首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
【目的】研究花粉内含物的变化与花粉活力之间的关系。【方法】在4℃下贮藏砀山梨花粉,离体萌发法测定花粉活力,近红外光谱仪测定花粉的蛋白质、脂肪、硫甙、水分含量。【结果】随着花粉活力的下降,花粉中总蛋白质含量的增加,总脂肪含量呈锯齿状,硫甙含量呈锯齿状,含水量呈上升趋势。花粉活力与脂肪、硫甙、含水量与蛋白质之间有相互关系,花粉活力与脂肪r为0.623**,花粉活力与硫甙r为0.813**;花粉活力与含水量r为-0.886**,花粉活力与蛋白质r为-0.807**。【结论】脂肪、硫甙与花粉活力正相关,含水量、蛋白质与花粉活力呈负相关,花粉储藏应干燥以降低花粉呼吸代谢。  相似文献   

2.
【目的】PM2.5、PM10等空气颗粒物是城市空气首要污染物,在城市空气污染中占主导地位。了解固定外源下PM2.5、PM10在城市绿地的消减特征,可为城市阻控空气颗粒物、缓解空气污染提供有利依据。然而目前空气颗粒物的研究大多以点测定方式量化空间结构及植被类型对空气颗粒物的影响,对固定外源污染下PM2.5、PM10在城市绿地空间尺度上的影响机制研究较少。【方法】研究结合DSM与地统计学,以南昌市人民公园为例,探索城市公园阻隔外源污染的空间梯度效应及空间结构类型差异。利用克里金插值法对其空间分布特征进行可视化模拟;利用Arcgis和R语言等软件分析不同空间结构PM2.5、PM10的浓度差异。【结果】人民公园PM2.5、PM10的浓度在空间分布上趋势一致,均表现为以固定外源点为核心,浓度随距离增加呈极显著梯度递减的趋势,且在中部(约距外源点150~220 m处)消减效率最高,...  相似文献   

3.
【目的】古尔班通古特沙漠稀疏植被斑块格局是水分稀缺的荒漠区对降水在地表的表现。【方法】基于年降水量变化特征,选择1990年TM影像、2001年ETM+、2010年TM影像和2015年OLI遥感影像为数据源,结合1990~2015年蔡家湖气象站逐年的降水数据,计算古尔班通古特沙漠南缘的植被盖度、斑块面积、斑块数量、斑块密度,分析不同植被盖度、面积变化趋势,探讨年降水量对植被盖度、斑块面积、数量、密度的影响。【结果】1990~2015年,植被盖度总体呈减少趋势,其中二级植被面积明显增加(1 089.557 km2),增幅为20.154%,一、三、四级植被面积略有减少,减幅分别为-98.752%、-61.581%、-96.889%。随着降水量的增加,斑块数量,密度增加,破碎程度变小,植被盖度增加。【结论】1990~2015年古尔班通古特沙漠南缘稀疏植被盖度随年降水的变化总体呈退化-好转-退化趋势。年降水量变化与稀疏植被盖度、斑块面积、数量、密度均呈正相关关系。  相似文献   

4.
【目的】研究新疆北疆超晚冬播条件下,不同冬、春小麦品种光合特性和产量的影响。【方法】冬小麦适播期为9月20~30日,播种期为10月31日,延迟播期31~41 d,在超晚播条件下,采用随机区组设计,田间比较冬、春小麦品种的光合特性、籽粒灌浆速率和产量的差异。【结果】冬、春小麦品种旗叶叶绿素含量、净光合速率、蒸腾速率、气孔导度因不同品种而异,新冬41号和新春6号均高于其它品种,依次为60.2和58.1、33.1 μmol/(m2·s)和32.5 μmol/(m2·s)、10.22 mmol/(m2·s)和10.41 mmol/(m2·s)、0.33 mol/(m2·s)和0.36 mol/(m2·s)。春小麦品种最大灌浆速率的峰值出现在花后18~20 d,而冬小麦出现在15~17 d。新冬41号和新春6号产量较高,为7 812.3~7 935.6 kg/hm2,获得高产的穗数431.7×104~475.2×104穗/hm2,穗粒数31.6~36.3,千粒重51.7~52.8 g。【结论】新冬41号和新春6号较适合北疆超晚冬播。  相似文献   

5.
【目的】 研究赤霉素对枣花繁殖生物学特性的影响,为生产上赤霉素的科学应用提供理论依据。【方法】 以灰枣和骏枣的鲜花粉为材料,于盛花期喷施赤霉素(GA3)处理,采用离体培养基,I-KI(碘-碘化钾)染色法,联苯胺-过氧化氢法测定,分析赤霉素对红枣花粉萌发和活力特性的影响。【结果】 低浓度(10~30 mg/L)赤霉素对灰枣和骏枣花粉萌发率、花粉管长度、花粉活力、花粉量和柱头可授性有较显著的促进作用。随着赤霉素浓度的升高,对花粉的萌发特性产生抑制作用;赤霉素处理后7 d的花粉萌发率和花粉活力跟对照没有显著差异。【结论】 枣花粉萌发、花粉管长度、花粉量和花粉活力特性,对外源赤霉素的响应表现为低浓度促进,高浓度抑制作用。  相似文献   

6.
【目的】探究晋北地区气候和植被类型等因子对植被净初级生产力(NPP)的影响,对于明晰干旱半干旱地区植被对气候变化的响应,以及保障生态脆弱地区植被恢复和可持续发展具有重要参考价值。【方法】基于改进的CASA模型模拟了晋北地区2000-2020年植被NPP,量化了其时空分布格局、变化趋势和空间变异性,并分析了研究期间气候因素与植被NPP的相关关系。【结果】2000-2020年研究区植被NPP年均值(以C计)介于225.28~484.09 g/m2之间,平均值为349.76 g/m2,年均增速为8.75 g/m2。植被NPP年均值呈现出东高西低、南高北低的格局,NPP年均值主要集中在200~400 g/m2,占研究区总面积的65.15%,各植被类型NPP年均值的大小为:林地(691.79 g/m2)>灌丛(492.97 g/m2)>耕地(378.39 g/m2)>草地(343.85 g/m2)>...  相似文献   

7.
【目的】 研究新疆滴灌冬小麦抗倒伏性能适宜播种密度。【方法】在大田试验条件下,于2016~2017年冬小麦生长季,采用单因子随机区组设计,设置四个播种密度处理:M1(525×104粒 / hm2),M2(600×104粒/ hm2),M3(675×104粒/ hm2),M4(750×104粒/ hm2)。研究不同种植密度对滴灌冬小麦株高、重心高度、基部节间长度、基部节间茎粗、茎秆鲜重等形态特征和茎秆基部节间抗折力、茎秆基部节间充实度、木质素含量等理化特征的影响,以及对田间倒伏率和对产量因素的影响。【结果】滴灌冬小麦株高、基部节间长和重心高度均随着播种密度的增大而增大,茎秆基部节间木质素含量和充实度均随着密度的增加而降低。随着密度的增大各处理茎秆抗倒伏指数呈降低的趋势;产量以M2处理为最高,为7 371.19 kg/ hm2,分别较M3、M1和M4处理增加1.82%、3.45%和10.77%;田间倒伏率以M4处理为最高,为61.1%。【结论】种植密度为675×104粒/ hm2时,滴灌冬小麦籽粒产量最高,茎秆高度适宜,重心高度相对较低,抗倒伏指数相对较高。  相似文献   

8.
【目的】观察丝瓜品种间花粉粒形态特征,研究其品种间的差异性及各品种间的亲缘关系,为丝瓜品种的分类鉴定提供孢粉学依据。【方法】利用扫描电镜对20个丝瓜栽培品种的花粉进行观察,对所考察性状进行主成分分析和类平均法(UPGMA)聚类分析。【结果】参试品种的花粉粒形态相似,均为长球形,赤道面观为长椭圆形,极面观为三裂圆形,具3条萌发沟,裂至接近两极,未相接,均属于N3P4C5型花粉;品种间的花粉极轴长107.03~112.74μm、赤道轴长57.17~61.04μm、花粉大小6 164.15~6 814.02μm2、花粉外壁均为网状纹饰,网孔密度为0.129~0.220 n·μm-2,均存在显著差异;经主成分分析可知,影响花粉分类的主要性状指标有极轴长、赤道长、花粉大小、花粉形状和外壁纹饰;对考察的8个花粉性状的聚类分析,在欧氏距离23的水平上,将20个品种聚类为三大类群。【结论】花粉粒极轴长、赤道轴长、形状、大小和网孔密度等性状差异可用作丝瓜品种间亲缘关系及分类鉴定的孢粉学依据。  相似文献   

9.
【目的】研究新疆北疆地区玉米品种密植条件下的株高、穗位高、穗长、穗粒数、穗粒重、脱粒含水量等主要农艺性状和产量的变化,找出该地区密植条件下玉米产量的主要因子,为筛选出适宜新疆北疆地区种植的耐密高产优质的玉米品种提供科学依据。【方法】采用北疆18个中熟玉米品种为材料,在10.5×104株/hm2密度下,分析各参试玉米品种产量及主要农艺性状。【结果】在密植条件下各参试品种产量差异极显著;产量与行粒数(r=0.565*)、百粒重(r=0.485*)呈显著正相关;18个玉米品种的9个农艺性状可以解释85.6%的产量变异;优化后的线性回归方程为Y=-16.391+0.469X6+0.33X8。【结论】新疆北疆博州地区密植条件下选择玉米品种时,选择穗长稍长、穗粒重较大、百粒重较重且脱水快的品种,华西704,登海1707和华西917可作为新疆博州地区中熟春播地膜玉米栽培选择品种。  相似文献   

10.
塔河下游典型绿洲灌区土壤盐分空间变异特征   总被引:1,自引:0,他引:1  
【目的】 研究典型绿洲灌区不同深度土壤的盐渍化特征和空间分布状况。【方法】 运用GPS定位技术进行调查与采样,并结合室内样品测定结果,对塔里木河下游31团灌区土壤盐分含量和各盐分离子含量进行地统计分析和Kriging空间插值。【结果】 研究区内土壤总体呈碱性,盐分组成以氯化物-硫酸盐为主,受季节及灌溉影响,秋季蒸发强烈处于积盐阶段,根域层(0~60 cm)土壤盐分均大于深层(60~100 cm)土壤盐分。根域层盐分、Cl-、Mg2+、SO2-4的半方差函数拟合模型符合指数模型,深层盐分、K++Na+符合高斯模型,HCO-3、Ca2+符合球状模型。根域层盐分大多处于轻、中度盐渍化,重度盐渍化区域主要集中在研究区中部荒漠化程度高、地形复杂的区域,深层土壤盐分受秋季潜水蒸发影响,绝大部分处于轻度盐渍化,变化范围小,分布较为均匀。各土层中阴离子均以SO2-4为主,阳离子均以K+和Na+为主,SO2-4、Cl-、K++Na+与根域层土壤盐分有着相同的分布特征。【结论】 31团灌区土壤含盐量较高,各层土壤均处于不同程度的盐渍化状态,47.12%的根域层(0~60 cm)土壤盐分处于中度盐渍化状态,90.01%的深层(60~100 cm)土壤盐分处于轻度盐渍化状态。  相似文献   

11.
【目的】研究不同氮素用量对设施韭菜气体交换及叶绿素荧光参数的影响。【方法】以1年生韭菜作为材料,通过U1(CK,0)、U29.2 kg/(667m2·y)、U318.4 kg/(667m2·y)、U427.6 kg/(667m2·y)、U536.8 kg/(667m2·y)、U646.0 kg/(667m2·y)、U755.2 kg/(667m2·y)、U864.4 kg/(667m2·y)8个处理,测定气体交换参数(净光合速率、胞间CO2浓度、蒸腾速率、气孔导度)、叶绿素荧光动力学参数(光下稳态荧光、电子传递速率、光适应下PSII反应中心激发能捕获效率、CO2同化的量子效率、非光化学淬灭系数和光化学淬灭系数)。【结果】韭菜叶片气体交换及叶绿素荧光动力学参数均随着氮素浓度的增加均表现出先增加后减少的趋势,光合参数的最施氮素用量为13.40~33.73 kg/(667m2·y),叶绿素荧光参数的最施氮素用量在27.72~40.76 kg/(667m2·y)。【结论】综合光合参数与叶绿素荧光参数,宁夏地区设施韭菜氮素用量为27.72~33.73 kg/(667m2·y)(即尿素施用量为60.25~73.33 kg/(667m2·y)。  相似文献   

12.
【目的】筛选出适宜76 cm等行距种植的机采棉最适宜种植密度。【方法】2020年4~10月采用76 cm等行距地膜种植,设置9×104株/hm2(A)、12×104株/hm2(B)、15×104株/hm2(C)、18×104株/hm2(D)、21×104株/hm2(E)5个种植密度进行田间试验,测定叶面积指数(LAI)、叶倾角(MLA)、冠层开度(DIFN)、光截获率(PAR)、冠层温度、湿度、产量等指标,研究不同种植密度对棉花冠层结构、冠层温湿度及产量的影响。【结果】各处理棉花叶面积指数和叶倾角均随种植密度的增加而增加,呈现现为E>D>C>B>A,冠层开度则基本呈现出A>B>C>D>E;各处理的光截获率在空间上基本上呈现出“V”型变化趋势,且密度越大,冠层内平均温度越低、平均湿度越高。当处理水平为15×104<...  相似文献   

13.
【目的】研究播期和密度对新疆南疆滴灌冬小麦光合特性及产量构成的影响,分析适宜的播期及种植密度,为生产实践提供依据。【方法】以新冬22号(少穗型)和邯郸5316(多穗型)为材料,采用裂区田间试验设计,主区为3个播期:9月23日(B1)、10月4日(B2)和10月15日(B3);副区为4个播种量:播种量3.15×106 粒/hm2(M1)、5.1×106 粒/hm2(M2)、7.05×106 粒/hm2(M3)和9×106 粒/hm2(M4)。【结果】滴灌冬小麦旗叶Pn和Tr在扬花期最大,新冬22号在B2播期、邯郸5316在M3播期下平均Pn最高。B2M2处理的Pn最高,新冬22号和邯郸5316分别达15.45和16.94 μmol CO2/(m2·s);Tr以M2处理最大M4处理最小,随播期延迟,Tr呈缓慢上升趋势,并以B2M2(新冬22号)或B2M1(邯郸5316)最高,分别为6.35和6.08 μmol CO2/(m2·s);旗叶SPAD以扬花期达最高,平均SPAD随密度增大或播期延迟而减少,B1M1处理最大,其次为B3M1(新冬22号)和B2M1(邯郸5316)。【结论】建立了播期、播量与产量的关系模型,提出了高产条件下群、个体发育指标。新冬22号在10月1日播种、播量315.30 kg/hm2,邯郸5316在10月2日播种、播量262.47 kg/hm2时产量最高,分别达8 271.88和9 116.19 kg/hm2;提出了晚播增密的技术参数。  相似文献   

14.
【目的】采用遥感提取植被物候的方法,以小兴安岭为研究区,构建森林植被物候时空变化,分析森林植被物候变化对气候变化的响应。【方法】基于GIMMS NDVI 3g影像,运用一元六次多项式拟合植被生长曲线,并结合逐像元动态阈值法提取小兴安岭1982-2015年森林植被生长开始期(SOS)、生长结束期(EOS)和生长季长度(LOS)共3种物候参数;利用ArcGIS软件,将气温、降水以及日照时数数据与植被物候参数逐像元分析,得到物候参数与气象因子偏相关系数的空间分布特征。【结果】(1)植被物候多年平均值空间分布特征呈现由西北向东南方向,植被SOS逐渐提前,植被EOS逐渐推迟,植被LOS逐渐延长的规律。(2)小兴安岭森林植被SOS集中在日序第112.1~128.3天,年际变化在1998年前后出现转折,1998年前呈显著提前趋势(R2=0.284,P=0.028),1998年后呈不显著推迟趋势(R2=0.002,P=0.86),导致整个时间段(1982-2015年)变化不显著,变化幅度为每10年提前0.12 d(R2=0.001,P=...  相似文献   

15.
【目的】基于云南省种养业发展现状,综合考虑农作物种植面积、种植结构以及畜禽粪便处理技术等因素,估算畜禽粪肥养分资源现状及其替代化肥的潜力。【方法】基于文献资料和统计学方法进行数据处理,估算云南省农业种植养分需求量和畜禽粪肥养分资源供给量,采用情景分析评估畜禽粪肥资源利用模式,评价其替代化肥潜力。【结果】(1)云南省农作物氮、磷、钾养分需求量分别为70.27×104、18.22×104和65.89×104 t,畜禽养殖粪便氮、磷、钾养分供应量分别为47.30×104、8.82×104和45.98×104 t。(2)固体粪便堆肥加工为有机肥、液体粪便进行沼液发酵为最佳处理模式,可提供的氮、磷、钾养分量分别为36.83×104、7.90×104和41.59×104 t,分别占作物需求量的52.41%、43.36%和63.12%。(3)在秸秆还田的前提下,云南省氮肥替代幅度为52.41%~72.05...  相似文献   

16.
【目的】土壤微生物数量和酶活性是土壤质量和生态系统功能变化的敏感指标,是判别干扰条件下土壤生态系统退化的重要生物学指标。研究不同放牧强度下温性草甸草原土壤生物性状及其与地上植被的关系,以了解放牧作用下草原土壤与植被退化的过程和机制,为退化草地生态恢复提供理论依据。【方法】以呼伦贝尔草甸草原肉牛控制放牧试验为平台,分析4种不同放牧强度(对照区G0.00:0.00 Au·hm-2、轻度放牧G0.23:0.23 Au·hm-2、中度放牧G0.46:0.46 Au·hm-2、重度放牧G0.92:0.92 Au·hm-2)下温性草甸草原地上植被、土壤微生物生理群数量以及土壤酶活的特性,并探讨土壤生物性状与地上植被指数的相关性。【结果】氨化细菌、好气性纤维素分解菌、嫌气性纤维素分解菌的最高值出现在轻度放牧G0.23处理,好气性固氮菌、嫌气性固氮菌在中度放牧G0.46处理最多。随着放牧强度的增加,除过氧化氢酶外,碱性磷酸酶、脲酶、蔗糖酶均随放牧压力的增加显著降低(P<0.05),植被盖度、群落生物量、植被多样性指数明显下降。各土壤微生物数量(除硝化细菌外)与地上植被物种丰富度、植被盖度、群落多样性指数、生物量均成正相关;碱性磷酸酶和脲酶均与植被盖度、群落多样性指数、群落生物量显著正相关(P<0.05)。【结论】不同放牧强度下温性草甸草原土壤生物性状出现了不同程度的变化,土壤酶活性比微生物生理群数量更能表征土壤生态系统当前所处状态,其同地上植被指数有更好的相关性。  相似文献   

17.
【目的】 研究烟粉虱对棉花为害性及棉田烟粉虱的防治指标,为棉田烟粉虱防控提供理论依据。【方法】 采用田间试验、田间烟粉虱虫量系统调查、棉花产量测定的方法,分析烟粉虱对棉花为害性及防治数据,建立棉田烟粉虱的经济阈值。【结果】 烟粉虱对棉花单株结铃数、单株籽棉重、皮棉单产等均有明显的影响,但对单铃重没有明显的影响;虫口密度(x)与棉花单株结铃数(Y1)、单株籽棉重(Y2)、皮棉单产(Y3)等指标的回归方程分别为:Y1= 12.242 e-0.008 x (r = 0.912 7**),Y2= 29.07e-0.009 6x (r=0.894 4**),Y3= 29.07 e-0.009 6x(r=0.894 4**),虫口密度与棉花单株铃重、衣分没有明显的相关关系。烟粉虱对棉花纤维长度有明显影响,虫量与棉花纤维长度(Y4)回归方程为:Y4 = -0.004 6x + 28.409 r=0.607*【结论】 烟粉虱影响棉花产量和品质。棉田烟粉虱的经济和阈值以若虫计为1.9头/cm2。  相似文献   

18.
【目的】 测定不同氮吸收效率品种对外界NH4 +浓度的响应,解释水稻品种间氮吸收差异的机理。【方法】 采用水培法栽培氮吸收高效的水稻品种齐粒丝苗(QL)和氮吸收低效的品种沪科3号(HK),通过分析水稻幼苗在0—0.80 mmol·L -1低铵浓度和1.00—12.96 mmol·L -1高铵浓度下的铵吸收速率,计算铵吸收动力学参数Vmax和Km值,比较不同氮吸收效率水稻品种的苗期铵吸收特性;通过比较不同NH4 +浓度下的水稻苗期株高、分蘖数、叶绿素含量、以及地上和地下部的干物质和氮素积累量,用根系扫描法分析根系形态,包括总根长、根体积、根表面积、平均直径、根尖数等,用非损伤性扫描离子选择电极技术(scanning ion-selective electrode technique,SIET)测量根分生区和伸长区NH4 +的跨细胞膜运输,用液相氧电极系统分析根系氧损耗,研究不同氮吸收效率水稻品种的苗期生长差异。【结果】(1)在0—0.8 mmol·L -1低铵浓度下,2个水稻品种QL和HK幼苗对NH4 +的吸收符合Michaelich-Menten方程,氮吸收高效品种QL的吸收动力学参数Vmax为氮吸收低效品种HK的1.66倍;当NH4 +的浓度大于1 mmol·L -1 时,水稻幼苗对NH4 +的吸收均随着外界NH4 +浓度的增加而增大,但同一NH4 +浓度下,氮吸收高效品种QL对NH4 +的吸收速率大于氮吸收低效品种HK;(2)水稻根系分生区在外界不同NH4 +浓度下均表现为NH4 +的跨细胞膜净流入,且NH4 +净流入速率随着外界NH4 +浓度的升高而增加,氮吸收高效品种QL在低铵(LN)、中铵(MN)和高铵(HN)处理下根系分生区NH4 +净流入速率分别比氮吸收低效品种HK高42.0%、71.8%和63.6%;根系伸长区NH4 +的跨细胞膜流通品种间存在差异,氮吸收低效品种HK在LN和HN下均出现NH4 +跨细胞膜净输出,而氮吸收高效的品种QL仅在HN下出现NH4 +跨细胞膜净输出,且净输出速率比氮吸收低效的HK低34.30%。(3)在LN和MN浓度下,氮吸收高效品种QL的苗期形态和物质积累并不占优势;适量增铵可以增加水稻的株高、分蘖、叶绿素含量、干物质和氮素积累量,但过高的外界铵浓度对水稻生长特别是根系生长有抑制作用;HN下,氮吸收高效的品种QL显示出一定的生长优势,播种后10–20 d的分蘖增加速率和干物质增加速率分别比氮吸收低效的品种HK高65.7%和31.4%;虽然品种QL的根系氮浓度比品种HK低15.1%,但其地上部氮积累量比HK高23.5%,说明QL比HK能更快地将根系吸收的氮转运至地上部供其生长所需。【结论】 与氮吸收低效品种相比,氮吸收高效品种根系细胞膜上有更多的NH4 +运输载体,根系吸收的NH4 +同化、转运速度快,苗期分蘖速率和干物重积累速率大。  相似文献   

19.
【目的】 研究新疆玛纳斯县周边地区不同种植密度对红花不同采收部位籽粒品种的影响,为红花种质资源选择、良种繁育等育种手段提供一定理论支撑。【方法】 选用新疆红花主栽品种新红花4号作为试验材料,设1.5×104、1.6×104、1.8×104、2.0×104、2.2×104株/667m25个播种密度,3次重复,15个小区处理。在水肥等生长条件均同的情况下,测定不同密度条件下红花籽粒产量与不同部位的分枝数、花球数、籽粒长度、籽粒宽度、籽粒厚度、千粒重、籽粒含油率及脂肪酸含量等性状指标,分析种植密度对新疆红花采收部位籽粒品质的影响。【结果】 不同采收部位籽粒性状存在差异,下部采收红花的千粒重、籽粒含油率及脂肪酸含量等指标均要大于中部和顶端采收的红花籽粒,而顶端采收指标略高于中部采收。不同种植密度下籽粒品质与红花不同部位分枝数量,花球数量呈负相关关系。不同种植密度对红花采收部位籽粒品质及产量形成影响,当种植密度达到2.0×104株/667m2时,红花顶部、中部、下部籽粒千粒重与产量最高,整体品质优势显著。【结论】 新红花4号在玛纳斯县地区的最佳种植密度为2.0×10 4 株/667m2。在红花的良种繁育及生产实践过程中,应选取科学合理的种植密度,以下部红花籽粒作为繁殖材料。  相似文献   

20.
【目的】随着中国加快建设新型能源体系,天然气发电对未来天然气产业及电力系统的支撑作用凸显,但天然气发电的未来发展空间仍缺乏行业共识。合理评估天然气发电的发展空间,将有利于中国新型电力系统建设,以及天然气发电政策的制定。【方法】在分析天然气发电、煤电灵活性改造、抽水蓄能、新型储能、智能电网等不同灵活性调峰措施优劣势的基础上,明确了天然气发电产业未来主要作为电源侧灵活性资源、承担调峰作用这一发展定位。综合利用特尔菲法、学习曲线法等定性、定量方法,分情景预测中国可再生能源发电装机规模,得出对电力灵活性资源的总体需求,进一步研判煤电灵活性改造、抽水蓄能、新型储能等技术未来能够提供的灵活调峰能力,最终计算中国天然气发电装机未来需求空间。【结果】预测结果显示,2030年、2040年、2060年中国电力系统需要电力灵活性资源分别为14×108 kW、27×108~28×108 kW、37×108~40×108 kW,天然气发电作为电力灵活性资源之一,其需求空间将逐步扩大,2025年、2030...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号