首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A standard area diagram set (SADs) with eight severity values ranging from 0.5 to 32% was evaluated as a tool to improve the accuracy of the estimates of Phomopsis leaf blight severity on eggplant by ten inexperienced raters. A first assessment in a 50-leaf dataset of digital images was performed unaided (UN, no SAD). Two further aided (A) assessments, conducted two (A1) and four weeks after the first (A2) unaided one were performed. The precision of the estimates, as indicated by the Pearson’s correlation coefficient (r), improved significantly when using the aid (A1: r = 0.96 and A2: r = 0.96) compared to unaided (UN: r = 0.79). However, the generalized bias (C b) was not significantly affected because the unaided estimates were already quite accurate (C b = 0.93). The overall concordance (ρ c) was significantly improved due to the large gains in precision when using the SADs. The raters’ estimates were more uniform (ρ c > 0.9) when using the aid, with progressive gains in the reliability of the estimates among them, indicated by the concordance correlation coefficient statistics. The SADs proposed in this study will be useful in severity estimation during field work involving multiple raters, especially as use of the SADs results in less variable estimates, improving accuracy and reliability among raters.  相似文献   

2.
This study aimed to develop and validate a standard area diagram (SAD) set to quantify the severity of spot blotch, caused by Bipolaris sorokiniana, on wheat leaves. The proposed SAD set includes images of leaves with 11 distinct disease severities (0·1, 1, 5, 10, 20, 30, 40, 50, 60, 70 and 83%). The SAD set was validated by 12 raters without experience in evaluating plant disease. Lin's concordance correlation analysis of estimated versus actual disease severity (based on image analysis) showed that precision and accuracy improved for all raters using the SAD set in contrast to assessments made without it. The SAD set improved accuracy (coefficient of bias, C= 0·88 and 0·99, without and with the SAD set, respectively) and agreement (Lin's concordance correlation coefficient, ρc = 0·81 and 0·96 without and with the SAD set, respectively) of the estimates of severity. The severity estimates were also more reliable when using the SAD set (coefficient of determination, R= 0·76 unaided and R= 0·92 with the SAD set, and intra‐class correlation ρ = 0·79 without the SAD set and ρ = 0·95 using the SAD set). The SAD set proposed in this study will improve the accuracy and reliability of estimates of spot blotch severity on wheat leaves.  相似文献   

3.
A standard area diagram set (SAD) to aid visual assessment of loquat scab (caused by Fusicladium eriobotryae) severity on fruit was developed and evaluated for improving accuracy, precision and reliability of visual estimates. The SAD set contains eight black and white diagrams of diseased fruit with severity values from 2 % to 98 %. To evaluate the SADs, a group of 20 raters (comprising 10 ‘experienced’ and 10 ‘inexperienced’ raters) assessed the same set of 50 images three times, the first without SADs and the second and third using the SADs as an aid. Only for the group of inexperienced raters did SADs significantly improve accuracy (bias correction factor, C b?=?0.93 without SADs and 0.98 with SADs), precision (correlation coefficient, r?=?0.88 without SADs and r?=?0.96 with SADs) and overall agreement (Lin’s concordance correlation coefficient, ρ c?=?0.82 without SADs and ρc with SADs = 0.95) of the estimates. Accuracy and precision of the estimates by inexperienced raters were significantly higher than those obtained by the experienced raters, especially for the second assessment with SADs. Inter-rater reliability was improved when SADs were used by inexperienced raters, whereas a high degree of intra-rater reliability was obtained by both experienced and inexperienced raters when using SADs. The SADs developed in this study were useful for obtaining more accurate, precise and reliable assessments of loquat scab for inexperienced raters, and should be used as an aid for assessing scab in epidemiological studies or monitoring for decision-making purposes.  相似文献   

4.
Pecan scab (Fusicladium effusum) causes losses of pecan nutmeat yield and quality in the southeastern United States. Disease assessment relies on visual rating, which can be inaccurate and imprecise, with poor inter‐rater reliability. A standard area diagram (SAD) set for pecan scab on fruit valves was developed. A set of 40 images of diseased fruit valves with known severity was assessed twice by 23 raters. The first assessment was conducted without SADs, and the second assessment was made using the SADs as an aid. SADs improved rater accuracy (correction factor, Cb = 0·86 and 0·97, without and with SADs, respectively) and agreement (Lin’s concordance correlation coefficient, ρc = 0·79 and 0·89 without and with SADs, respectively) with true values. SADs improved inter‐rater reliability (intra‐class correlation coefficient, ρ = 0·77 and 0·96 without and with SADs, respectively). The least accurate and precise raters without SADs improved more using SADs compared to the most accurate and precise raters. Experienced raters had significantly higher accuracy and precision compared to inexperienced raters, but only when unaided by the SAD set. There was no significant difference in time to assess images without SADs, but experienced raters using SADs were faster compared to inexperienced raters. There was a slight tendency for faster raters to assess more slowly, and slower raters to assess faster when using SADs. SADs improve rater estimates of pecan scab severity on fruit, and this SAD set should be useful for assessment where greater precision, accuracy and inter‐rater reliability are required.  相似文献   

5.
This study aimed to develop and validate a standard area diagram set (SADS) to quantify the severity of blast, caused by Pyricularia oryzae, on wheat leaves. The SADs has ten levels: 0.1, 1, 5, 10, 22, 32, 42, 52, 62 and 72 % blast severity. To validate the SADs, 12 inexperienced raters estimated disease severity on 50 images of leaves from cultivars BR-18 (susceptible) and BRS-229 (partially resistant). Blast severity was first estimated without the use of the SADs on 50 leaves with a range of blast severity. The same raters evaluated the same 50 leaves using the SADs as an aid. The SADs improved accuracy (coefficient of bias, C b ?=?0.88 and 0.99, without and with SADs, respectively) and agreement (Lin’s concordance correlation coefficient, ρ c ?=?0.84 and 0.96 without and with SADs, respectively) of the estimates of severity. The absolute error was (-) 52 % without the SADs and (-) 24 % when using SADs as an aid. Severity estimates were more reliable when using SADs (R2?=?0.87 unaided and R2?=?0.92 with SAD). The SADs proposed in this study will improve accuracy and reliability of estimates of blast severity on wheat leaves.  相似文献   

6.
New concepts in phytopathometry continue to emerge, such as the evolution of the concept of pathogen intensity versus the well-established concept of disease intensity. The concept of pathogen severity, defined as the quantitative measurement of the amount of pathogen per sampling unit has also emerged in response to the now commonplace development of quantitative molecular detection tools. Although the concept of disease severity, i.e., the amount of disease per sampling unit, is a well-established concept, the accuracy and precision of visual estimates of disease severity is often questioned. This article will review disease assessment concepts, as well as the methods and assessment aides currently available to improve the accuracy and precision of visually-based disease severity data. The accuracy and precision of visual disease severity assessments can be improved by quantitatively measuring and comparing the accuracy and precision of rates and/or assessment methods using linear regression, by using computer-based disease assessment training programmes, and by developing and using diagrammatic keys (standard area diagrams).  相似文献   

7.
Sooty blotch and flyspeck is caused by numerous species of fungi that colonize the surface of apple fruit and thereby lower its market value. Although this disease poses a substantial threat to apple growers’ profitability in some regions, reliable and cost-effective methods for epidemiological and disease control studies have not been validated, nor are they widely available. We modified a standard area diagram to aid sooty blotch and flyspeck severity assessments and quantified its impact on accuracy and precision of visual estimates. Samples of ‘Fuji’ and ‘Mutsu’ fruit were photographed both from the top and laterally. Severity was assessed from a sub-sample of 160 images using image analysis software. Validation of the diagram was performed by eight raters who independently assessed severity in two series of selected images representing the lateral view and the top view, initially unaided and subsequently with the aid of the scale. Severity estimates ranged from 0.4% to 98% (most fruit had <10% severity). Accuracy and precision of the estimates were significantly improved when using the diagrammatic scale; concordance correlation coefficient values increased from 0.81 to 0.95. A strong tendency to underestimate severity for the mid-range to high levels was minimized when using the aid, which also improved reproducibility of the estimates among raters. In addition to strengthening evidence that a standard area diagram can be used reliably in sooty blotch and flyspeck studies, we expanded its application to disease assessment in the peduncle region, which enhances the usefulness of the method for evaluating efficacy of management practices.  相似文献   

8.
Standard area diagrams (SADs) to assess the severity of potato early blight (Alternaria grandis) on leaves of potato (Solanum tuberosum L.) were developed and validated. The proposed SADs include images of leaves with 10 distinct disease severities (0.1, 1, 3, 5, 10, 20, 40, 60, 80 and 100 %). The SADs were validated by 12 raters who had no previous experience in evaluating plant disease. Lin’s concordance correlation analysis of estimated vs. actual disease severity (based on image analysis) showed that precision and accuracy improved for most raters using the SADs, compared to assessments made without the SADs. The SADs improved accuracy (coefficient of bias, C b ?=?0.97 and 0.99, without and with SADs, respectively) and agreement (Lin’s concordance correlation coefficient, ρ c ?=?0.91 and 0.98 without and with SADs, respectively) of the estimates of severity. Severity estimates were more reliable when using SADs (coefficient of determination, R 2 ?=?0.80 unaided and R 2 ?=?0.95 with SADs, and the intra-class correlation ρ?=?0.86 without SADs and ρ?=?0.97 using the SADs). The SADs improved raters’ ability to accurately, precisely and reliably estimate potato early blight severity, and as such can be used to assess severity for several purposes, including breeding for resistance, fungicide screening, and pathotype characterization.  相似文献   

9.
Soybean rust (SBR), caused by Phakopsora pachyrhizi, is a damaging fungal disease of soybean (Glycine max). Although solar radiation can reduce SBR urediniospore survival, limited information is available on how solar radiation affects SBR progress within soybean canopies. Such information can aid in developing accurate SBR prediction models. To manipulate light penetration into soybean canopies, structures of shade cloth attenuating 30, 40, and 60% sunlight were constructed over soybean plots. In each plot, weekly evaluations of severity in lower, middle, and upper canopies, and daily temperature and relative humidity were recorded. Final plant height and leaf area index were also recorded for each plot. The correlation between amount of epicuticular wax and susceptibility of leaves in the lower, middle, and upper canopies was assessed with a detached leaf assay. Final disease severity was 46 to 150% greater in the lower canopy of all plots and in the middle canopy of 40 and 60% shaded plots. While daytime temperature within the canopy of nonshaded soybean was greater than shaded soybean by 2 to 3°C, temperatures recorded throughout typical evenings and mornings of the growing season in all treatments were within the range (10 to 28.5°C) for SBR development as was relative humidity. This indicates temperature and relative humidity were not limiting factors in this experiment. Epicuticular wax and disease severity in detached leaf assays from the upper canopy had significant negative correlation (P = 0.009, R = -0.84) regardless of shade treatment. In laboratory experiments, increasing simulated total solar radiation (UVA, UVB, and PAR) from 0.15 to 11.66 MJ m(-2) increased mortality of urediniospores from 2 to 91%. Variability in disease development across canopy heights in early planted soybean may be attributed to the effects of solar radiation not only on urediniospore viability, but also on plant height, leaf area index, and epicuticular wax, which influence disease development of SBR. These results provide an understanding of the effect solar radiation has on the progression of SBR within the soybean canopy.  相似文献   

10.
The effects of bias (over‐ and underestimates) in estimates of disease severity on hypothesis testing using different assessment methods was explored. Nearest percentage estimates (NPE), the Horsfall–Barratt (H‐B) scale, and two linear category scales (10% increments, with and without additional grades at low severity) were compared using simulation modelling to assess effects of bias. Type I and type II error rates were used to compare two treatment differences. The power of the H‐B scale and the 10% scale were least for correctly testing a hypothesis compared with the other methods, and the effects of rater bias on type II errors were greater over specific severity ranges. Apart from NPEs, the amended 10% category scale was most often superior to other methods at all severities tested for reducing the risk of type II errors. It should thus be a preferred method for raters who must use a category scale for disease assessments. Rater bias and assessment method had little effect on type I error rates. The power of the hypothesis test using unbiased estimates was most often greater compared with biased estimates, regardless of assessment method. An unanticipated observation was the greater impact of rater bias compared with assessment method on type II errors. Knowledge of the effects of rater bias and scale type on hypothesis testing can be used to improve accuracy and reliability of disease severity estimates, and can provide a logical framework for improving aids to estimate severity visually, including standard area diagrams and rater training software.  相似文献   

11.
Methods to estimate disease severity vary in accuracy, reliability, ease of use and cost. Severity of septoria leaf blotch (SLB, caused by Zymoseptoria tritici) was estimated by four raters and by image analysis (assumed actual values) on individual leaves of winter wheat in order to explore accuracy and reliability of estimates, and to ascertain whether there were any general characteristics of error. Specifically, the study determined: (i) the accuracy and reliability of visual assessments of SLB over the full range of severity from 0 to 100%; (ii) whether certain 10% ranges in actual disease severity between 0 and 100% were more prone to estimation error compared with others; and (iii) whether leaf position affected accuracy within those ranges. Lin's concordance correlation analysis of all severities (0–100%) demonstrated that all raters had estimates close to the actual values (agreement: ρc = 0·92–0·99). However, agreement between actual SLB severities and estimates by raters was less good when compared over short 10% subdivisions within the 0–100% range (ρc = ?0·12 to 0·99). Despite common rater imprecision at estimating low and high SLB severities, individual raters differed considerably in their accuracy over the short 10% subdivisions. There was no effect of leaf position on accuracy or precision of severity estimate on separate leaves (L1–L3). Pursuing efforts in understanding error in disease estimation should aid in improving the accuracy of assessments, making visual estimates of disease severity more useful for research and applied purposes.  相似文献   

12.
Error in estimates of plant disease severity occur and standard area diagrams (SADs) help improve accuracy and reliability. The effects of diagram number in SADs are unknown. The objective of this study was to compare estimates of pecan scab severity made without SADs, and using three‐, five‐, seven‐ or 10‐diagram SADs. Disease severity was estimated to the nearest percent (NPE), or classified to the closest reference diagram value using a scale. Twelve raters assessed 20 images of scabbed pecan valves with and without the SADs using NPEs and the scale method (values were converted to midpoints prior to analysis). Increases in diagram number using NPEs did not necessarily result in more accurate or reliable estimates. Inter‐rater reliability was positively correlated with number of diagrams using NPEs (= 0·3288 (< 0·0001)) or a scale (= 0·2803 (< 0·0001)). The least accurate estimates improved the most using SADs with NPEs, but the gain did not relate to number of diagrams; as few as three diagrams reduced error of inaccurate estimates as much as five, seven or 10 diagrams. When used as a scale, only estimates made with 10‐diagram SADs had similar accuracy and inter‐rater reliability to estimates made using SADs with NPEs. Maximum disease severity and the disease severity range for the pathosystem and the SADs are important factors and will probably influence resulting accuracy and reliability. The ramifications of diagram numbers in SADs and assessment methods on accuracy and reliability of disease estimates are discussed.  相似文献   

13.
Abstract

To obtain the potential range in disease development, a progressive increase in spore concentration of the imperfect state of Cochliobolus miyabeanus was used on twelve rice varieties differing in their resistance to brown leaf spot. An analysis of the relative contributory effect of increase in lesion size and numbers on the percentage leaf area diseased was used as a basis to develop a quantitative scoring method in chart form for brown spot disease. The chart was aided by the provision of diagrams of the different categories in disease intensity. The usefulness of this disease scoring chart and its limitations are discussed. Other methods of assessment are proposed to overcome the limitations especially in respect of varietal resistance and seedling blights.  相似文献   

14.
ABSTRACT In the southeastern United States, Septoria leaf spot, caused by Septoria albopunctata, can result in premature defoliation of blueberry plants during summer and fall, thereby reducing yield potential for the following year. The effects of disease severity and leaf attributes (leaf age and leaf location in the canopy) on the dynamics (timing and extent) of defoliation were quantified in field plots of Premier rabbiteye blueberry (Vaccinium ashei) in 2002 and 2003. In each year, 50 shoots were selected for assessment in early spring, and all leaves on these shoots (n = 410 and 542 in 2002 and 2003, respectively) were monitored individually for disease progress and time of abscission at 3- to 10-day intervals throughout the season. In both years, disease progress was characterized by an exponential increase in disease severity up to late September, followed by a decline toward the end of the assessment period in late November. Defoliation was sporadic up to late August, followed by more rapid and sustained levels of leaf loss. Abscission of severely infected leaves could explain the decline in disease severity toward the end of the season. Final disease severity (i.e., disease severity on the last assessment date before leaf drop) was highest for leaves that abscised early and lowest for leaves that had not abscised by the end of the assessment period. Survival analysis revealed that older leaves (located on the lower halves of shoots) and leaves with high levels of disease (>/=5 spots/leaf at the time of fruit harvest in mid-June) abscised significantly (P < 0.0001) earlier than younger leaves and leaves with lower disease severity. Relative to their respective reference groups, mean times to abscission were approximately 2 weeks shorter for the older leaf group and approximately 3 weeks shorter in the leaf group afflicted by high disease severity. When an accelerated failure time model was fitted to the data, the resulting parameter estimates indicated that each additional leaf spot present at harvest accelerated time to leaf abscission (expressed using late August as a starting point) by 1.9 and 4.5% in 2002 and 2003, respectively. Leaf location in upper or lower portions of the canopy had no significant effect on time to abscission (P > 0.05).  相似文献   

15.
Citrus canker assessment data were used to investigate effects of using the Horsfall-Barratt (H-B) scale to estimate disease compared to direct estimation to the nearest percent. Twenty-eight raters assessed each of two-hundred infected leaves (0–38% true diseased area). The data were converted to the H-B scale. Correlation (r) showed that direct estimates had higher inter-rater reliability compared to H-B scaled data (r = 0.75 and 0.71 for direct estimates and H-B scaled data, respectively). Lin’s concordance correlation (LCC, ρ c ) analysis showed individual rater estimates by direct estimation had better agreement with true values compared to H-B scaled data. The direct estimates were more precise compared to H-B scaled data (r = 0.80–0.95 and 0.61–0.90, respectively), but measures of generalised bias or accuracy (C b ) were similar for both methods (0.38–1.00). Cumulative mean disease and cumulative variance of the means were calculated for each rater on a leaf-by-leaf basis. Direct estimates were closer to the true severity 59.5% of the time, and to the cumulative true sample mean 53.7% of the time, and to the cumulative true sample mean variance 63.6% of the time. Estimates of mean severity for each leaf based on estimates by 3, 5, 10, 20 and 28 raters were compared to true disease severity. LCC showed that rater-means based on more raters had better agreement with true values compared to individual estimates, but H-B scale data were less precise, although with means based on ≥ 10 raters, agreement was the same for both assessment methods. Magnitude and dispersion of the variance of the means based on H-B scaled data was greater than that by direct estimates. H-B scaling did not improve reliability, accuracy or precision of the estimate of citrus canker severity compared to direct visual estimation.  相似文献   

16.
Poland JA  Nelson RJ 《Phytopathology》2011,101(2):290-298
The agronomic importance of developing durably resistant cultivars has led to substantial research in the field of quantitative disease resistance (QDR) and, in particular, mapping quantitative trait loci (QTL) for disease resistance. The assessment of QDR is typically conducted by visual estimation of disease severity, which raises concern over the accuracy and precision of visual estimates. Although previous studies have examined the factors affecting the accuracy and precision of visual disease assessment in relation to the true value of disease severity, the impact of this variability on the identification of disease resistance QTL has not been assessed. In this study, the effects of rater variability and rating scales on mapping QTL for northern leaf blight resistance in maize were evaluated in a recombinant inbred line population grown under field conditions. The population of 191 lines was evaluated by 22 different raters using a direct percentage estimate, a 0-to-9 ordinal rating scale, or both. It was found that more experienced raters had higher precision and that using a direct percentage estimation of diseased leaf area produced higher precision than using an ordinal scale. QTL mapping was then conducted using the disease estimates from each rater using stepwise general linear model selection (GLM) and inclusive composite interval mapping (ICIM). For GLM, the same QTL were largely found across raters, though some QTL were only identified by a subset of raters. The magnitudes of estimated allele effects at identified QTL varied drastically, sometimes by as much as threefold. ICIM produced highly consistent results across raters and for the different rating scales in identifying the location of QTL. We conclude that, despite variability between raters, the identification of QTL was largely consistent among raters, particularly when using ICIM. However, care should be taken in estimating QTL allele effects, because this was highly variable and rater dependent.  相似文献   

17.
European Journal of Plant Pathology - A set of standard area diagrams (SADs) was developed and validated to aid visual assessment of severity of frogeye leaf spot (FLS) caused by Cercospora sojina....  相似文献   

18.
ABSTRACT Disease dynamics of Cercospora leaf spot (CLS) of sugar beet was analyzed at two hierarchical scales: as vertical profiles within individual plants and in relation to disease on neighboring plants. The relative contribution of different leaf layers to increase in CLS was analyzed using a simple continuous-time model. The model was fitted to data from two field trials in the Netherlands: one in an area with a long history of CLS, the other in an area where CLS has only recently established; in each case these were unsprayed and twice-sprayed treatments. There were differences in the relative contribution of different leaf layers to disease increase on the target leaf layer according to the CLS history and whether the plants were sprayed or unsprayed. In both field trials, parameter estimates giving the relative contribution of the target leaf layer to disease increase at that leaf layer were higher than those for the lower leaf layer. On only a few occasions the contribution of an upper leaf layer to disease increase at the target leaf layer was significant. Thus, CLS increase at the target leaf layer was determined mainly by disease severity at that leaf layer and to a lesser extent by disease at the lower leaf layer. Our continuous-time model was also used to analyze CLS increase on an individual sugar beet plant in relation to its own and its neighbor's level of disease in field trials at five locations in the two CLS areas over two years. In all field trials, the contribution of the target plant itself to disease increase (auto-infection) was larger than that of its neighboring plants (allo-infection). The overall analysis in the two CLS areas also indicated a larger contribution of the target plant to its disease increase than of neighboring plants, and this pattern was also apparent in a pooled analysis across all sites. Thus, CLS increase on a sugar beet plant was mainly determined by the disease severity on that plant and to a lesser extent by its within-row neighboring plants.  相似文献   

19.
Yield losses due to rust and angular leaf spot (ALS) of snap beans may reach 100% in Eastern Africa. Where susceptible varieties are grown, farmers control these diseases with routine fungicide applications. To determine an optimum application rate and spray schedule for Orius® (tebuconazole 250 g/L), we sprayed 10 mL and 20 mL Orius® per 15 L spray water twice at two trifoliate leaf stage and 50% flowering, and three times at the same stages, with an additional application at pod initiation. In farmers’ fields, we tested the effect of fungicide sprays, use of resistant variety, intercropping, increased plant spacing and farmyard manure on rust and ALS diseases. Application three times of 20 mL Orius® per 15 L spray water reduced rust severity scores by 5.7 and 2.4 in 2010 and 2011, respectively. Lowest rust and ALS severities were observed when a resistant variety, fungicide or farmyard manure was used. Pod yield increments due to disease management ranged between 13% and 242%. Prophylactic fungicide application, use of resistant varieties and farmyard manure can be used to reduce disease severity and improve snap bean quality on smallholder farms.  相似文献   

20.
Leaf samples of Cucurbita pepo with yellow mosaic disease symptoms were collected in 2012. Rolling circle amplification and PCR amplification with begomovirus-specific primers confirmed the presence of an Old World bipartite begomovirus, an alphasatellite and a betasatellite. Molecular analysis of full-length sequences showed that Tomato leaf curl New Delhi virus (DNA-A) is associated with its cognate DNA-B, Papaya leaf curl betasatellite and a novel alphasatellite. To the best of our knowledge, this is the first report of an alphasatellite and a betasatellite associated with a bipartite begomovirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号