首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 399 毫秒
1.
Sugar beet root infection by Cercospora beticola, the causal agent of Cercospora leaf spot (CLS), was studied in a climate chamber and in the field. In the climate chamber, root incubation of susceptible seedlings with a conidial suspension resulted in disease incidences that were significantly different for two sugar beet cultivars (Auris: 0.8 ± 0.14 and A00170: 0.5 ± 0.18; P < 0.05) with regard to the control treatment 35 days after root incubation in a standard potting soil-fine river sand mixture. In a field trial with susceptible cv. Savannah with soil-incorporated CLS-infested leaf material, disease developed four weeks earlier in the infested plots than in the control plots. The probability that disease develops in the field was significantly higher for the infested than for the control plots (P < 0.05). Symptomless plants from infested field plots transferred to the glasshouse to induce leaf spot symptoms showed a significantly higher probability to induce symptom development (0.4 ± 0.08), than plants from control plots (0.02 ± 0.02) (P <0.05) 14 days after transfer. This probability was significantly higher than for plants that remained in three of the infested field plots (0.2 ± 0.04; 0.2 ± 0.05 and 0.2 ± 0.04 respectively), except for one infested field plot (0.4 ± 0.05) on July 5. We conclude that C. beticola is able to infect sugar beet seedlings through their roots and that latent CLS infections in sugar beet lead to symptom development at high temperatures (> 20 °C) and high relative humidity (> 95) in our climate chamber or after canopy closure in the field. Quantification of root infection and long term survival in soil is necessary to assess its contribution to the epidemiology and life cycle of Cercospora beticola. Cultural methods such as a wider crop rotation, management of crop debris and ploughing systems may provide control strategies alternative to or reducing fungicide input.  相似文献   

2.
Spatial disease pattern of Cercospora beticola was characterised during natural epidemics of Cercospora leaf spot (CLS) in sugar beet. We applied linear regression and geostatistical analyses to characterise CLS spatial patterns in three field trials, in long-established and recently-established CLS-areas, during two consecutive years. Linear regression showed a positive influence of average disease severity of within-row neighbouring plants (0.38 < < 0.88). Semi-variograms modelled the spatial dependence of disease severity for two directions per week in both years. Disease severity displayed strong spatial dependence over time. The within-row spatial dependence was the largest, but across-row dependence was irregular and weaker. Both long- and recently established areas showed strong spatial dependence of disease severity within row, decrease in variability between years and within the second trial year and a relation between and the relative nugget. Observed differences were more field than area specific. These spatial and temporal analyses indicated that disease severities of adjacent plants were dependent; hence, we concluded that C. beticola is dispersed mainly over short distances from plant to plant.  相似文献   

3.
Cercospora leaf spot (CLS) poses a high economic risk to sugar beet production due to its potential to greatly reduce yield and quality. For successful integrated management of CLS, rapid and accurate identification of the disease is essential. Diagnosis on the basis of typical visual symptoms is often compromised by the inability to differentiate CLS symptoms from similar symptoms caused by other foliar pathogens of varying significance, or from abiotic stress. An automated detection and classification of CLS and other leaf diseases, enabling a reliable basis for decisions in disease control, would be an alternative to visual as well as molecular and serological methods. This paper presents an algorithm based on a RGB‐image database captured with smartphone cameras for the identification of sugar beet leaf diseases. This tool combines image acquisition and segmentation on the smartphone and advanced image data processing on a server, based on texture features using colour, intensity and gradient values. The diseases are classified using a support vector machine with radial basis function kernel. The algorithm is suitable for binary‐class and multi‐class classification approaches, i.e. the separation between diseased and non‐diseased, and the differentiation among leaf diseases and non‐infected tissue. The classification accuracy for the differentiation of CLS, ramularia leaf spot, phoma leaf spot, beet rust and bacterial blight was 82%, better than that of sugar beet experts classifying diseases from images. However, the technology has not been tested by practitioners. This tool can be adapted to other crops and their diseases and may contribute to improved decision‐making in integrated disease control.  相似文献   

4.
Rhizoctonia solani Kühn is a serious plant pathogenic fungus, causing various types of damage to sugar beet (Beta vulgaris L.). In Europe, the disease is spreading and becoming a threat for the growing of this crop. Plant resistance seems to be the most practical and economical way to control the disease. Experiments were carried out to optimise a greenhouse procedure to screen plants of sugar beet for resistance to R. solani. In the first experiment, two susceptible accessions were evaluated for root and leaf symptoms, after being grown in seven different soil mixtures and inoculated with R. solani. The fungus infected all plants. It was concluded that leaf symptoms were not reliable for the rating of disease severity. Statistically significant differences between the soil mixtures were observed, and there were no significant differences between the two accessions. The two soil mixtures, showing the most severe disease symptoms, were selected for a second experiment, including both resistant and susceptible accessions. As in the first experiment, root symptoms were recorded using a 1–7 scale, and a significant expression of resistance was observed. The average severity of the disease in the greenhouse experiment generally was comparable with the infection in field experiments, and the ranking of the accessions was the same in the two types of experiments. It was concluded that evaluation procedures in the greenhouse could be used as a rapid assay to screen sugar beet plants for resistance to R. solani.  相似文献   

5.
After a cell wall protein fraction (CWP) of Pythium oligandrum was sprayed on sugar beet leaves, we screened leaves for induced expression of defence-related genes and for resistance against Cercospora leaf spot. In a western blot analysis, the CWP was primarily retained on the surface of leaves without degradation for at least 48 h after spraying. In northern blot analyses, four defence-related genes (β-1, 3-glucanase, acidic class III chitinase, 5-enol-pyruvylshikimate-phosphate synthase and oxalate oxidase-like germin) were expressed more rapidly in CWP-treated leaves compared to control leaves treated with distilled water (DW). When CWP was applied to a suspension of cultured cells of sugar beet, an oxidative burst was observed that did not occur after the DW treatment. In growth chamber trials after inoculation with Cercospora beticola, the severity of Cercospora leaf spot was significantly reduced in CWP-treated plants compared to the DW-treated controls. In a field experiment, CWP treatment was also effective against the disease. CWP did not reduce growth rate of the pathogen in plate tests. The results together suggest that the CWP from P. oligandrum can be retained on the leaf surface and induce expression of disease resistance genes, thereby reducing Cercospora leaf spot on sugar beet.  相似文献   

6.
Improvements in seed germination, the early establishment of leaf cover, storage root development and the control of bolting would all increase the yield of sugar beet in the UK. Plant growth at these stages of development is controlled by genotype and by climatic factors acting through endogenous growth substances and is potentially capable of modification by applied growth regulators. For example, sugar beet responds to changes in daylength and spectral quality of light at the end of the day by increasing lamina and petiole growth, light interception and plant growth rate. Changes in endogenous gibberellins in young leaves of plants growing in different photoperiods and the responses of these leaves to applied gibberellic acid are presented as evidence for the involvement of gibberellins in leaf expansion in sugar beet.  相似文献   

7.
Red leaf blotch of soybeans, caused by Dactuliochaeta glycines, was evaluated on soybean plants in field plots located in Zambia. Two experiments were conducted in each of two seasons. Experiment 1 had four cultivars that were either fungicide-sprayed or not sprayed. Disease severity was greatest on leaves at the lowest nodes from early vegetative through the reproductive growth stages. Area under the disease progress curve (AUDPC) values and percentage of nodes defoliated at growth stage R5 were significantly ( P  = 0.05) greater in unsprayed plots for all cultivars in both seasons. Yield losses ranged from 8 to 37% while reduced seed size ranged from 21 to 29% for the four cultivars. Number of pods per plant in fungicide-sprayed plots did not differ from those in unsprayed plots. However, the number of seeds per plant and seeds per pod were significantly ( P  = 0.05) greater in sprayed than unsprayed plots for some cultivars. In experiment 2, cultivar Tunia was either fungicide-sprayed at different times or not sprayed. The lowest attached leaf had the most variation in the amount of disease while ratings of the most median leaf in the canopy were generally less variable. The AUDPC values calculated from the lowest attached leaf, the mean of all attached leaves, and the median attached leaf differed significantly ( P  = 0.05) the number of times plants were sprayed with fungicide. Defoliation and vertical incidence of red leaf blotch from lower to higher nodes were significantly ( P  = 0.05) reduced in fungicide-sprayed plots in one season, but not the other. One thousand-seed weight and yield differed significantly ( P  = 0.05) with treatment as one application of triphenyltin acetate increased yields by 18% over unsprayed plots in season 1. One thousand-seed weight and yield, regressed on the AUDPC for the median leaf in the canopy, explained 92 and 72% of the variation, respectively.  相似文献   

8.
A quantitative PCR method (qPCR) was developed for the detection and quantification of Ramularia beticola causing Ramularia leaf spot in sugar beet. R. beticola specific primers were designed based on the internal transcribed spacer region 2 (ITS2). The assay was applied on DNA extracted from spores trapped on tape from Burkard spore traps placed in an artificially inoculated sugar beet field trial and in two sugar beet fields with natural infections. R. beticola DNA was detected at variable amounts in the air samples 14 to 16 days prior to first visible symptoms. R. beticola DNA was detected in air samples from fields with natural infection at significant and increasing levels from development of the first symptoms, indicating that spore production within the crop plays a major role in the epidemic development of the disease. Sugar beet leaves sampled from the inoculated field trial were also tested with the qPCR assay. It was possible to detect the presence of R. beticola in the leaves pre-symptomatic at least 10 days before the occurrence of the visible symptoms of Ramularia leaf spot. This is the first report of a molecular assay, which allows screening for the presence of R. beticola in plant material and in air samples prior to the appearance of visible symptoms. An early detection has potential as a tool, which can be part of a warning system predicting the onset of the disease in the sugar beet crop and helping to optimise fungicide application.  相似文献   

9.
Journal of Plant Diseases and Protection - The effect of climate change on the temporal and regional occurrence of Cercospora leaf spot (CLS) of sugar beet in Lower Saxony is analysed using the...  相似文献   

10.
Wolf PF  Verreet JA 《Phytopathology》2005,95(3):269-274
ABSTRACT Severe Cercospora leaf spots epidemics in sugar beet during the late 1980s and early 1990s in southern Germany prompted us to initiate investigations on the epidemiology of the causal agent, Cercospora beticola. The data set involved 69 field trials (1993 to 2003) focusing on factors affecting the epidemic onset of this disease. Observations were made at weekly intervals, recording the calendar week when canopy closure occurred (growth stage according to BBCH scale = 39) and symptom development by assessing the percentage of infected leaf area on a single-leaf basis (n = 40 plants). These monitoring trials revealed that epidemic onset varied between early July and mid-September. Hence, the target was to identify the reasons for this variation in order to deduct the most suitable approach for predicting epidemic onset. Differences in cultivar resistance explained part of epidemic onset variability, as did different timings of canopy closure, presumably due to associated microclimate changes. Moreover, meteorological variables were considered as potential reasons for variation in epidemic onset. The weather-dependent infection probability was assessed by daily infection values (DIV) in the range from 0 to 1 using hourly weather data. For calculating DIVs, the temperature effect was quantified by the proportions of the latent period (LP) relative to the optimum at 20 to 25 degrees C, established by artificial inoculation of sugar beet plants in growth cabinets. Artificial infection experiments further established that air relative humidity (RH) >95% or leaf wetness was required for infection and subsequent lesion development. Under field conditions, the probability of leaf wetness was 75% at RH >90%. Therefore, DIVs were set to 0 for RH 相似文献   

11.
Possible Root Infection of Cercospora beticola in Sugar Beet   总被引:1,自引:0,他引:1  
A potential primary infection site of the foliar pathogen Cercospora beticola in sugar beet is described. Sugar beet seedlings of the susceptible cv. Auris were grown in a standard soil for 14 days. A monoconidial culture of a C. beticola isolate was grown to produce conidia. In experiment 1, roots were immersed in a conidial suspension of isolate code IRS 00-4, or in tap water (control), for 2 days. After incubation seedlings were potted in a peat – fine river sand mixture and placed at low relative humidity (RH) (<80%) or high RH (100%). Twelve days after infection, seedlings at high RH showed more disease incidence (90%) than seedlings grown at low RH (disease incidence = 25%), whereas no disease symptoms developed in the control seedlings. Cercospora leaf spots (CLSs) developed on the cotyledons, leaves, petioles and stems of the seedlings. In experiment 2, roots were immersed in a conidial suspension of isolate code IRS 00-2 for 5 h. Thirty-four days after infection at high RH, 100% disease incidence was observed in the treated seedlings and one CLS in the control treatment. First indications of leaf spot development were observed as reddish purple discolouration of individual parenchymatic cells. Because splash dispersal and symptoms due to infested soil were excluded, we showed that it is possible to obtain CLS symptoms in sugar beet seedlings when their roots were immersed in conidial suspensions of C. beticola, thus demonstrating that roots can be a primary infection site.  相似文献   

12.
Cercospora beticola is one of the most important fungal pathogens of sugar beet, causing cercospora leaf spot (CLS) disease. Due to the decreasing efficacy of various fungicides caused by resistance traits, the development of a sustainable disease management strategy has become more important. Therefore, detailed knowledge about the epidemiology of the pathogen is crucial. Until now, little was known about the spatiotemporal dispersal of C. beticola spores from the primary inoculum source. Rapid detection of C. beticola spores could facilitate a more precise and targeted disease control. Therefore, a TaqMan real-time PCR assay for detection and quantification of C. beticola spores caught with Rotorod spore traps was established. In 2016 and 2017, field trials were conducted to monitor C. beticola aerial spore dispersal and disease development within an inoculated field and in the adjacent noninoculated area. With the established detection method, C. beticola spores were successfully quantified and used as a measure for aerial spore dispersal intensity. The analysis of the spatiotemporal spread of C. beticola spores revealed a delay and decrease of aerial spore dispersal with increasing distance from the inoculated area. Consequently, disease incidence and severity were reduced in a similar manner. These results imply that spore dispersal occurs mainly on a small scale within a field, although long distances can be overcome by C. beticola spores. Moreover, secondary aerial spore dispersal from sporulating leaf spots seems to be the main driver for CLS disease development. These results provide an important basis for further improvement of CLS control strategies.  相似文献   

13.
为明晰补水移栽对纸筒育苗甜菜苗期生长及产量品质的影响,研究比较了地下式补水与传统的地上式补水的土壤润湿结构特征,补水量对甜菜苗期地下部根系与地上叶片发育的影响,以及补水移栽在两种土壤条件下的甜菜产量与品质效应。结果表明,地下式补水创造了环裹于秧苗纸筒底部的土壤湿润球,利于向秧苗供水与田间有效保水。随补水量的增加,甜菜苗期侧根数、主根长、主根粗、根鲜重、叶片量、叶面积随之显著增长。在华北寒旱区砂质栗钙土农田,以成活率与壮苗为目标的甜菜移栽补水量为150~200 ml·株-1、壤质草甸栗钙土农田为100~150 ml·株-1为宜,较不补水甜菜块根增产68.78%~81.82%,糖产量提高65.57%~81.82%。地下式补水移栽,是提高甜菜成活率的关键;适量补水实现培育壮苗,成为甜菜高产的基础。  相似文献   

14.
A sugarbeet field experiment was conducted in 1999 and 2000 to measure beet yield where Sinapis arvensis or Lolium perenne were growing in the crop row at 2, 4 or 8 cm from the beet plants. The weeds were removed by cutting once in the growing season in either late May, mid‐June or early July. The number of neighbouring beet plants to every target beet plant was recorded. Projected leaf cover of a subset of the data with non‐cut weeds was analysed by using image analysis to investigate whether this could be used to predict beet yield loss early in the growing season. Increasing the distance between beet and weed from 2 to 8 cm increased the beet yield significantly by an average of 20%, regardless of weed species. The dry weight of non‐cut and re‐growing weeds at harvest time decreased when cutting was postponed to the period between mid‐June and early July. The number of neighbours described a sigmoidal yield decline of the single beet plants. Results from image analysis showed that approximately 33 g of beet yield was lost in October/November for each per cent relative projected leaf cover of the weeds in May, despite variation in growing conditions. The results are discussed in relation to potentials for robotic in‐row weed control.  相似文献   

15.
The correlation between intensity of lipid peroxidation and changes in antioxidant capacity of sugar beet plants (cv. ‘Drena’) infected with Rhizoctonia solani Kühn isolate (AG 2-2 IIIB group) was studied. Successful inoculation was confirmed by the presence of infection cushions in a cross section of leaf petioles. On the 7th day of the experiment, phenylalanine ammonia-lyase (PAL; EC. 4.3.1.5) activity was in negative correlation with intensified lipid peroxidation process in leaves of sugar beet plants (r= –0 .99). Also, in leaves and roots of inoculated sugar beet plants, total flavonoids content (35% and 20%, respectively) and 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging activity (80% and 55%, respectively) were significantly reduced. Necrotic processes resulting from R. solani infection of sugar beet plants was followed by induction of plant phenolics metabolism; however, antioxidant capacity of these plants was reduced.  相似文献   

16.
Sugarcane yellow leaf virus, the causal agent of yellow leaf, is transmitted from plant to plant by aphids. Understanding and evaluating the epidemic risks due to spread of yellow leaf by aphids is an important feature for sugarcane production. Four distinct sugarcane trials were set up with disease-free plants to study the relationship between spread of yellow leaf, the vector dynamics and environmental conditions that may favour yellow leaf epidemics. The study was performed by surveys of vector populations and determination of plant infections. Sugarcane cultivar SP71-6163, highly susceptible to yellow leaf, was analyzed spatially at different dates in all four trials and compared to commercial cultivars in two of the four trials. These surveys allowed us to identify a correlation between the aphid dynamics in the field and yellow leaf progress. Additionally, a negative correlation was found between rainfall during the first weeks after transferring sugarcane plants to the field and aphid dispersal within the field. This later result revealed an impact of rainfall on aphid invasion and subsequent plant infection by SCYLV. If aphids are the key factor for disease spread, plant response varied also according to cultivar resistance with high variation depending on rain conditions.  相似文献   

17.
Inhibition of photosynthesis by metamitron in the rooting medium and its subsequent recovery after transfer of the roots to herbicide-free nutrient solution was measured in eight plant species. Fast and complete recovery within a few hours after treatment showed that metamitron, once absorbed, was rapidly and completely inactivated in the leaves of sugar beet (Beta vulgaris L.). Inactivation in perennial ryegrass (Lolium perenne L.) was slower and incomplete. It was low in Echinochloa crusgalli (L.) P.B., Amaranthus retroflexus L., Alopecurus myosuroides Huds. and bean (Phaseolus vulgaris L.), and undetectable in maize (Zea mays L.) and Portulaca oleracea L. From the transpiration rate and the concentration of metamitron in the nutrient solution that just did not cause inhibition of photosynthesis in sugar beet, uptake and inactivation rates per unit leaf area were calculated to be at least 18·5 ng/cm2/h. The same external concentration markedly depressed photosynthesis in the other more susceptible species. After leaf sprays sugar beet plants gradually resumed the normal rate of photosynthesis, but bean plants did not recover.  相似文献   

18.
Clover  Azam-Ali  Jaggard  & Smith 《Plant pathology》1999,48(1):129-138
The effect of beet yellows virus (genus Closterovirus , BYV) on sugar beet growth was studied in a series of field and glasshouse experiments. Infection reduced total plant weight by 20%, primarily through a 25% reduction in storage root growth. Sugar extraction efficiency was depressed by an increase in root impurities. BYV had little effect on above-ground yield or total crop cover but did decrease green cover significantly. Infection did not reduce water extraction depth in field experiments despite decreasing lateral root growth in the glasshouse. The growth reduction in infected plants resulted from both a decrease in net photosynthesis and an increase in the proportion of light intercepted by yellow leaves. Damage to the photosynthetic mechanism at least partly caused the reduction in net photosynthesis.  相似文献   

19.
Epidemiological studies on cercospora leaf spot of sugar beet   总被引:1,自引:0,他引:1  
In the glasshouse, inoculation of sugar beet with Cercospora beticola followed by 16 h of high humidity produced visible disease only with at least four conidia per cm2 of leaf area. Disease became more severe after increasing periods of high humidity in the range of 0–24 h. In the field, spraying plants with water enhanced disease spread from a focus. Disease progress curves were sigmoid. Apparent infection rate declined towards the end of the season, possibly because of high temperature. In approximate agreement with prediction, epidemic development was delayed when initial inoculum was reduced. Reduced infection, resulting from either reduced initial inoculum or delayed inoculation, decreased the adverse effect of disease on sugar yield.  相似文献   

20.
Horizontal dispersal of beet necrotic yellow vein virus (BNYVV) by means of viruliferous zoospores ofPolymyxa betae was studied in greenhouse experiments. BNYVV was not detected in roots of sugar beet plants grown in silver sand for 4 weeks at a root-free distance of 5 cm from eitherP. betae- and BNYVV-infected plants or BNYVV-infested soil. Spread of BNYVV from inoculum sources in the field was studied in the absence and presence of tillage practices. Active dispersal in combination with root growth from and towards point sources of inoculum contributed only little to horizontal dispersal of viruliferous inoculum and spread of disease during the season, as determined for one soil type, two different years and in the absence of tillage and tread. In the second beet crop after application of inoculum to whole field plots, more BNYVV-infected plants were detected at 2 m than at 8 m distance from the infested plots in the tillage direction. In the third year, disease incidence at 8 m was high and equivalent to that at 2 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号