首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Japanese Pacific stock (JPS) and the northern Japan Sea stock (JSS) of walleye pollock Theragra chalcogramma are mainly distributed in the Pacific Ocean and the Sea of Japan off northern Japan, respectively. This paper summarizes and compares the factors affecting the recruitment variability of these two stocks. Spawning season is from December to March for both stocks. JPS recruitment has a positive relationship with the water temperature in January and February, whereas that of JSS has a negative relationship with the water temperature in January, February, and April. One possible reason for this is that pollock larvae have an optimum growth temperature of approximately 5 °C in the field. Drift of early life stages also appears to be an important influence on the recruitment of both stocks. Because the current generated by the northwest wind carries eggs of JPS into the main larval nursery ground, JPS recruitment is enhanced in years when the northwest wind is predominant in February. On the other hand, early life stages of JSS are transported into the nursery ground by the Tsushima Warm Current. However, this current also carries early life stages into the Sea of Okhotsk and offshore, resulting in poor JSS recruitment in years when this current is strong in March. In contrast to JPS, the recruitment of which is significantly impacted by cannibalism, young pollock have not been found in the stomachs of adult JSS. Warm temperatures in the Sea of Japan seem to induce the separation of young and adult pollock, and the shape of the stock–recruitment relationship also suggests that cannibalism is not important for JSS. Based on this knowledge, and on the hatch date distributions of larvae and juveniles, we propose mechanisms that can explain the recruitment fluctuations for JPS and JSS pollock.  相似文献   

2.
Recruitment of the northern Japan Sea stock (JSS) of walleye pollock has been decreasing since around 1990. In this study, I analyzed the factors causing this decrease in recruitment by investigating the relationship between recruitment, spawning stock biomass (SSB) and environmental factors using a generalized additive model (GAM). GAM fit to the data showed the importance of SSB, sea surface temperature (SST), ocean current strength (Tsushima Warm Current) and wind intensity (Asian monsoon) in determining the recruitment. Of these, the relationship between SSB and recruitment was positive and not negatively density‐dependent. On the other hand, the recruitment was negatively related to SST and ocean current strength, and a dome‐shaped relationship was observed between wind intensity and recruitment. Since around 1990, the values of SST and ocean current strength have mostly been high and that of wind intensity mostly low. In addition, SSB has been decreasing since the late 1990s. It is likely that the recruitment decline of JSS after approximately 1990 has been caused by warm water temperature, strong Tsushima Warm Current and weak Asian monsoon, and that the recent decrease in SSB has amplified this recruitment decline. According to the model’s estimation, a recruitment recovery due to environmental improvement will be highly restricted as long as SSB remains at its current low level. Significant recovery of SSB is urgently needed for JSS.  相似文献   

3.
环境因子对黄海鳀鱼亲体-补充量关系影响的初步研究   总被引:2,自引:0,他引:2  
郑芳  刘群  王艳君 《南方水产》2008,4(2):15-20
鱼类年际资源量的波动可以归因于年间环境条件的变化和该种鱼类亲体数量的变化。文章根据1990~2001年间黄海中南部鳀鱼声学调查评估结果,以及黄海千里岩海区在此年间的表层水温和营养盐统计数据,以Ricker模型(R=αSe^-βS)为基础对黄海鳀鱼(Engraulis japonicas)亲体-补充量关系进行了初步研究。结果表明,黄海千里岩水域表层水温、磷酸盐浓度等环境条件因素对补充量有重要影响。  相似文献   

4.
Abiotic and biotic factors affecting the recruitment variability of the Japanese Pacific stock (JPS) of walleye pollock (Theragra chalcogramma) were examined using a bivariate regression and multivariate combined model. Of the abiotic variables around Funka Bay (spawning ground), February sea surface temperature (SST) and wind direction index showed significant bivariate relationships with recruitment. February SST was positively related to recruitment, suggesting that warmer water temperature in February favors JPS recruitment. On the other hand, the relationship between February wind direction index and recruitment predicts high JPS recruitment under predominant northwest winds in February. For the biotic variables in the Doto area (nursery ground), significant and negative bivariate relationships with recruitment were observed for catch per unit effort of Kamchatka flounder (Atheresthes evermanni), Pacific cod (Gadus macrocephalus), and walleye pollock, implying an important impact of predation by these groundfishes on JPS recruitment. The overall model incorporating these abiotic and biotic factors successfully reproduced the variability in JPS recruitment. Temperature and wind conditions around the spawning ground along with predator condition in the nursery ground appear to play a dominant role in the recruitment dynamics of JPS. Based on these results and prior knowledge, we propose a new hypothesis to explain the processes controlling JPS recruitment.  相似文献   

5.
We investigated the hypothesis that synchronous recruitment is due to a shared susceptibility to environmental processes using stock–recruitment residuals for 52 marine fish stocks within three Northeast Pacific large marine ecosystems: the Eastern Bering Sea and Aleutian Islands, Gulf of Alaska, and California Current. There was moderate coherence in exceptionally strong and weak year‐classes and correlations across stocks. Based on evidence of synchrony from these analyses, we used Bayesian hierarchical models to relate recruitment to environmental covariates for groups of stocks that may be similarly influenced by environmental processes based on their life histories. There were consistent relationships among stocks to the covariates, especially within the Gulf of Alaska and California Current. The best Gulf of Alaska model included Northeast Pacific sea surface height as a predictor of recruitment, and was particularly strong for stocks dependent on cross‐shelf transport during the larval phase for recruitment. In the California Current the best‐fit model included San Francisco coastal sea level height as a predictor, with higher recruitment for many stocks corresponding to anomalously high sea level the year before spawning and low sea level the year of spawning. The best Eastern Bering Sea and Aleutian Islands model included several environmental variables as covariates and there was some consistent response across stocks to these variables. Future research may be able to utilize these across‐stock environmental influences, in conjunction with an understanding of ecological processes important across early life history stages, to improve identification of environmental drivers of recruitment.  相似文献   

6.
ABSTRACT:   This paper investigates the relationship between sea-surface temperature (SST) and catch fluctuations in the Pacific stock of walleye pollock Theragra chalcogramma in Japan. Incorporating time lags between years of birth and harvest, the correlation coefficients between the catch and SST in two regions off the east coast of Hokkaido were calculated. The catch in year t had a high negative correlation with the SST during January–April and November–December of the years t- 2 and t- 3 in the spawning area. These results coincided well with the correlation observed in the northern 'Sea of Japan' stock. Both analyses suggested that the long-term catch fluctuations of the two stocks could be explained by the same mechanism, that is, the fluctuations would be explained by the SST in their spawning area during the spawning season using 2–3 or 3–5 years time lags, which corresponded to the dominant age of the catch within these two stocks.  相似文献   

7.
A paradigm of fisheries science holds that spawning stock biomass (SSB) is directly proportional to total egg production (TEP) of fish stocks. This “SSB–TEP proportionality” paradigm has been a basic premise underlying the spawner–recruitment models for fisheries management and numerous studies on recruitment mechanisms of fish. Studies on maternal effects on reproductive potential of a stock have progressed during the last few decades, leading to doubt concerning the paradigm. Nonetheless, a direct test of the paradigm at multidecadal scales has been difficult because of data limitations in the stock assessment systems worldwide. Here, we tested the paradigm for marine fish based on a novel combination of two independent 38‐year time series: fishery‐dependent stock assessment data and fishery‐independent egg survey data. Through this approach, we show that the SSB–TEP proportionality is distorted by density dependence in total egg production per spawner individual (TEPPS) or spawner unit weight (TEPPSW) at a multidecadal scale. The TEPPS/TEPPSW exponentially declined with biomass and thus was density‐dependent for Japanese sardine, a small pelagic species exhibiting a high level of population fluctuation, in the western North Pacific. By contrast, the TEPPS/TEPPSW was sardine‐density‐dependent for Japanese anchovy, another small pelagic species exhibiting a moderate level of population fluctuation well‐known for being out of phase with sardine. Our analysis revealed intraspecific (sardine) and interspecific (anchovy) density dependence in TEPPS/TEPPSW, which was previously unaccounted for in spawner–recruitment relationships. Such density‐dependent effects at the time of spawning should be considered in fisheries management and studies on recruitment mechanisms.  相似文献   

8.
Ecosystem‐based fisheries management requires the development of physical and biological time series that index ocean productivity for stock assessment and recruitment forecasts for commercially important species. As recruitment in marine fish is related to ocean condition, we developed proxies for ocean conditions based on sea surface temperature (SST) and biometric measurements of chum salmon (Oncorhynchus keta) captured in the walleye pollock (Gadus chalcogrammus) fishery in the eastern Bering Sea in three periods (July 16–30, September 1–15 and September 16–30). The main purpose of this paper was to evaluate Pacific salmon (Oncorhynchus spp.) growth as a possible indicator of ocean conditions that, in turn, may affect age‐1 walleye pollock recruitment. Marine growth rates of Pacific salmon are the result of a complex interplay of physical, biological and population‐based factors that fish experience as they range through oceanic habitats. These growth rates can, therefore, be viewed as indicators of recent ocean productivity. Thus, our hypothesis was that estimated intra‐annual growth in body weight of immature and maturing age‐4 male and female chum salmon may be used as a biological indicator of variations in rearing conditions also experienced by age‐0 walleye pollock; consequently, they may be used to predict the recruitment to age‐1 in walleye pollock. Summer SSTs and chum salmon growth at the end of July and September explained the largest amount of variability in walleye pollock recruitment indicating that physical and biological indices of ocean productivity can index fish recruitment.  相似文献   

9.
Northern rock sole recruitment in the eastern Bering Sea has been hypothesized to (a) depend on wind‐driven surface currents linking spawning and nursery areas, (b) be density‐dependent, and (c) be negatively impacted by cold bottom temperatures over a large nursery area during the first summer of life. A suite of models was developed to test these hypotheses. Data included 32 years of recruitment and spawning biomass estimates derived from a stock assessment model and wind and temperature indices customized to the environmental exposure of age‐0 northern rock sole in the eastern Bering Sea. The predictive ability of the models was evaluated, and the models were used to forecast recruitment to age‐4 for recent year classes which are poorly retained by the standard multi‐species bottom trawl survey gear. Models which included wind and temperature indices performed better than a naïve forecast based on the running mean. The best‐performing model was a categorical model with wind and temperature thresholds, which explained 49% of the variation in recruitment. Ricker models performed more poorly than models without a spawning biomass term, providing no evidence that recruitment is related to stock size. The models forecast higher recruitment for the most recent year classes (2015–2018) than for prior year classes with observed poor recruitment (2006–2013). These environment‐based recruitment forecasts may improve recruitment estimates for the most recent year classes and facilitate study of the effects of future climate change on northern rock sole population dynamics.  相似文献   

10.
Two approaches were used to qualify observed variability in Greenland cod (Gadus morhua) recruitment. In the first analysis, we used the linear trend of the Greenland cod recruitment time series and climatic variables, such as air temperatures from the Denmark Strait and wind conditions off East Greenland and Southwest Greenland, to explain the interannual variation in cod recruitment off Greenland. The model resulting from this ‘trend/environmental approach’, explained 79% of the interannual variation in cod recruitment off Greenland. In the second, analytical approach, the ‘regime approach’, multiple linear regression models were used, with the input data being the time series of cod recruitment and spawning stock biomass (SSB) from Iceland and Greenland, sea surface and air temperatures around Greenland, and zonal wind components between Iceland and Greenland. Model results indicated that, during the decades between 1950 and 1990, there were three different cause–effect regimes which significantly influenced the variability of cod recruitment. The three regimes included: (a) the 1950s and 1960s, a regime with favorable sea surface temperatures and a self‐sustaining cod stock off Greenland with high SSB that produced a series of above‐average, strong year classes; (b) the 1970s and 1980s, a regime of declining SSB and recruitment, with recruitment dependent on advection from Iceland; and (c) the 1990s, when the advective potential for recruitment from the Icelandic cod stock was the only available source for replenishment of the Greenland cod stocks, because cod recruitment in Greenland waters was negligible. The three models explained 76–77% of the observed interannual variation in cod recruitment off Greenland. Both approaches suggested that advective factors were the dominant influences for cod recruitment in the ‘Iceland–Greenland System’.  相似文献   

11.
Unusually large returns of several stocks of fall Chinook salmon (Oncorhynchus tshawytscha) from the U.S. Northwest commonly occurred during the late 1980s. These synchronous events seem to have been due to ocean rather than freshwater conditions because natal rivers of these stocks were geographically disconnected. We examined year‐to‐year variability in cohort strength of one of these stocks, Upriver Bright (URB) fall Chinook salmon from the Columbia River Hanford Reach for brood years 1976–99 (recovery years 1979–2002). We used the ocean recovery rate of coded‐wire‐tag (CWT) fish as an index of cohort strength. To analyse year‐to‐year variability in the ocean recovery rate, we applied a log‐linear model whose candidate explanatory variables were ocean condition variables, fishing effort, age of recovered fish, and fish rearing type (hatchery versus wild). Explanatory variables in the best model included fishing effort, and the quadratic term of winter sea surface temperature (SST) measured from coastal waters of British Columbia, Canada during the fish's first ocean year. The coefficient of the quadratic term of SST was significantly negative, so the model shape was convex. Our findings can be used to infer year‐to‐year variability in cohort strength of other fall Chinook salmon whose life history and ocean distributions are similar to the URB fish.  相似文献   

12.
This study investigates the temporal correspondence between the main patterns of recruitment variations among north‐east Atlantic exploited fish populations and large‐scale climate and temperature indices. It is of primary importance to know what changes in fish stock productivity can be expected in response to climate change, to design appropriate management strategies. The dominant patterns of recruitment variation were extracted using a standardized principal component analysis (PCA). The first principal component (PC) was a long‐term decline, with a stepwise change occurring in 1987. A majority of Baltic Sea, North Sea, west of Scotland and Irish Sea populations, especially the gadoids, have followed this decreasing trend. On the contrary, some herring populations and the populations of boreal ecosystems have followed an opposite increasing trend. The dominant signal in north‐east Atlantic sea surface temperature, also extracted by a PCA, was highly correlated with the increase in the Northern Hemisphere Temperature anomaly, which is considered to be an index of global warming. The first component of recruitment was inversely correlated with these changes in regional and global temperature. The second PC of recruitment was a decadal scale oscillation, which was not correlated with climate indicators. The analysis of correlations between population recruitment and local temperature also indicated that the dominant pattern of recruitment variation may be related to an effect of global warming. The influence of fishing on recruitment, via its effect on the spawning stock biomass (SSB), was also investigated by the analysis of correlations between fishing mortality, SSB and recruitment. Results indicate that fishing can be another factor explaining recruitment trends, probably acting in combination with the effect of climate, but cannot explain alone the patterns of recruitment variation found here.  相似文献   

13.
东海区小黄鱼繁殖模型优化选择及其管理应用研究   总被引:4,自引:2,他引:2  
根据 1999-2008 年东海区渔业资源底拖网大面定点调查获取的小黄鱼(Larimichthys polyactis)渔业生物学资料,利用AIC(Akaike Information Criterion)与BIC(Bayesian Information Criterion),对小黄鱼的Ricker、Beverton-Holt和Cushing繁殖模型进行了拟合优度检验.针对选择的繁殖模型,经单因子相关分析和逐步回归分析,筛选对繁殖模型有重要影响的环境因子,经模型的拟合和检验,确定东海区小黄鱼的适用繁殖模型.结果表明:3种繁殖模型中,Ricker繁殖模型更适合模拟小黄鱼亲体与补充量关系,但吕泗渔场海域3-4月平均海水表温、7月海水表温和5月长江径流量、7-8月长江平均径流量以及当年夏季风速对模型中的补充量有着重要的影响;优化后的Ricker繁殖模型不仅可以提高东海区小黄鱼亲鱼量与补充量的拟合精度,而且可参考该模型修正当年度小黄鱼的资源管理目标,提高资源管理的科学性.  相似文献   

14.
ABSTRACT:   This study investigated the main causes of population abundance fluctuations. Particularly, attention was paid to whether a density-dependant factor, such as a stock-recruitment relationship (S-R relationship) or a density-independent factor such as an environmental factor, is more important. Using data pertaining to the number of eggs of the Pacific stock mackerel and information about regime shifts and sea surface temperature, the shape of the S-R relationship was discussed and these shapes with the results of simulation trails were compared. Further other historical S-R relationship data were analyzed. The results are as follows: (i) a new mechanism that causes population fluctuations could be proposed, that is, (a) the recruitment is proportional to the spawning stock biomass (SSB) and the relation is expressed by several lines with the same slope, and (b) the shift between the lines occurs due to environmental conditions; and (ii) the density-dependent S-R relationship, which suggests that recruitment decreased due to high density in SSB, proposed by Ricker or Beverton and Holt, would not exist.  相似文献   

15.
How climatic variability and anthropogenic pressures interact to influence recruitment is a key factor in achieving sustainable resource management. However, the combined effects of these pressures can make it difficult to detect non‐stationary interactions or shifts in the relationships with recruitment. Here we examine the links between climate and Irish Sea cod recruitment during a period of declining spawning stock biomass (SSB). Specifically, we test for a shift in the relationship between recruitment, SSB and climate by comparing an additive (generalized additive model, GAM) and non‐additive threshold model (TGAM). The relationship between recruitment success, SSB and the climatic driver, sea surface temperature, was best described by the TGAM, with a threshold identified between recruitment and SSB at approximately 7900 t. The analysis suggests a threshold shift in the relationship between recruitment and SSB in Irish Sea cod, with cod recruitment being more sensitive to climatic variability during the recent low SSB regime.  相似文献   

16.
ABSTRACT:   This study assessed the stock-recruitment relationship (SRR) for the Japanese sardine Sardinops melanostictus in the North-western Pacific. Of the 20 SRR models investigated, the Akaike information criterion (AIC) was the minimum (AIC = 551.2) when the data were separated into two groups (A and B) and the log-normal distribution was applied as the error term. Group A was constructed with SRR data from 1976–1987 and 1992–2004. Group B consisted of data from 1988–1991. The AIC minimum model was R  = 22.8 S  ×  e ε for Group A, where R , S , and ε denote the recruitment of sardine (individual number of 0-year old fish), spawning stock biomass (SSB), and error term, respectively. This model indicated that recruitment was proportional to the SSB and that no density-dependent effect operated over the range of SSB investigated (51 000–11.3 million t). Recruitment was markedly higher (lower) when the sea surface temperature (SST) of the Kuroshio Extension area in February was low (high). The essential SRR can simply be expressed as R  = 22.8 S  ×  e ε with the level of recruitment deviating from the model to a greater or lesser degree depending on the environmental conditions.  相似文献   

17.
Recruitment of age‐0 Pacific bluefin tuna (Thunnus orientalis) from 1952 to 2014 was examined by a sequential regime shift detection method. The regime shifts in recruitment were detected in 1957, 1972, 1980, 1994 and 2009. The durations of regime shift ranged from 8–15 years and averaged 13.0 years. In both the total (1952–2014) and data rich (1980–2014) periods, negative relationships were found between recruitment and the Pacific Decadal Oscillation in autumn, and positive relationships were found between recruitment and sea surface temperature (SST) anomalies in the northern part of the East China Sea, in the southwestern part of the Sea of Japan, and in the waters off Shikoku and Tokai in summer and autumn. The 1994 and 2009 regime shifts in recruitment occurred in the same years as shifts in SST anomalies in the northern part of the East China Sea in summer. These results suggest that the ocean conditions in the northern part of the East China Sea are closely related to recruitment of Pacific bluefin tuna, and that the warmer conditions result in higher recruitment of the species.  相似文献   

18.
Off southern‐central Chile, the impact of spring upwelling variability on common sardine (Strangomera bentincki) recruitment was examined by analyzing satellite and coastal station winds, satellite chlorophyll, and common sardine recruitment from a stock assessment model. In austral spring, the intensity of wind‐driven upwelling is related to sea surface temperature (SST) from the Niño 3.4 region, being weak during warm periods (El Niño) and strong during cold periods (La Niña). Interannual changes in both spring upwelling intensity and SST from the Niño 3.4 region are related to changes in remotely sensed chlorophyll over the continental shelf. In turn, year‐to‐year changes in coastal chlorophyll are tightly coupled to common sardine recruitment. We propose that, in the period 1991–2004, interannual changes in the intensity of spring upwelling affected the abundance and availability of planktonic food for common sardine, and consequently determined pre‐recruit survival and recruitment strength. However, the importance of density‐dependent factors on the reproductive dynamic cannot be neglected, as a negative association exists between spawning biomass and recruitment‐per‐spawning biomass. Coastal chlorophyll, upwelling intensity, and SST anomalies from the Niño 3.4 region could potentially help to predict common sardine recruitment scenarios under strong spring upwelling and El Niño Southern Oscillation (ENSO)‐related anomalies.  相似文献   

19.
The recent reform of the Common Fisheries Policy (CFP) in Europe highlights the need for improvements in both species and size selectivity. Regarding size selectivity, shifting selectivity towards older/larger fish avoids both growth and recruitment overfishing and reduces unwanted catches. However, the benefits to fish stocks and fishery yields from increasing age/size‐at‐selection are still being challenged and the relative importance of selectivity compared to that of exploitation rate remains unclear. Consequently, exploitation rate regulations continue to dominate management. Here, an age‐structured population model parameterized for a wide range of stocks is used to investigate the effects of selectivity on spawning stock biomass (SSB) and yield. The generic effect of selectivity on SSB and yield over a wide range of stocks is compared to the respective relative effects of exploitation rate and several biological parameters. We show that yield is mainly driven by biological parameters, while SSB is mostly affected by the exploitation regime (i.e. exploitation rate and selectivity). Our analysis highlights the importance of selectivity for fisheries sustainability. Catching fish a year or more after they mature combined with an intermediate exploitation rate (F ≈ 0.3) promotes high sustainable yields at low levels of stock depletion. Examination of the empirical exploitation regimes of 31 NE Atlantic stocks illustrates the unfulfilled potential of most stocks for higher sustainable yields due to high juvenile selection, thus underscoring the importance of protecting juveniles. Explicitly incorporating selectivity scenarios in fisheries advice would allow the identification of optimal exploitation regimes and benefit results‐based management.  相似文献   

20.
We compared a wide range of environmental data with measures of recruitment and stock production for Japanese sardine Sardinops melanostictus and chub mackerel Scomber japonicus to examine factors potentially responsible for fishery regimes (periods of high or low recruitment and productivity). Environmental factors fall into two groups based on principal component analyses. The first principal component group was determined by the Pacific Decadal Oscillation Index and was dominated by variables associated with the Southern Oscillation Index and Kuroshio Sverdrup transport. The second was led by the Arctic Oscillation and dominated by variables associated with Kuroshio geostrophic transport. Instantaneous surplus production rates (ISPR) and log recruitment residuals (LNRR) changed within several years of environmental regime shifts and then stabilized due, we hypothesize, to rapid changes in carrying capacity and relaxation of density dependent effects. Like ISPR, LNRR appears more useful than fluctuation in commercial catch data for identifying the onset of fishery regime shifts. The extended Ricker models indicate spawning stock biomass and sea surface temperatures (SST) affect recruitment of sardine while spawning stock biomass, SST and sardine biomass affect recruitment of chub mackerel. Environmental conditions were favorable for sardine during 1969–87 and unfavorable during 1951–67 and after 1988. There were apparent shifts from favorable to unfavorable conditions for chub mackerel during 1976–77 and 1985–88, and from unfavorable to favorable during 1969–70 and 1988–92. Environmental effects on recruitment and surplus production are important but fishing effects are also influential. For example, chub mackerel may have shifted into a new favorable fishery regime in 1992 if fishing mortality had been lower. We suggest that managers consider to shift fishing effort in response to the changing stock productivity, and protect strong year classes by which we may detect new favorable regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号