首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 946 毫秒
1.
Abstract

Contamination of agricultural soil by fecal pathogenic bacteria poses a potential risk of infection to humans. For the biosafety control of field soil, soil solarization in an upland field was examined to determine the efficiency of solarization on the inactivation of Escherichia coli inoculated into soil as a model microorganism for human pathogenic bacteria. Soil solarization, carried out by sprinkling water and covering the soil surface with thin plastic sheets, greatly increased the soil temperature. The daily average temperature of the solarized soil was 4–10°C higher than that of the non-solarized soil and fluctuated between 31 and 38°C. The daily highest temperature reached more than 40°C for 8 days in total in the solarized soil during the second and third weeks of the experiment. Escherichia coli in the solarized soil became undetectable (< 0.08 c.f.u. g?1 dry soil) within 4 weeks as a result, whereas E. coli survived for more than 6 weeks in the non-solarized soil. Soil solarization, however, had little influence on the total direct count and total viable count of bacteria in the soil. These results indicate that soil solarization would be useful for the biosafety control of soil contaminated by human pathogens via immature compost or animal feces.  相似文献   

2.
Soil suppressiveness against Fusarium was tested using solarized and non-solarized soils combined with composts of three maturation levels, and a non-amended control. The soils were sampled on three dates: after previous year solarization but before current year solarization (0 weeks), at the end of the solarization period of the current year (4 weeks), and 4 weeks later (recovery time). Melon seedlings were inoculated with Fusarium spores and disease severity was assessed. The study showed a reduction of soil suppressiveness capacity against Fusarium oxysporum f. sp. melonis after 1 year of solarization (0 weeks). Fusarium disease severity in artificially inoculated melon plants, expressed by area under the disease progress curve, was higher in solarized soil than in non-solarized soil. Compost addition lowered the disease severity, both in the solarized and in the non-solarized soils. However, suppression was not obtained at the end of the solarization period, whereas compost beneficial effect was found at this time.  相似文献   

3.
Soil solarization is an ecologically friendly method of controlling various plant pathogens and pests, but also affects non-pathogenic members of the soil biota. Here, we studied the impact of soil solarization on the community structure of soil ciliates using a culture-independent molecular approach, namely denaturing gradient gel electrophoresis (DGGE) of targeted 18S rRNA gene fragments. Greenhouse soil with added organic fertilizers was solarized for 33 days at an average temperature of 47–48°C. Solarization caused a drastic change in the ciliate community. The variation between replicates was large, which suggested that the distribution of ciliates was spatially heterogeneous in the soil, probably due to their decreased numbers. In contrast, non-solarized soil had a stable and homogeneous ciliate community during the experimental period. In solarized soil, most of the original ciliate community recovered 76 days after solarization. Sequence analysis of DGGE fragments indicated that both r-selected and K-selected species of ciliates were affected by solarization but recovered with time after solarization. Our results demonstrated both the vulnerability and resilience of the ciliate community to soil solarization and also the utility of using molecular-based analysis of ciliate communities as bioindicators of soil stress caused by solarization.  相似文献   

4.
Summary Soil solarization greatly reduced the native chickpea Rhizobium population. With inoculation, it was possible to increase the population of the Rhizobium in solarized plots. In the 1st year, 47% nodulation was obtained with chickpea inoculant strain IC 59 when introduced with a cereal crop 2 weeks after the soil solarization and having a native Rhizobium count of <10 g-1 soil, and only 13% when introduced 16 weeks after solarization at the time the chickpeas were sown, with 2.0×102 native rhizobia g-1 soil. In the non-solarized plots inoculated with 5.6×103 native rhizobia g-1 soil, only 6% nodulation was obtained with the inoculant. In the succeeding year, non-inoculated chickpea was grown on the same plots without any solarization or Rhizobium inoculation. The treatment that showed good establishment of the inoculant strain in year 1 formed 68% inoculant nodules. Other treatments indicated a further reduction in inoculant success, from 1%–13% to 1%–9%. Soil solarization thus allowed an inoculant strain to successfully displace the high native population in the field and can serve as a research tool to compare strains in the field, irrespective of competitive ability. In year 1, Rhizobium inoculation of chickpea gave increased nodulation and increased plant growth 20 and 51 days after sowing, and increased dry matter, grain yield, and grain protein yield at maturity. These beneficial effects of inoculation on plant growth and yield were not measured in the 2nd year.Submitted as Journal Article No. JA 945 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502 324, India  相似文献   

5.
Summary An investigation was conducted during the summer months of 1986–1987 and 1987–1988 in Western Australia to evaluate the effect of soil solarization on the control of root rot of gerbera an also on the microbial and nutrient status of the soil. Infested soil cores were sampled from a site where root-rot was a severe problem and were removed to a non-infested site where they were subjected to soil solarization or fumigation. Soil solarization resulted in reduced root rot (root disease index 28.6%) in comparison to the untreated control (52.0%) 8 months after planting. Plants in the fumigated plots had 15.8% less disease than those in solarized plots. Solarization increased the total numbers of bacteria and actinomycetes, and the proportion of bacteria and fungi antogonistic to Fusarium oxysporum, F. solani and Rhizoctonia solani. The proportion of actinomycetes antagonistic to these fungi, however, did not differ between solarized and control soil treatments. There was a significant reduction in disease in plants grown in infested fumigated soil to which a 10% concentration of solarized soil had been added, suggesting the development of microbial suppression in solarized soil. Phytophthora cryptogea was eradicated to 30 cm by solarization as well as by fumigation. Solarization eliminated R. solani but not F. oxysporum to a soil depth of 10 cm. Solarization increased the levels of NO n3 -N and NH4 +-N in soil, but did not affect the concentrations of PO4 3–, K+, Fe2+, organic C and pH. Yield (as number of flowers per plant) was increased by soil solarization and by fumigation.Increased yields and decreased disease severity in the solarized plots could have been caused by (1) a reduction in the infectivity of the infested soils, (2) an increase in the suppressiveness of the soil, and (3) an increased available of plant nutrients.  相似文献   

6.
Summer solarization of six wet field soils of four different textures raised soil temperatures by 10–12°C at 15cm depth. Soil solarization increased concentrations of NO?3N and NH+4N up to six times those in nontreated soils. Concentrations of P, Ca2+, Mg2+ and electrical conductivity (EC) increased in some of the solarized soils. Solarization did not consistently affect available K+, Fe3+, Mn2+, Zn2+, Cu2+, Cl? concentrations, soil pH or total organic matter. Concentrations of mineral nutrients in wet soil covered by transparent polyethylene film, but insulated against solar heating, were the same as those in nontreated soil. Increases in NO?3N plus NH+4N were no longer detected in fallowed soils 9 months after solarization. No significant correlation between mineral-nutrient concentration in plant tissue and plant growth was found. Fresh and dry weights of radish, pepper and Chinese cabbage plants usually were greater when grown in solarized soils than in nontreated soils. Fertilization of solarized soils sometimes resulted in greater plant growth responses than observed in solarized but nonfertilized soils.  相似文献   

7.
Abstract

Dry beans are one of the most important crops in Mexico. However, in the last decade this crop averaged yields as low as 0.7 tons per hectare. Therefore, the purpose of this study was to test if soil solarization is a suitable pre-planting soil treatment to improve growth, nutrition and yield of beans in northeast Mexico. Five different periods of soil solarization were evaluated during the spring of 2008: 0, 30, 40, 50 and 60 days of soil solarization. Soil temperatures were recorded during soil solarization to estimate total heat units. After soil solarization bean seeds were sown in plastic-mulched rows and leaf area, potassium, calcium and magnesium concentration and yield were measured. Leaf area and concentrations of potassium, calcium and magnesium were increased by all treatments of soil solarization when compared with the non-solarized soil. Sixty days of soil solarization produced yields of 3.7 tons per hectare while no solarization produced yields of 2.1 tons per hectare. Soil heat units were positively correlated with yield, suggesting that the increase in yield is due to an increase in heat accumulation during soil solarization in addition to an increase of leaf area and to an enhancement of plant nutrition.  相似文献   

8.
Field experiments were carried out at two different forest nurseries during the summer of 1994 to examine the efficacy of soil solarization for the control of damping-off. Both soils hosted Pythium spp., Fusarium spp. and Rhizoctonia solani as damping-off agents. Soil samples from solarized, steamed, fumigated and untreated plots were periodically collected and assayed for soil infectivity. Solarization with a double layer of polyethylene film was as effective as steaming or fumigation in reducing soil infectivity in the uppermost layer. During July the temperature of covered beds rose as high as 50°C at a soil depth of 5cm. The method achieved good control of Pythium spp., the main cause of damping-off at both nurseries, whereas Fusarium spp. were more tolerant. The association of Trichoderma spp. with a reduction of soil infectivity at the last sampling date strongly suggested that biocontrol processes were induced after solarization. Soil solarization provides a suitable method for control of damping-off. Received: 29 October 1996  相似文献   

9.
居华  王锋  哈益明  刘书亮 《核农学报》2009,23(1):102-105
研究了菲律宾蛤仔经60Coγ射线辐照后,其中的菌落总数、大肠肝菌和副溶血性的D10值及辐照后在贮藏期的变化。结果表明,经60Coγ射线辐照后菲律宾蛤仔中的菌落总数、大肠肝菌、副溶血性的D10值分别为:0.70、0.56和0.20kGy;真空包装的菲律宾蛤仔在0°C~4°C贮藏条件下,3kGy剂量辐照贮藏28d后菌落总数为4.46log(CFU/g),符合水产品卫生要求;而0.4kGy剂量辐照贮藏7d后大厂肝菌、副溶血性弧菌后检测未检出。由此可见,3kGy以上剂量辐照处理菲律宾蛤仔,能有效杀灭其中的微生物,且其贮藏期可达28d,用辐照方法保鲜菲律宾蛤仔具有一定实际意义。  相似文献   

10.
Soil solarization is a widespread, nonchemical agricultural practice for disinfesting soils, which is often used in combination with organic amendment, and whose action represents an important factor impacting on soil bacterial communities structure and population dynamics. The present study was conducted to investigate whether and to which extent a 72-day plot-scale soil solarization treatment, either combined or not with organic amendment, could stimulate compositional changes in the genetic structure of indigenous soil bacterial communities. Soil solarization with transparent polyethylene film, in combination or not with farmyard manure addition, was carried out during a summer period on a clay loam agricultural soil located in Southern Italy. Soils from a four-treatment (NS, nonsolarized control soil; S, solarized soil; MA, manure-amended nonsolarized soil; MS, manure-amended and solarized soil) plot block were sampled after 0, 8, 16, 36 and 72 days. Compositional shifts in the genetic structure of indigenous soil bacterial communities were monitored by denaturing gradient gel electrophoresis (DGGE) fingerprinting of 16S rRNA gene fragments amplified from soil-extracted community DNA using primers specific for Bacteria, Actinomycetales, α- and β-Proteobacteria. Changes in soil temperature, pH, and electrical conductivity (EC1:1) were also monitored from 0 to 72 days. Beneath the polyethylene film the average soil temperature at 8-cm depth reached 55 °C compared to 35 °C in nonsolarized soil. In general, without amendment both soil pH and EC1:1 were not significantly affected by solarization, whereas in manured plots either variables were greatly increased (from 7.0 to 8.0 pH and from 271 to 3021 μS cm−1 EC1:1), and both showed long-lasting effects due to soil solar heating. The eubacterial DGGE profiles revealed that soil solarization was the main factor inducing strong time-dependent population shifts in the community structure either in unamended or amended soils. Conversely, the addition of organic amendment resulted in an altered bacterial community, which remained rather stable over time. A similar behaviour was also observed in the DGGE patterns of β-proteobacterial and actinomycete populations, and also, albeit to a lesser extent, in the DGGE profiles of α-Proteobacteria. An increased bacterial richness was evidenced by DGGE fingerprints in 16- and 36-day samplings, followed by a decrease appearing in 72-day samplings. This could be explained, other than by a direct thermal effect on soil microflora, by solarization-induced changes in the physico-chemical properties of soil microbial habitats or by other ecological factors (e.g. decreased competitiveness of dominating bacterial species, reduced grazing pressure of microfaunal predators, increased nutrient availability).  相似文献   

11.
The Indo-Gangetic Plains of South Asia support 13.5 million hectares of rice-wheat cropping systems, which currently feed over one billion people. Intensified agriculture has resulted in a more than two-fold increase in rice and wheat yields since the 1970s; however, this continuous cropping has also exacerbated weed, pest and disease problems. Soil solarization is an accessible, low-risk management practice for small-holder farmers that has ameliorated these problems in some settings and has the potential to dramatically improve yields. Field trials were conducted at two sites in Nepal to test whether soil solarization: (i) had a lasting effect on soil bacterial, fungal and nematode communities; (ii) altered the rhizosphere communities of rice nursery seedlings and (iii) improved crop growth and yield in the rice-wheat cropping system. Rice seedlings were grown in nursery plots that were solarized for 28 days or left untreated and were transplanted to field plots that were also either solarized for 28 days or not in a randomized complete block design with four replications. Rice was grown to maturity and harvested, followed by a complete wheat cropping cycle. Solarization of main field plots increased counts of fungal propagules and decreased root galling and nematode counts and decreased weed biomass. Terminal restriction fragment length polymorphism (T-RFLP) analyses of extracted soil DNA revealed significant shifts in fungal community composition following soil solarization, which was sustained throughout the entire rice cropping cycle at both field sites. The bacterial community composition was similarly affected, but at only one of the two sites. Despite the observed changes in soil microbial community composition over more than one cropping period, solarization had no impact on crop productivity at either site. Nevertheless, such changes in soil microbial communities in response to solarization may be responsible for increased yields observed at other sites with greater pathogen pressure. This practice has shown promising results in many farmers’ fields in South Asia, but further elucidation of the mechanisms by which solarization increases productivity is needed.  相似文献   

12.
 Although soil solarization is used to control soil-borne pests, it also results in increased growth response (IGR) of plants, beyond the effect of pest control. IGR is attributed to various abiotic factors (e.g. increased mineral nutrient concentrations) and biotic factors. In this work, we studied the role played by dissolved organic matter (DOM) in soil extracts in the IGR. DOM concentrations were about twice as high in solarized soil than in untreated soil. In two out of three soils, solarization appeared to increase amino acid synthesis, indicating that it had a favorable effect on microbial activity. Elemental composition, carbohydrate levels, E4 : E6 ratios and FTIR spectra did not differentiate between DOM extracted from solarized soils and DOM extracted from untreated soils. Growth of corn plants increased with increasing concentrations of DOM. Addition to the soil of DOM extracted from leonardite increased populations of fluorescent pseudomonads, known as beneficial bacteria, and reduced fungal populations. We conclude that the increase in DOM concentration following soil solarization is a potentially positive plant-growth-enhancement factor. Received: 21 June 1999  相似文献   

13.
Studies were conducted at KPK Agricultural University, Peshawar, Pakistan, in June 2008 and 2009 using a randomized complete block design. Plots were covered with transparent polyethylene films for different periods (0, 2, 4, 6, 8, and 10 weeks). The temperature inside the film was about 10 °C greater than the atmospheric temperature. Solarization increased nitrogen (N) and organic-matter levels in both years, probably because of decomposition of plant residues. Increasing the period of solarization decreased weed density and both fresh and dry biomass. The effectiveness of solarization was species specific. In 2008, Cirsium arvense L. was controlled in the solarized soil, whereas Vicia sativa germination was stimulated by solarization. In 2009, suppressed weeds included Sorghum halepense whereas Chenopodium album L., Cyperus rotundus, and Rumex crispus L. were unaffected. Solarization increased yield of cauliflower (Brassica oleracea L.) in both years. These results suggest that solarization should be practiced before planting horticultural crops in areas with a hot climate.  相似文献   

14.
Soil solarization is a nonchemical method of soil disinfection achieved by covering the soil surface with sheets of vinyl plastic to generate elevated soil temperature, generally over 45°C. Such elevated temperatures may be detrimental to some nitrifying microorganisms and favorable to others. However, little information exists to indicate how nitrification activity in soil is affected after solarization. We performed several experiments to investigate the effects of soil solarization on nitrification activity. We found that: (1) if a soil was subjected to pretreatment of 45 or 50°C for as little as 1 d, nitrification activity in a subsequent incubation at 30°C was less than that of a soil that did not receive any high-temperature pretreatment. However, if a soil received pretreatments of 45 or 50°C for more than 7 d, nitrification activity in a subsequent incubation at 45 or 50°C was greater than that of soil that did not receive high temperature pretreatment. (2) Nitrification activity in three kinds of soil taken from 0–5 cm depth after solarization treatment was greater at 45°C than 30°C. (3) Nitrification activity at 45°C in soil that had received solarization in the preceding year was greater than that in soil that had not been subjected to solarization. This was consistent with the fact that the population densities of ammonia oxidizers were greater in soils that had been subjected to solarization. These results suggest that soil solarization induces nitrifying microorganisms that are more active at 45–50°C than they are at 30°C, and that the effect of solarization on nitrification persists until the next crop season.  相似文献   

15.
Solarization makes a great impact on the abundance of ammonia oxidizers and nitrifying activity in soil. To elucidate fluctuations in the abundance of ammonia oxidizers and nitrification in solarized soil, copy numbers of amoA gene of ammonia-oxidizing bacteria (AOB) and archaea (AOA), viable number of ammonia oxidizers and inorganic nitrogen contents were investigated in greenhouse experiments. The copy number of amoA gene and the viable number of ammonia oxidizers were determined by the quantitative polymerase chain reaction and most probable number methods, respectively. Abundance of AOB based on the estimation of amoA gene copy numbers and viable counts of ammonia oxidizers was decreased by the solarization treatment and increased during the tomato (Solanum lycopersicum L.) cultivation period following the solarization. Effect of solarization on the copy number of amoA gene of AOA was less evident than that on AOB. The proportion of nitrate in inorganic nitrogen contents was declined by the solarization and increased during the tomato cultivation period following the solarization. Positive correlations were found between the proportion of nitrate in inorganic nitrogen content and the copy number of bacterial or archaeal amoA gene or the viable number of ammonia oxidizers; the copy number of bacterial amoA gene showed a strong correlation with the viable number of ammonia oxidizers. The present study revealed influences of solarization on the fluctuation in the abundance of ammonia oxidizers and dynamics of inorganic nitrogen contents in soil and the results indicate that the determination of amoA gene of AOB is possibly a quick and useful diagnostic technique for evaluating suppression and restoration of nitrification following solarization.  相似文献   

16.
Soil solarization, obtained by covering soil with plastic films, is a useful practice able to reduce soil pathogen populations. Light plastic films (LPFs) are nowadays widely used especially in open and greenhouse vegetable crop cultivations in Southern Italy, as they are able to raise soil temperature more than 20°C above air temperature. The solarization treatment with LPFs is characterized by a low cost and low environmental impact.

The wide use of these technique causes a concern about the side effect of solarization on soil microbial populations, which are affected the same as plant pathogens by soil heating. As scientific literature pays scant attention to the effect of soil heating on soil microbial parameters, this paper studied the effects of solarization on soil microbial biomass, soil respiration, and soil enzymatic activity in the presence of organic amendments and the soil fumigant dazomet.

Solarization appears to be an effective practice able to control nematodes, even though it may cause serious stress on the soil microbial biomass. In addition, it was demonstrated that the organic amendments exert a protective role keeping soil microbial biomass and enzymatic activities protected from the detrimental effect of heating.  相似文献   

17.
土壤中存在能够威胁植物、动物和人体健康的病原细菌,消减这类土壤生物污染是一体化健康(One Health)的重要任务。因具有宿主细菌专一性强、侵染效率高、环境扰动性小等特性,噬菌体成为生态消减土壤病原细菌生物污染的重要手段。然而,由于土壤生物和非生物环境的复杂性,提升噬菌体消减土壤生物污染的效果和稳定性仍是当前的重大挑战。本文从噬菌体在土壤中的生存以及与病原细菌互作等过程着手,分析总结影响噬菌体阻控土壤生物污染效果和稳定性的主要因素:1)噬菌体的宿主细菌谱和种群数量,2)土壤病原细菌的多态性,3)影响噬菌体与土壤病原细菌互作的环境因素。通过构建高效噬菌体鸡尾酒、改善噬菌体产品形式和优化噬菌体施用技术等措施,建立提升阻控土壤生物污染效果和稳定性的策略,为完善土壤生物污染噬菌体疗法提供科学支撑。  相似文献   

18.
Denitrification of paddy fields is a key process for improving water quality in fields where nitrate concentrations are high. The objective of the present study was to understand the effects of incorporating organic carbon (C) into soil on the denitrification rate of paddy fields in winter. On 11 December 2007, separate paddy field plots were prepared by incorporating 5 Mg ha−1 of rice straw (RS), 11 Mg ha−1 of rice straw compost (RSC) or a control. A field with a high concentration of nitrate in the water (averaging 18 mg N L−1) was irrigated until 29 March. During the experiment, the daily average soil temperature at a depth of 0.05 m ranged between 3 and 15°C. The nitrate concentration in the surface water in the RS plot, where the residence time was 2 days, decreased more than the concentration in the control or RSC plots. The total estimated nitrate removal from each plot in relation to the other plots was RS > RSC = control. Measurements of the soil from each plot on 29 February 2008 showed that incorporation of RS significantly increased the denitrification potential, even at low temperatures (5–10°C). Furthermore, the RS plot contained more dissolved organic C than the control or RSC plots. This result indicates that supplying RS effectively increases denitrification under low-temperature conditions.  相似文献   

19.
Abstract. Composted domestic waste was applied either as a mulch or was incorporated into the topsoil. Mulching reduced the seasonal midday soil temperature ranges from between 14 °C and 27.5 °C to between 14 °C and 26 °C, averaging a 0.6 °C fall. However, at sub-optimal temperatures for maize production under the temperate conditions of South East England, the difference may be critical. Compost mulch also improved soil-water conservation in an average year, but not in a very dry year. Compost application increased soil-available N, but increased K uptake was considered to be more important for crop yield than either N additions or the effect on retained soil water. Overall, compost applied as a surface mulch, or incorporated into medium-textured soils in the south and east of England increased crop yield.  相似文献   

20.
采用田间完全随机区组试验,研究了添加石灰氮和有机物进行太阳能加热对温室土壤中根结线虫的防治效果,以及对黄瓜植株营养生长和商品性状的影响.结果表明,土壤处理40 d后,根结线虫2龄幼虫数量下降57%~100%;幼虫减退率随不覆膜、单层膜和双层膜顺次增大,且砂壤土的减退率大于中壤土.处理后茬黄瓜的根结发病株率明显低于处理前茬.5月初,土壤处理对后茬中壤土和砂壤土中黄瓜根结发病率的防治效果均达90%,6月初中壤土为81.3%、砂壤土为66.7%,7月初中壤土为33.7%、砂壤土为5.8%.土壤处理对后茬黄瓜营养生长期末株高、地上50 cm处茎直径和节位数的影响小,但可明显提高结瓜盛期的商品瓜总重量和单瓜重量,提高幅度分别达33.3%~58.5%和7.6%~28.5%.因此,添加石灰氮和有机物进行太阳能加热可降低根结线虫幼虫数量、延迟根结发病期、降低发病率,同时可提高商品瓜总重量和单瓜重量;添加石灰氮和有机物进行太阳能加热对砂壤土根结发病率的防治效果低于中壤土.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号