首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Binderless particleboards were successfully developed from kenaf core using the steam-injection press. The effects of board density, steam pressure, and treatment time on the properties of the board were evaluated. The target board densities were relatively low, ranging from 0.40 to 0.70g/cm3. The properties [i.e., moduli of rupture (MOR) and elasticity (MOE) in both dry and wet conditions, internal bonding strength (IB), and water absorption (WA)] of the boards increased linearly with increasing board density. Steam pressure and treatment time also affected the board properties. The bending strength and IB were improved with increased steam pressure. A long steam treatment time contributed to low thickness swelling (TS) values and thus better dimensional stability. The appropriate steam pressure was 1.0MPa, and the treatment time was 10–15min. The properties for 0.55g/cm3 density boards under optimum conditions were MOR 12.6MPa, MOE 2.5GPa, IB 0.49MPa, TS 7.5%, and wet MOR 2.4MPa. Compared with the requirement of JIS 5908, 1994 for particleboard, kenaf binderless boards showed excellent IB strength but relatively poor durability.Part of this report was presented at the 19th Annual Meeting of the Japan Wood Technological Association, Tokyo, October 2001  相似文献   

2.
轻质豆秸刨花板工艺的研究   总被引:2,自引:0,他引:2  
从UF胶制造轻质豆秸刨花板的初步研究,分析了板的密度、施胶量、热压时间等工艺因子对板性能的影响。试验结果表明,利用豆秸制造轻质刨花板是完全可行的,其产品主要物理力学性能为:密度0.483 g/cm 3、吸水厚度膨胀率11.2 % 、内结合强度0.303 MPa、静曲强度8.98 MPa,均达到日本JISA 5908 的技术指标。  相似文献   

3.
聚氯乙烯废料的含量对复合刨花板性能的影响   总被引:3,自引:0,他引:3  
本研究主要是探求聚氯乙烯废料在复合刨花板中的不同加入量对刨花板物理力学性能的影响。结果表明:随着聚氯乙烯废料加入量的增加,复合刨花板的静曲强度,弹性模量以及内结合强度均降低;吸水厚度膨胀率减小;但振动阻尼系数增大;表面粗糙度也产生一定的变化。在多数情况下板材的物理力学性能可以达到日本JIS A 5908刨花板标准的要求,这说明在板中加入适量的聚氯乙烯废料可以生产出具有优良性能的刨花板。  相似文献   

4.
The development of a natural adhesive composed of materials derived from non-fossil resources is a very important issue. In this study, only citric acid and sucrose were used as adhesive materials for particleboard. A water solution in which citric acid and sucrose were dissolved was used as an adhesive, and the manufacture of particleboard with a target density of 0.8 g/cm3 was attempted under a press condition of 200 °C for 10 min. The optimum mixture ratio of citric acid and sucrose and the optimum resin content was 25–75 and 30 wt%, respectively. The modulus of rupture (MOR) and the modulus of elasticity in bending were 20.6 MPa and 4.6 GPa, respectively. The internal bond strength (IB) was 1.6 MPa, indicating that the adhesive had excellent bond strength. The thickness swelling (TS) after water immersion for 24 h at 20 °C was 11.9 %. The board did not decompose even under more severe accelerated treatments. This meant that the adhesion had good water resistance. The MOR, IB and TS of the board were comparable to or higher than the requirement of the 18 type of JIS A 5908 (2003). Consequently, there is a possibility that a mixture of citric acid and sucrose can be used as a natural adhesive for particleboard.  相似文献   

5.
Kenaf composite panels were developed using kenaf bast fiber-woven sheets as top and bottom surfaces, and kenaf core particles as core material. During board manufacture, no binder was added to the core particles, while methylene diphenyldiisocyanate resin was sprayed to the kenaf bast fiber-woven sheet at 50 g/m2 on a solids basis. The kenaf composite panels were made using a one-step steam-injection pressing method and a two-step pressing method (the particleboard is steam pressed first, followed by overlaying). Apart from the slightly higher thickness swelling (TS) values for the two-step panels when compared with the one-step panels, there was little difference in board properties between the two composite panel types. However, the two-step pressing operation is recommended when making high-density composite panels (>0.45 g/cm3) to avoid delamination. Compared with single-layer binderless particleboard, the bending strengths in dry and wet conditions, and the dimensional stability in the plane direction of composite panels were improved, especially at low densities. The kenaf composite panel recorded an internal bond strength (IB) value that was slightly low because of the decrease of core region density. The kenaf composite panel with a density of 0.45 g/cm3 (one-step) gave the mechanical properties of: dry modulus of rupture (MOR) 14.5 MPa, dry modulus of elasticity (MOE) 2.1 GPa, wet MOR 2.8 MPa, IB 0.27 MPa, TS 13.9%, and linear expansion 0.23%.  相似文献   

6.
The objective of this study was to develop a method for the effective use of both pruned wood and porcelain stone scrap. Thus, we manufactured a wood-porcelain stone composite board, which has excellent waterproof property and incombustibility properties. In addition, we examined the conditions needed to manufacture the wood-porcelain stone composite board as a construction material and evaluated the physical and mechanical properties of this board based on the Japanese Industrial Standard. The main results obtained were as follows: the wood-porcelain stone composite board made from pruned wood and porcelain stone scrap had excellent thickness swelling performance and the board had incombustibility properties that were better than commercial oriented strand board. In both single-layer and three-layer composite boards with weight ratios of porcelain stone particles of 40%, the internal bond strength exceeded the standard value of type 18 particleboard of JIS A 5908. However, the bending properties of the composite board were inferior to the type 18 particleboard standard. Therefore, it will be necessary to improve the bending properties of the board by changing the particle sizes of both the porcelain stone scrap and the pruned wood component. Part of this article was presented at the 57th Annual Meeting of the Japan Wood Research Society at Hiroshima, August 2007  相似文献   

7.
The suitability of a color acetate film for estimating photosynthetic photon flux density (PPFD) in a forest understory was examined. The fading ratio of the film (F), the total PPFD (PPFDtotal) to which the film was exposed, and the average daily maximum temperature during exposure (T) were obtained from measurements at multiple sampling points throughout an entire year within a natural secondary forest (n = 42). The ranges of the recorded values were as follows: F 35%–99%, PPFDtotal 1.4–28.3molm–2, and T 6°–32°C. PPFDtotal was regressed by F and T with a high r 2 (=0.94; P < 0.0001): PPFDtotal = (100 – F)/(1.085 + 0.051T). The absolute error (|estimated PPFDtotal – measured PPFDtotal|) averaged 1.3molm–2 with a maximum of 5.7molm–2, indicating a good fit. These results indicated broad applicability of the film, both spatially and temporally, for estimating forest understory PPFD.  相似文献   

8.
Light-weight composite panels were manufactured using kenaf core particles as core material and kenaf bast fiber-woven sheets as top and bottom surfaces. Methylene diphenyldiisocyanate (MDI) resin was used as the adhesive with the resin content of 4% for core particles and 50 g/m^2 for bast fiberwoven sheets. The target board densities were set at 0.35.0.45 and 0.55 g/cm^3. The composite panels were evaluated With Japanese Industrial Standard for Particleboards (JIS A 5908- 2003).The results show that the composite panel has high modulus of rupture and internal bonding strength. The properties of 0.45 g/cm^3 density composite panel are: MOR 20.4 MPa. MOE 1.94 MPa, IB 0.36 MPa, WA142%, TS 21%. Kenaf is a good raw material for making light-weight composite panels.  相似文献   

9.
Binderless boards were prepared from steam-exploded fiber of oil palm(Elaeis guineensis Jacq.) frond at six levels of explosion conditions. Their properties were investigated and evaluated. The mechanical properties (i.e., modulus of rupture, modulus of elasticity, and internal bonding strength) of the boards increased linearly with increasing board density as the usual hardboard. The boards made from fibers treated under a steam explosion condition of 25 kgf/cm2 (steam pressure) and 5 min (digestion period) exhibited the maximum strength. These boards at a density of 1.2 g/cm3 met the requirement of S-20 grade of JIS A 5905 — 1994 (fiberboard). Thickness swelling of the boards ranged from 6% to 14% under the JIS A 5908 — 1994 (particleboard) test condition and showed no significant changes with increasing board density. The main bonding strength of the board is believed to be due to a ligninfurfural linkage. Considering the chemical components of oil palm frond, which is rich in hemicellulose, there seems to be a good possibility for producing binderless boards using steam-exploded fibers of oil palm frond.This study was presented in part at the 2nd International Wood Science Seminar, Serpong, Indonesia, November 1998  相似文献   

10.
A minimum-distance boundary method that will minimize the sum of distances between measured points and a fitted self-thinning lines on log–log coordinates of stand density and quadratic mean diameter was proposed in order to estimate the maximum size density line: an upper boundary of self-thinning line. The lines for A. mangium were inferred with this method using data in two areas of unthinned plantations in South Sumatra, Indonesia. Slopes of the lines were deduced as –1.63 and –1.67 within the range of 10–21cm of quadratic mean dbh. The intensity of self-thinning was examined as a rate of reduction of density in relation to dbh increment. The rates were found to be higher than the slopes in the range close to the maximum line; hence the lines inferred in this study were likely existent. Maximum basal area deduced from the size-density line was 28–30m2/ha at 12cm of dbh and then it increased up to 34–37m2/ha at 20cm of dbh.  相似文献   

11.
从苎麻秆的产量、分布以及基本物理化学性质等方面,分析了苎麻秆作为无胶碎料板原料的可行性.苎麻在我国的产量丰富,分布也较集中,这为工业化生产创造了条件.根据苎麻秆的特点制定相应的生产工艺,在实验室条件下生产出的无胶苎麻秆碎料板物理力学性能可达到JIS A 5908日本人造板检测标准要求.  相似文献   

12.
Wood-based composites (medium density fiberboard, hardwood plywood, softwood plywood, particleboard, and oriented strand board) treated with a mixture formulation of 3-iodo-2-propynyl butylcarbamate (IPBC) and silafluofen using supercritical carbon dioxide as a carrier solvent were evaluated for their resistance to biological attack in a laboratory study. The formulation was pre-pared by mixing 10g of IPBC and 1g of silafluofen in ethanol solution (20ml). Treatments were conducted at 35°C/7.85MPa, 35°C/9.81MPa, and 55°C/11.77MPa with the direct introduction of 20ml of the formulation into the treatment vessel with a capacity of ca. 2000ml at a rate of 2ml/min. Laboratory tests indicated that the treatment conditions used significantly enhanced the resistance of the treated wood-based composites against fungal and termite attacks. Because no significant difference in efficacy against both biodegrading agents was noticed regardless of the treatment conditions, the treatment at 35°C/7.85MPa was thought to be the most economical in terms of energy consumption and performance of treated materials. However, the amount of biocides in a formulation must be carefully selected in accordance with the required treatment condition to ensure satisfactory performance of the treated wood-based composites against any biological agent.  相似文献   

13.
High-density and high-resin-content boards were produced by phenolic resin impregnation into board materials prepared by the water-vapor-explosion process (WVE) to develop high-durability wood composite boards for exterior use. Wet-dry cyclic tests and accelerated weathering tests were conducted, and the fundamental properties were determined to examine the effect of resin impregnation on board qualities. Bending and internal bond strength of resin-impregnated boards (I-board) satisfied the criterion for 18-type particleboard described in JIS A 5908. Thickness swelling (TS) after 24-h water immersion was approximately 2%. Resin impregnation improved the dimensional stability of the boards. In wet—dry cyclic testing, TS of I-board was the same as that of plywood. The retention ratio of modulus of rupture of I-board was large; thus, I-board had high bond durability. Color change of I-board was less than that of ordinary particleboard after a 500-h accelerated weathering test. I-Board had lower surface roughness than boards produced by a spray application method (S-board) and higher water repellency, although the difference in resin contents of the face layer was small. Thus, it is suggested that the surface properties and weatherability of I-board were improved by impregnation of phenolic resin. High-density and resin-impregnated boards made from the WVE elements are expected to withstand actual exterior use. Part of this report was presented at the 54th Annual Meeting of the Japan Wood Research Society, Sapporo, August 2004  相似文献   

14.
In a Cryptomeria japonica plantation, we examined the composition and seasonal abundance of microarthropods in communities associated with habitat substrates in the canopy (defined as dead leaves, dead branches, and living leaves) and compared them with those in soil communities. Habitat substrates and microarthropods were periodically collected by the branch-clipping and washing method from the canopy and by the Tullgren method from the soil. Oribatida, Collembola, and larvae of the Chironomidae, most of which are detritivorous or fungivorous, were dominant in the canopy. The dominant oribatid and collembolan families differed markedly between the canopy and the soil. Numbers of all microarthropods per unit dry weight of leaf or per unit area of branch ranged from 4.2 to 11.7g–1 dry wt on dead leaves, 0.13–0.48cm–2 on dead branches, and 1.3–6.4g–1 dry wt on living leaves. In the soil, the number of individuals per unit ground area ranged from 24000 to 220000m–2. The total abundances of microarthropods on dead leaves and dead branches were almost constant throughout the year. These results suggest that the arboreal litter characteristic of C. japonica canopies is utilized consistently by large numbers of detritivorous and fungivorous microarthropods, and that the decomposition of dead foliage and branches is initiated in the canopy.  相似文献   

15.
This study quantitatively compared the sapling (height 62–289cm) architecture and growth of Castanopsis cuspidata and Quercus glauca, both of which are major components in the temperate zone of western Japan, under shaded light conditions in secondary forest. When the sapling architectures were compared at the same support mass (trunk + branch mass), C. cuspidata had a larger crown area but a smaller height gain than did Q. glauca owing to the allocation of more biomass to lateral branches in C. cuspidata. The above-ground relative growth rate (RGR) of C. cuspidata (0.442gg–1 year–1) was nearly twice that of Q. glauca (0.256gg–1year–1), primarily as a result of a greater total leaf area per above-ground biomass (LAR) in C. cuspidata (56cm2g–1) as compared to Q. glauca (33cm2g–1). Because it has a disadvantage in height gain, related to its allocation pattern of biomass, C. cuspidata realized the same height growth (RGRH) as Q. glauca, despite the large biomass production. The great potential for photosynthesis in C. cuspidata, which results from its vigorous lateral spreading, is presumed to give it a long-term advantage over Q. glauca in the shaded forest understory. Q. glauca invests preferentially in trunk biomass, possibly giving it an advantage in sunny sites as opposed to a shaded forest understory.  相似文献   

16.
The rate of change of leaf mass, N and P levels in understory vegetation at various levels of canopy cover were measured for 2 years following canopy cover manipulations in northern red oak (Quercus rubra L.) and red pine (Pinus resinosa Ait.) stands in northern Lower Michigan, USA. Canopy cover treatments consisted of clearcut, 25% (50% during first sampling year), 75%, and uncut. Leaf mass, and N and P contents were significantly higher in the clearcut treatment than in other canopy cover treatments, except for the 25% treatment in red pine stands. Leaf N concentrations in understory vegetation were also significantly higher in the clearcut (1991, 20.8mgg–1; 1992, 22.4mgg–1) than in the uncut treatment (1991, 16.5mgg–1; 1992, 16.9mgg–1). Canopy type (northern red oak and red pine) had little influence on understory nutrient status and leaf mass. In addition, fronds of bracken ferns in all canopy cover treatments in both northern red oak and pine stands were a major sink of nutrients in the understory. The results of this study showed that partial canopy removal generally had only a minor impact on understory leaf production and nutrient status compared with clearcuts during the 2-year period following canopy removal.  相似文献   

17.
Three-layered composite oriented strand boards were manufactured using very thin hinoki (Japanese cypress, Chamaecyparis obtusa Endl.) strands oriented in the faces and mixtures of sugi (Japanese cedar, Cryptomeria japonica D. Don.) and hinoki particles in the core. The boards were composed of two density levels, with 1:8:1, 0.5: 9 : 0.5, and 0: 10 : 0 face: core: face ratios. Polymeric and emulsion type isocyanate resins were used. The resin contents for the strands in the face and particles in the core were 10% and 5%, respectively. The steam-injection press was applied at 0.62MPa (160°C), and the steam-injection time was 2min. The mechanical and physical properties of the boards were evaluated based on the Japanese Industrial Standard. The parallel moduli of rupture and elasticity along the strand orientation direction and the wood screw retaining force increased with increasing face/core ratios. Incorporation of 10%–20% of thin strands in the face of the boards improved the parallel moduli of rupture and elasticity by 47%–124% and 30%–65%, respectively. In addition, the thickness swelling after water-soaking at 20°C for 24h, and the parallel linear expansion after boiling for 2h and water-soaking at 20°C for 1 h, of the three-layered composite boards were below 8% and 0.15%, respectively, despite a short steam-injection press time. The thickness swelling of the boards decreased with increasing face/core ratios. In contrast, the presence of face strands seems to have a minimal effect on the moduli of rupture and elasticity along the perpendicular direction of the three-layered composite boards. A similar trend was observed for the internal bond strength, hardness, and linear expansion along the perpendicular direction.This paper was presented at the 47th annual meeting of the Japan Wood Research Society, Kochi, April 1997  相似文献   

18.
Low-density binderless particleboards from kenaf core were successfully developed using steam injection pressing. The target board density ranged from 0.10 to 0.30g/cm3, the steam pressure used was 1.0MPa, and the steam treatment times were 7 and 10min. The mechanical properties, dimensional stability, and thermal and sound insulation performances of the boards were investigated. The results showed that the low-density kenaf binderless particleboards had good mechanical properties and dimensional stability relative to their low board densities. The board of 0.20g/cm3 density with a 10-min treatment time produced the following values: modulus of rupture 1.1MPa, modulus of elasticity 0.3GPa, internal bond strength 0.10MPa, thickness swelling in 24h water immersion 6.6%, and water absorption 355%. The thermal conductivity of the low-density kenaf binderless particleboards showed values similar to those of insulation material (i.e., rock wool), and the sound absorption coefficient was high. In addition, the boards are free from formaldehyde emission. Kenaf core appears to be a potential raw material for low-density binderless panels suitable for sound absorption and thermally resistant interior products.Part of this report was presented at the 52th Annual Meeting of the Japan Wood Research Society, Gifu, Japan, April 2002  相似文献   

19.
Process water of a pulp mill with extended kraft cooking, two-stage oxygen delignification, and chlorine dioxide bleaching was examined from the aspect of a new standard for environmental water quality in Japan. According to the new standard, the concentration of dioxins – polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, coplanar polychlorinated biphenyls – in environmental water is restricted to less than 1pg TEQ/l. We clarified that the concentrations of the dioxins in sewers in the chlorine dioxide stage and the alkali stage were less than 1pg TEQ/l and that the 2,3,7,8-tetrachlorodibenzofuran concentrations were 0.5pg/l or less. In addition, a main source of 1,3,6,8- and 1,3,7,9-tetrachlorodibenzo-p-dioxins in the process water seemed to be an agrochemical in water supplied from a river.  相似文献   

20.
Soil respiration and soil carbon dioxide (CO2) concentration were investigated in a tropical monsoon forest in northern Thailand, from 1998 to 2000. Soil respiration was relatively high during the rainy season and low during the dry season, although interannual fluctuations were large. Soil moisture was widely different between the dry and wet seasons, while soil temperature changed little throughout the year. As a result, the rate of soil respiration is determined predominantly by soil moisture, not by soil temperature. The roughly estimated annual soil respiration rate was 2560gCm–2year–1. The soil CO2 concentration also increased in the rainy season and decreased in the dry season, and showed clearer seasonality than soil respiration did.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号