and downscaling methods are used to make the projections and this can create considerable uncertainty. Being aware of this short-coming, plant pathologists recently started to assess the sources of uncertainty related to their long-term disease simulations. However, in spite of this progress there is still a significant lack of simulation studies related to different wheat diseases in various locations that could help to estimate future wheat grain losses due to climatic changes. Many more of these studies are certainly needed. Otherwise, the focus in the climate change debate will remain on the yield loss/gain potential due to changes in the environmental conditions only, which would neglect the important impact of altered biotic constraints such as diseases which are among the key factors in the estimation of future global wheat productivity.  相似文献   

3.
Crop diseases affect crop yield and quality and cause significant losses of total food production worldwide. With the ever-increasing world population and decreasing land and water resources, there is a need not only to produce more food but also to reduce agricultural greenhouse gas (GHG) emissions to mitigate climate change and avoid land use change and biodiversity loss. Thus, alternative climate-smart farming systems need to adapt to produce more food per hectare in a more sustainable way than conventional high-input farming systems. In addition to breeding new high-yielding cultivars adapted to future climates, there is a need to deploy Integrated Crop Management (ICM) strategies, relying less on synthetic inputs for fertilization and crop protection and less on fossil fuel-powered machinery to decrease yield losses due to pest and pathogens and guarantee food security. In this review, we compare some low-input farming systems to conventional agricultural systems with a focus on ICM solutions being developed to reduce synthetic inputs; these include crop genetic resistance to pathogens, intercropping, canopy architecture manipulation, and crop rotation. These techniques have potential to decrease crop disease frequency and severity by decreasing amounts and dispersal of pathogen inoculum and by producing microclimates that are less favourable for pathogen development, while decreasing GHG emissions and improving environmental sustainability. More research is needed to determine the best deployment of these ICM strategies in various cropping systems to maximize yield, crop protection, and other ecosystem services to address trade-offs between climate change and food security.  相似文献   

4.
Accurate management practices in crop health and food safety are critical, especially regarding the detection of plant pathogens in the early stages of a disease. To date, specific, fast and sensitive technologies for point‐of‐care diagnosis and simple or grower‐friendly devices are very valuable, as no specialized staff are required for diagnosing a disease in the field. This is especially the case today, when factors such as climate change may cause the appearance of pathogens in areas where years ago they were unexpected. The aim of this research is to review some of the promising techniques that can be applied to in‐field molecular detection of plant pathogens and how these techniques can change the way farmers and pathologists are diagnosing plant diseases. Some of them, like loop‐mediated isothermal amplification and recombinase polymerase amplification, are already being successfully used for routine diagnosis. However, most technologies still need validation in the plant pathology field, where they have a promising future for in‐field diagnosis when combined with simple DNA extraction methods, reagent stabilization techniques and their integration into portable devices.  相似文献   

5.
There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases. This overview addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods.  相似文献   

6.
Fungicides are one possible way to manage fungal and oomycete plant pathogens in order to safeguard yield and quality of crops and to improve shelf-life of produce in agriculture and horticulture. However, global warming and the resulting temperature increase may affect the effectiveness of some important fungicides, including efficacy and duration of plant disease control. Nevertheless, according to our literature survey, there is little specific information available on whether and how temperature influences the effectiveness of fungicides. The very few publications that show specific data are summarized herein. Specific data are mainly gained under controlled conditions, both based on in vitro and in planta experiments. Field data are more or less missing. Most researchers assume that indirect effects of temperature on fungicide efficacy are particularly important. For example, temperature effects on pathogen spore germination and hyphal growth (optimal versus sub- and supra-optimal), whereby optimal temperature conditions can improve pathogen fitness, thereby increasing the tolerance of pathogens to fungicides. Presumably, these indirect effects are often more important than the direct effects of temperature on fungicide performance. However, the data needed to prove this assumption are lacking. Therefore, it would be beneficial to conduct more in-depth laboratory, greenhouse and field experiments in order to investigate the potential direct and indirect influence of temperature on the effectiveness of important fungicides. This would enable the establishment of appropriate recommendations for fungicide use in an increasingly warmer world and would assist the development of future fungicide solutions, based on improved knowledge.  相似文献   

7.
Climate change influences on pests and pathogens are mainly plant-mediated. Rising carbon dioxide and temperature and altered precipitation modifies plant growth and development with concomitant changes in canopy architecture, size, density, microclimate and the quantity of susceptible tissue. The modified host physiology and canopy microclimate at elevated carbon dioxide influences production, dispersal and survival of pathogen inoculum and feeding behaviour of insect pests. Elevated temperature accelerates plant growth and developmental rates to modify canopy architecture and pest and pathogen development. Altered precipitation affects canopy architecture through either drought or flooding stress with corresponding effects on pests and pathogens. But canopy-level interactions are largely ignored in epidemiology models used to project climate change impacts. Nevertheless, models based on rules of plant morphogenesis have been used to explore pest and pathogen dynamics and their trophic interactions under elevated carbon dioxide. The prospect of modifying canopy architecture for pest and disease management has also been raised. We offer a conceptual framework incorporating canopy characteristics in the traditional disease triangle concept to advance understanding of host-pathogen-environment interactions and explore how climate change may influence these interactions. From a review of recent literature we summarize interrelationships between canopy architecture of cultivated crops, pest and pathogen biology and climate change under four areas of research: (a) relationships between canopy architecture, microclimate and host-pathogen interaction; (b) effect of climate change related variables on canopy architecture; (c) development of pests and pathogens in modified canopy under climate change; and (d) pests and pathogen management under climate change.  相似文献   

8.
The global climate is changing. Much research has already been carried out to assess the potential impacts of climate change on plant physiology. However, effects on plant disease have not yet been deeply studied. In this paper, an empirical disease model for primary infection of downy mildew on grapevine was elaborated and used to project future disease dynamics under climate change. The disease model was run under the outputs of the General Circulation Model (GCM) and future scenarios of downy mildew primary outbreaks were generated at several sites all over the word for three future dates: 2030, 2050, 2080. Results suggested a potential general advance of first disease outbreaks, both in the Northern and Southern Hemispheres, for all three future decades considered. The advance is predicted to be from about a minimum of one day in South Africa in 2030 to a maximum of 28 days in Chile and China in 2080. The advance in the outbreak time could lead to more severe infections, due to the polycyclic nature of the pathogen. Therefore, changes in the timing and frequency of fungicide treatments could be expected in the future, with a possible increase in the costs of disease management.  相似文献   

9.
传染病暴发在植物、动物和人群中很常见。除了少数已发展为流行病和大流行病外,在很大程度上大多数传染病暴发的原因仍未知,植物真菌和卵菌病暴发尤其如此。所有流行病和大流行病都是从局部暴发开始,然后蔓延到更广泛的地理区域,因此了解其初始暴发的原因对于有效预防和控制植物病害流行病和大流行病至关重要。该文首先描述疾病暴发的定义和检测,随后简要描述导致植物传染病暴发的主要原因,包括寄主植物、病原体及其相关的环境因素,以一种真菌和一种卵菌病原体为例简要概述宿主病原体系统,并强调分子工具在帮助揭示病原体的起源和传播及其暴发及大流行方面的作用。由于人为活动及气候的加速变化,植物病害暴发的可能性越来越大,最后提出应该如何应对其暴发。  相似文献   

10.
Predicted changes in average values of global climate variables (increased temperatures, altered precipitation patterns, increased concentrations of atmospheric CO2) and changes in the frequency, duration, and degree of extremes (frost, heat, drought, hail, storms, floods, etc.) will affect agricultural crops, agroecosystems, and agricultural productivity. Although forecasts of regional climate changes are still imprecise, mean temperature increases in Europe are expected to be greater in the north (2.5–4.5°C) than in the south (1.5–4.5°C). Regional forecasts for precipitation changes are also very far from precise; however, problems with drought are expected to increase, especially in Mediterranean countries. Overall, shortage of water will be the predominant factor affecting plant growth. As higher temperatures are known to enhance plant development and especially the grain-filling duration of cereals, grain yield losses are possible in a warmer climate. On the other hand, elevated atmospheric CO2 concentrations are known to stimulate photosynthesis and enhance growth and yield (“CO2 fertilization”); concomitantly, leaf transpiration is reduced, resulting in improved water use efficiency. Total biomass and yield were enhanced by 20–30% in experiments with elevated CO2 exposure (550–700 ppm) under more or less ideal growth conditions. Elucidating the interactions between positive and negative effects of climate change is of crucial importance for any prediction of future crop yields. The present paper is a brief summary mainly of the potential effects of elevated temperatures and atmospheric CO2 on crop growth, quality, and yield. Also, adaptation measures, possible interactive effects of different climate variables, and interactions of climate change components with other growth variables (pathogens, air pollutants) are briefly described.  相似文献   

11.
Accurate identification of fungal phytopathogens is essential for virtually all aspects of plant pathology, from fundamental research on the biology of pathogens to the control of the diseases they cause. Although molecular methods, such as polymerase chain reaction (PCR), are routinely used in the diagnosis of human diseases, they are not yet widely used to detect and identify plant pathogens. Here we review some of the diagnostic tools currently used for fungal plant pathogens and describe some novel applications. Technological advances in PCR-based methods, such as real-time PCR, allow fast, accurate detection and quantification of plant pathogens and are now being applied to practical problems. Molecular methods have been used to detect several pathogens simultaneously in wheat, and to study the development of fungicide resistance in wheat pathogens. Information resulting from such work could be used to improve disease control by allowing more rational decisions to be made about the choice and use of fungicides and resistant cultivars. Molecular methods have also been applied to the study of variation in plant pathogen populations, for example detection of different mating types or virulence types. PCR-based methods can provide new tools to monitor the exposure of a crop to pathogen inoculum that are more reliable and faster than conventional methods. This information can be used to improve disease control decision making. The development and application of molecular diagnostic methods in the future is discussed and we expect that new developments will increase the adoption of these new technologies for the diagnosis and study of plant disease.  相似文献   

12.
马铃薯Y病毒科分子进化研究进展   总被引:2,自引:0,他引:2  
马铃薯Y病毒科Potyviridae包括许多重要的植物病毒。本文综述了近年来该科马铃薯Y病毒属Potyvirus、甘薯病毒属Ipomovirus和禾草病毒属Poacevirus内20余种病毒的分子进化研究现状,从突变、重组、漂移、选择和迁移5个方面探讨了影响该科一些病毒分子进化的因素,并展望了未来的研究方向,以期为该科病毒的有效防控提供理论依据。  相似文献   

13.
Cold winters and geographic isolation have hitherto protected the Nordic countries from many plant pathogens and insect pests, leading to a comparatively low input of pesticides. The changing climate is projected to lead to a greater rise in temperature in this region, compared to the global mean. In Scandinavia, a milder and more humid climate implies extended growing seasons and possibilities to introduce new crops, but also opportunities for crop pests and pathogens to thrive in the absence of long cold periods. Increased temperatures, changed precipitation patterns and new cultivation practices may lead to a dramatic change in crop health. Examples of diseases and insect pest problems predicted to increase in incidence and severity due to global warming are discussed.  相似文献   

14.
Climate Change is likely to increase the frequency, intensity, spatial extent, duration and timing of weather and climate extremes and can result in unprecedented extremes. Managed systems like agriculture are not immune to them. Studying the rapidly growing body of climate change literature it has been noted that there are only a few papers concerning the influences of extreme weather on agriculture. Projections of future impacts of extreme weather cannot always be made with a high level of confidence. Pests (weeds, insect pests and plant pathogens) represent a major constraint to crop production. The present paper analyses scientific literature published since 1945 concerning the knowledge about the influences of extreme weather on incidence of pests in wheat, barley, maize, beet, potato, rape, forage crops and grassland. Only 63 papers were found. Insect pests and plant pathogenic fungi of maize and wheat are most investigated. The most papers describe the influences of drought, dryness heat and heavy down pours. There are enormously knowledge gaps. On the basis of this it is not possible to assess the influences of weather extremes in a changing climate on pests and yield loss current. More research in this field is needed urgently.  相似文献   

15.
Water used for the irrigation of plants has the potential to harbour and spread plant pathogens yet little research is conducted within this field. This review was undertaken to critically review current understanding of waterborne fungal and oomycete plant pathogens in open irrigation systems, particularly in the context of plant biosecurity. It was determined that very limited data exists on these plant pathogens, with the majority of previous studies only recording pathogen presence. There are significant gaps in current knowledge of pathogen survival and spread, and very limited information on their ability to cause disease when contaminated irrigation water is applied to crops. This review highlights the need for new research on the epidemiology and pathogenicity of putative plant pathogens isolated from water, in order to determine their risk to crops. The importance of regular monitoring of irrigation systems for the early detection of plant pathogens is also discussed.  相似文献   

16.
As a result of human activities, an ever-increasing portion of Earth’s natural landscapes now lie adjacent to agricultural lands. This border between wild and agricultural communities represents an agro-ecological interface, which may be populated with crop plants, weeds of crop systems, and non-crop plants that vary from exotic to native in origin. Plant viruses are important components of the agro-ecological interface because of their ubiquity, dispersal by arthropod vectors, and ability to colonize both crop and wild species. Here we provide an overview of research on plant-virus dynamics across this interface and suggest three research priorities: (1) an increased effort to identify and describe plant virus diversity and distribution in its entirety across agricultural and ecological boundaries; (2) multi-scale studies of virus transmission to develop predictive power in estimating virus propagation across landscapes; and (3) quantitative evaluation of the influence of viruses on plant fitness and populations in environmental contexts beyond crop fields. We close by emphasizing that agro-ecological interfaces are dynamic, influenced by the human-mediated redistribution of plants, vectors, and viruses around the world, climate change, and the development of new crops. Consideration of virus interactions within these environmentally complex systems promises new insight into virus, plant, and vector dynamics from molecular mechanisms to ecological consequences.  相似文献   

17.
The accelerating pace of gene discovery, coupled with novel plant breeding technologies, provides tangible opportunities with which to engineer disease resistance into agricultural and horticultural crops. This is especially the case for potato, wheat, apple and banana, which are afflicted with fungal and bacterial diseases that impact significantly on each crop's economic viability. Yet public scepticism and burdensome regulatory systems remain the two primary obstacles preventing the translation of research discoveries into cultivars of agronomic value. In this perspective review, the potential to address these issues is explained, and specific opportunities arising from recent genomics‐based initiatives are highlighted as clear examples of what can be achieved in respect of developing disease resistance in crop species. There is an urgent need to tackle the challenge of agrichemical dependency in current crop production systems, and, while engineering for disease resistance is possible, it is not the sole solution and should not be proclaimed as so. Instead, all systems must be given due consideration, with none dismissed in the absence of science‐based support, thereby ensuring that future cropping systems have the necessary advantage over those pathogens that continue to inflict losses year after year. © 2014 Society of Chemical Industry  相似文献   

18.
Development of alternative, chemical‐free approaches for control of postharvest fungi on a commercial scale has become a challenge for plant pathologists in recent years. Although there are several established techniques such as heat that are used as postharvest treatments, they often have disadvantages, including alteration of food quality due to physiological responses to the treatment, or environmental pollution. A promising new postharvest treatment is cold plasma, which is a gas‐derived mix of atoms, excited molecules and charged particles. Cold plasma has no known adverse effects on fresh produce or the environment. It is an established technology in the medical field and has been demonstrated to successfully control bacterial pathogens that cause food safety issues. This review focuses on the potential of cold plasma technology for postharvest disease control, especially those caused by fungi. An overview of plasma generation systems is provided, and in vivo and in vitro research is reviewed to consider benefits, limitations and research gaps in the context of cold plasma as a potential method for controlling postharvest fungal pathogens. Finally, recommendations are provided for the application of this technology in commercial facilities.  相似文献   

19.
陈夕军  石童  陈宸  唐滔 《植物保护》2022,48(5):15-22
喷施诱导的基因沉默(spray-induced gene silencing, SIGS)技术是一种新型基因沉默技术, 其以病原菌生长发育和致病相关基因为靶标, 将体外合成的针对靶基因的dsRNA喷施于植物表面, 抑制靶基因的表达?在病原菌侵染寄主的过程中, 病原菌可直接从寄主植物表面摄取dsRNA, 也可由植物吸收dsRNA后, 直接以dsRNA的形式或将dsRNA剪切成sRNAs转运至病原菌体内诱导病原菌相关基因沉默, 从而抑制病菌的侵染和扩展?由于SIGS技术不需要转基因, 再加上其具有高效性?特异性和环境友好性, 故显示出巨大的应用潜力?本文综述了SIGS技术的最新研究进展, 总结了影响SIGS控制植物病害的因素及未来的研究方向, 展望了其应用前景?  相似文献   

20.
Intensive research on plant immunity revealed detailed knowledge on how plants recognize and defend plant pathogens. This knowledge is ready to use for genetic plant protection of crop plants, which does not rely on xenobiotic principals. Here, we report on important success in research on plant immunity and on recent and future possibilities of biotechnological plant protection that builds on intrinsic plant immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号