首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The extensive area of degraded tropical land and the calls to conserve forest biodiversity and sequester carbon to offset climate change demonstrate the need to restore forest in the tropics. Deforested land is sometimes replanted with fast-growing trees; however, the consequences of intensive replanting on biomass accumulation or plant and animal diversity are poorly understood. The purpose of this study was to determine how intensive replanting affected tropical forest regeneration and biomass accumulation over ten years. We studied reforested sites in Kibale National Park, Uganda, that were degraded in the 1970s and replanted with five native tree species in 1995. We identified and measured the size of planted versus naturally regenerating trees, and felled and weighed matched trees outside the park to calculate region-specific allometric equations for above-ground tree biomass. The role of shrubs and grasses in facilitating or hindering the establishment of trees was evaluated by correlating observed estimates of percent cover to tree biomass. We found 39 tree species naturally regenerating in the restored area in addition to the five originally planted species. Biomass was much higher for planted (15,675 kg/ha) than naturally regenerated trees (4560 kg/ha), but naturally regenerating tree regrowth was an important element of the landscape. The establishment of tree seedlings initially appeared to be facilitated by shrubs, primarily Acanthus pubescens and the invasive Lantana camara; however, both are expected to hinder tree recruitment in the long-term. Large and small-seeded tree species were found in the replanted area, indicating that bird and mammal dispersers contributed to natural forest restoration. These results demonstrate that intensive replanting can accelerate the natural accumulation of biomass and biodiversity and facilitate the restoration of tropical forest communities. However, the long-term financial costs and ecological benefits of planting and maintaining reforested areas need to be weighed against other potential restoration strategies.  相似文献   

2.
Plantations provide a micro-climate that can facilitate the regeneration of other forest species. Often exotic species have been tested for these kinds of functions. To determine the potential for indigenous trees as plantation species for their ability to foster forest species regeneration, this study was undertaken in a mixed indigenous plantation stand. Understories of the stand at 8?years of age were surveyed for plant diversity. The species richness increased by 24% per 1,000?m2 between 2001 and 2008 and the number of families represented increased by 48%. The Shannon Diversity and Simpson Index values confirm a greater diversity 8?years after the plantation was established. The most abundant species in study plots were Chromolaena odorata and Cedrela odorata, which collectively represent about 54% of all species identified in the plots. The most species-rich families were Fabaceae and Euphorbiaceae representing 31% of the total species recorded. Asteraceae and Meliaceae were the two most dominant families, which collectively represent about 55% of all species identified in the plots. 47 forest tree species were found per 1,000?m2 but those classified as ??saplings?? occurred in low densities. The 47 tree species included pioneer species such as Entandrophragma angolensis, Milicia excelsa, and Ceiba pentandra. Growth rates of planted species were differed, with half of the tested species having similar growth capacity to the exotic species. Generally, planted indigenous species enhanced habitats for other forest tree species in degraded sites. The observed growth of indigenous species, if planted and protected, shows that they may help in biodiversity recovery within agricultural landscapes.  相似文献   

3.
A major challenge for cocoa producers in Côte d’Ivoire is to seek alternative shade trees or crop associations to adapt their planting devices and techniques to the shortage of forests. The recent tendency developed by farmers is to plant simplified orchards combining cacao and fruit trees. An on-farm trial was set up in a 5-year-old cocoa farm to compare a cacao monocrop planted at densities of 1,115 trees ha?1 with cacao intercropped with orange or avocado trees, both at 44 trees ha?1. Observations were done on incident light received by the cacao, vigour, growth and cocoa yields. On average, the cacaos received 100 % light in the monocrop, 89.6 % under orange trees and 80.6 % of incident light under avocado trees. They yielded 64.0 pods tree?1 year?1 in the monocrop (equivalent to 2.54 kg dry cocoa beans tree?1), 30.3 pods tree?1 when combined with orange trees and 28.3 pods tree?1 with avocado trees. The two combinations allowed cocoa yields equivalent to those observed in the region (0.58 kg dry cocoa beans tree?1). Vigour and yield were very highly correlated with the incident light received. Both the yield and the incident light are a logistic function of the planting distance from the shade tree. The inflexion point of the logistic functions corresponds to the minimum planting distance between the cacao and the intercropped fruit trees. On this basis, we suggest that the cacaos should not be planted closer than 6.50 ± 0.2 m to the orange or avocado trees.  相似文献   

4.
We estimated forest biomass carbon storage and carbon density from 1949 to 2008 based on nine consecutive forest inventories in Henan Province,China.According to the definitions of the forest inventory,Henan forests were categorized into five groups: forest stands,economic forests,bamboo forests,open forests,and shrub forests.We estimated biomass carbon in forest stands for each inventory period by using the continuous biomass expansion factor method.We used the mean biomass density method to estimate carbon stocks in economic,bamboo,open and shrub forests.Over the 60-year period,total forest vegetation carbon storage increased from34.6 Tg(1 Tg = 1×10~(12)g) in 1949 to 80.4 Tg in 2008,a net vegetation carbon increase of 45.8 Tg.By stand type,increases were 39.8 Tg in forest stands,5.5 Tg in economic forests,0.6 Tg in bamboo forests,and-0.1 Tg in open forests combine shrub forests.Carbon storageincreased at an average annual rate of 0.8 Tg carbon over the study period.Carbon was mainly stored in young and middle-aged forests,which together accounted for 70–88%of the total forest carbon storage in different inventory periods.Broad-leaved forest was the main contributor to forest carbon sequestration.From 1998 to 2008,during implementation of national afforestation and reforestation programs,the carbon storage of planted forest increased sharply from 3.9 to 37.9 Tg.Our results show that with the growth of young planted forest,Henan Province forests realized large gains in carbon sequestration over a 60-year period that was characterized in part by a nation-wide tree planting program.  相似文献   

5.
Average population growth in the African Sudanian belt is 3 % per year. This leads to a significant increase in cultivated areas at the expense of fallows and forests. For centuries, rural populations have been practicing agroforestry dominated by Vitellaria paradoxa parklands. We wanted to know whether agroforestry can improve local rainfall recycling as well as forest. We compared transpiration and its seasonal variations between Vitellaria paradoxa, the dominant species in fallows, and Isoberlinia doka, the dominant species in dry forests in the Sudanian belt. The fallow and dry forest we studied are located in northwestern Benin, where average annual rainfall is 1200 mm. Sap flow density (SFD) was measured by transient thermal dissipation, from which tree transpiration was deduced. Transpiration of five trees per species was estimated by taking into account the radial profile of SFD. The effect of the species and of the season on transpiration was tested with a generalized linear mixed model. Over the three-year study period, daily transpiration of the agroforestry trees, V. paradoxa (diameters 8–38 cm) ranged between 4.4 and 26.8 L day?1 while that of the forest trees, I. doka, (diameters 20–38 cm) ranged from 9.8 to 92.6 L day?1. Daily transpiration of V. paradoxa was significantly lower (15 %) in the dry season than in the rainy season, whereas daily transpiration by I. doka was significantly higher (13 %) in the dry season than in the rainy season. Our results indicate that the woody cover of agroforestry systems is less efficient in recycling local rainfall than forest cover, not only due to lower tree density but also to species composition.  相似文献   

6.
After years of unsustainable logging, dry deciduous dipterocarp forest (DDDF) has become poor in timber stocks and has been converted to industrial crops such as rubber. The objectives of this study were to assess teak (Tectona grandis L.f.) tree establishment under degraded DDDF conditions and to determine factors that influence the suitability of teak as a forest enrichment tree species. A set of 64 experimental plots of 4 900 m2 each was set up and observed for 4–5 years for testing enrichment planting with teak under various combinations of two groups of factors: ecological conditions and forest status. Weighted, non-linear, multivariate regression models were used to detect key factors that influenced the suitability of teak. The results showed that at the age of 4 years the average dominant tree height (defined as 20% of the tallest trees in the experimental plot) reached 11.2, 7.8, 5.3 and 3.8 m for very good, good, average and poor suitability levels, respectively. Survival rates of planted teak from average to very good suitability levels were over 90%. Six key factors that affected the suitability of teak were waterlogging during the rainy season, altitude, stand volume of the degraded DDDF, soil type, percentage of sand and concentration of P2O5 in the soil. Under the extreme ecological and environmental conditions of the DDDF, enrichment planting with teak gave promising results.  相似文献   

7.

Competitive effects of dense herbaceous vegetation (ground cover) can inhibit forest restoration on mine sites. Here we review the evidence of ground cover interactions with planted tree seedlings on coal surface mines of the eastern US, discuss recent research into these interactions, and draw conclusions concerning ground cover management when restoring forests on reclaimed coal mines. Reclaimed mine sites have a high potential to support productive forests, however forest establishment is inhibited by reclamation practices that included soil compaction, and the seeding of competitive ground covers. In the first few years after tree planting, a dense ground cover of grass and legume species commonly seeded on mine sites often affect growth and survival negatively. Herbaceous vegetation providing less extensive and competitive ground coverage may either facilitate or inhibit tree establishment, depending on site conditions. The use of quality planting stock promotes the competitive ability of seedlings by improving nutrient status and the ability to capture available resources. Herbaceous species have contrasting functional characteristics, and thus compete differently with trees for available resources. Negative interactions with trees are more frequently reported for non-native cool-season grasses than for native warm-season grasses, while the effects of legumes change over time. Further research is needed to fully understand the mechanisms of tree/ground cover interactions. The development of seeding mixes that can control erosion, facilitate survival and growth of planted trees, and allow establishment by unplanted native species would aid forest restoration on eastern US, coal mines.

  相似文献   

8.
The Y Ikatu Xingu Campaign brought together indigenous people, farmers, researchers, governmental, and non-governmental organizations seeking riparian forest restoration in the Xingu watershed, in west-central Brazil. Forest restoration is challenging in the region because of scarce nurseries, long distances, and high costs associated with the usual technique of planting nursery-raised seedlings. This article describes mechanized direct seeding and compares it with the planting of seedlings, in terms of cost and tree densities at ages of 0.5 until 5.5 yr after planting. Direct-seeding was mechanized using common agricultural machines designed for sowing cereals or grasses, which were loaded with 200,000 seeds of native trees and 150,000 seeds of annual and sub-perennial legumes, plus 50–150 kg sand ha?1. The Campaign restored more than 900 ha by direct-seeding and 300 ha by planting seedlings. The great demand for native seeds was met by the Xingu Seed Network, formed by Indians, small landholders, and peasants, which commercialized 98 tons of native seeds and earned US$500,000 since 2006. Direct-seeding costs less per hectare than planting seedlings (US$1,845 ha?1 against US$5,106 ha?1), results in higher tree densities (2,500–32,250 trees ha?1 against 1,500–1,650 trees ha?1), is more practical, and creates layers of dense vegetation that better resembles natural forest succession.  相似文献   

9.
Few studies have analyzed how tree species within a mixed natural forest affect the dynamics of soil chemical properties and soil biological activity. This study examines seasonal changes in earthworm populations and microbial respiration under several forest species (Carpinus betulus, Ulmus minor, Pterocarya fraxinifolia, Alnus glutinosa, Populus caspica and Quercus castaneifolia) in a temperate mixed forest situated in northern Iran. Soil samplings were taken under six individual tree species (n = 5) in April, June, August and October (a total of 30 trees each month) to examine seasonal variability in soil chemical properties and soil biological activity. Earthworm density/biomass varied seasonally but not significantly between tree species. Maximum values were found in spring (10.04 m?2/16.06 mg m?2) and autumn (9.7 m?2/16.98 mg m?2) and minimum in the summer (0.43 m?2/1.26 mg m?2). Soil microbial respiration did not differ between tree species and showed similar temporal trends in all soils under different tree species. In contrast to earthworm activity, maximum microbial activity was measured in summer (0.44 mg CO2–C g soil?1 day?1) and minimum in winter (0.24 mg CO2–C g soil?1 day?1). This study shows that although tree species affected soil chemical properties (pH, organic C, total N content of mineral soils), earthworm density/biomass and microbial respiration are not affected by tree species but are controlled by tree activity and climate with strong seasonal dynamics in this temperate forest.  相似文献   

10.
Natural regeneration of large-seeded, late-successional trees in fragmented tropical landscapes can be strongly limited by a lack of seed dispersal resulting in the need for more intensive restoration approaches, such as enrichment planting, to include these species in future forests. Direct seeding may be an alternative low-cost approach to planting nursery-raised tree seedlings, but there is minimal information on its efficacy or when in the successional process this technique will be most successful. We tested directly seeding five native tree species into habitats representing passive and active restoration approaches: (1) recently abandoned pasture; (2) naturally establishing, young secondary forests; and (3) young, mixed-species (fast-growing N-fixers and commercially valuable species) tree plantations established to facilitate montane forest recovery in southern Costa Rica. We monitored germination, survival, growth, and above- and below-ground biomass over a 2-year period. Germination in pastures, secondary forests, and tree plantations was similar (∼43%). Seedling survival after one and two years was significantly higher under tree plantations (91% year 1, 75% year 2) compared to secondary forests (76, 44%) or pastures (74, 41%). Moreover, seedlings had greater total biomass and lower root:shoot ratios in the plantations, suggesting higher nutrient availability in that treatment. Costs for direct seeding were 10- to 30-fold less per 100 seedlings after 2-year compared to nursery-raised seedlings planted at the same sites; however, there are important trade-offs to the two restoration approaches. Planting nursery-raised seedling is a more effective but higher cost approach for rapidly establishing canopy cover and restoring large areas whereas direct seeding is a more efficient way to enrich an existing system. We particularly recommend using direct seeding as a complimentary measure to the more intensive restoration approach of planting fast-growing and N-fixing trees.  相似文献   

11.
Cocoa cultivation is generally considered to foster deforestation. Contrary to this view, in the forest–savannah interface area in Cameroon, farmers have planted cocoa agroforestry systems on Imperata cylindrica grasslands, a soil-climate zone generally considered unsuitable for cocoa cultivation. We undertook a survey to understand the agricultural and ecological bases of this innovation. Age, cropping history and marketable cocoa yield were assessed in a sample of 157 cocoa plantations established on grasslands and 182 cocoa plantations established in gallery forests. In a sub-sample of 47 grassland cocoa plantations, we inventoried tree species associated with cocoa trees and measured soil organic matter levels. Marketable cocoa yields were similar for the two types of cocoa plantations, regardless of their age: 321?kg?ha?1 in cocoa plantations on grasslands and 354?kg?ha?1 in cocoa plantations in gallery forests. Two strategies were used by farmers to eliminate I. cylindrica prior to the establishment of cocoa plantations, i.e., cropping oil palms in dense stands and planting annual crops. Farmers then planted cocoa trees and fruit tree species, while preserving specific forest trees. The fruit tree and forest tree densities respectively averaged 223 and 68 trees?ha?1 in plantations under 10?years old, and 44 and 27 trees?ha?1 in plantations over 40?years old, whereas the cocoa tree density remained stable at 1,315 trees?ha?1. The Shannon–Weaver index increased from 1.97 to 2.26 over the same period although the difference was not statistically significant. The soil organic matter level was 3.13?% in old cocoa plantations, as compared to 1.7?% in grasslands. In conclusion, our results show that the occupation of grasslands by cocoa agroforestry systems is both an important example of ecological intensification and a significant farmer innovation in the history of cocoa growing.  相似文献   

12.
In forests worldwide, ~10?40% of bird and mammal species require cavities for nesting or roosting. Although knowledge of tree cavity availability and dynamics has increased during past decades, there is a striking lack of studies from boreal Europe. We studied the density and characteristics of cavities and cavity-bearing trees in three categories of forest in a north-Swedish landscape: clearcuts with tree retention, managed old (>100 years) forest, and unmanaged old forest. Unmanaged old forests had significantly higher mean density of cavities (2.4?±?2.2(SD)?ha?1) than managed old forest (1.1?±?2.1?ha?1). On clearcuts the mean cavity density was 0.4?±?2.3?ha?1. Eurasian aspen (Populus tremula) had a higher probability of containing excavated cavities than other tree species. There was a greater variety of entrance hole shapes and a higher proportion of cavities with larger entrances in old forest than on clearcuts. Although studies of breeding success will be necessary to more accurately assess the impact of forest management on cavity-nesting birds, our results show reduced cavity densities in managed forest. To ensure future provision of cavities, managers should retain existing cavity-bearing trees as well as trees suitable for cavity formation, particularly aspen and dead trees.  相似文献   

13.
This study examined the effects of framework trees, planted in 1998, and bird community on the natural recruitment of tree seedling species in a forest restoration experiment designed to test the framework species method of forest restoration established by Chiang Mai University’s Forest Restoration Research Unit (FORRU-CMU). Tree seedlings establishing beneath five framework tree species: Erythrina subumbrans (Hassk.) Merr., Hovenia dulcis Thunb., Melia toosendan Sieb. & Zucc., Prunus cerasoides D.Don and Spondias axillaries Roxb., were surveyed. Five trees of each species were selected in the 8-year-old trial plots. Birds visiting each tree were observed to determine possible seed dispersal activities. Thirty-six tree seedling species were found beneath the selected trees, of which 11 were wind-dispersed and 25 were animal-dispersed. The population density of animal-dispersed tree seedlings was higher than the wind-dispersed seedlings beneath all selected framework trees. The sample plots beneath P. cerasoides supported the highest population density of tree seedlings. Forty-nine bird species were recorded visiting the framework trees between July 2006 and June 2007. Non-frugivorous birds were recorded more frequently than the frugivorous birds. The effects of birds on seedling recruitment were different among each of the selected framework tree. Bigger trees, which attracted high number of birds by providing food resources, roosting and nesting sites may increase the seed deposition more than smaller trees with fewer attractants.  相似文献   

14.
Growing concern about increasing concentrations of greenhouse gases in the atmosphere, and resulting global climate change, has spurred a growing demand for renewable energy. In this study, we hypothesized that a nurse tree crop may provide additional early yields of biomass for fuel, while in the longterm leading to deciduous stands that are believed to better meet the demands for other ecosystem services. Ten different species combinations were planted, with two different stocking densities, at three different sites in Denmark. Significant differences, with regard to biomass production, were observed among the different sites (P?P??1?yr?1 more biomass. The additional biomass production was similar to what was obtained in stands with conifers only (Sitka spruce, Douglas-fir and Japanese larch), which produced 4.9–6.1?t ha?1yr?1 more biomass than the pure beech stands. No effects of initial planting density (P?=?.19), or of initial weeding (P?=?.81), on biomass production were observed. Biomass production of the broadleaved crop was in most cases reduced due to competition. However, provided timely thinning of nurse trees, the qualitative development of the trees will allow for long-term timber production.  相似文献   

15.
Enrichment planting is a technique that is gaining recognition for its potential to restore native forests. Due to the steep economic trade-offs involved and dearth of silvicultural and ecological knowledge about native flora, however, it remains unclear whether it has promise for widespread application. Focusing on growth performance, this study explores the restoration potential of twenty-one native tree species 3 years after planting in the understory of a rubber plantation in southern Bahia, Brazil. We tested the effects of slope, aspect, successional guild and basal area of the overstory rubber trees on the enriched species’ height, root collar diameter, and diameter at breast height. Height was the growth parameter that most differentiated species, with Parkia pendula, Sloanea monosperma, and Tachigali densiflora being three of the most successful species. Pioneer species grew faster than the non-pioneer species. Overstory basal area was the most important variable influencing the performance of the planted tree seedlings, while aspect and slope were less important. For every additional unit of basal area per hectare of rubber, there was an incremental decrease in the growth rates of the enrichment species. This suggests that the tree species are likely limited by available light, and that there are distinct trade-offs between overstory rubber density and understory tree species growth that are important to consider when accelerating forest recovery by using enrichment planting techniques.  相似文献   

16.
We investigated the dynamics of litterfall and litter decomposition of Sasa dwarf bamboo (Sasa senanensis) and trees to clarify the characteristics of organic matter and nitrogen cycling between plant and soil in a natural cool-temperate mixed forest ecosystem dominated by an understory vegetation of Sasa. Mean annual Sasa litterfall over the 3-year study period was 164 g m?2 year?1, which accounted for approximately 29% of total litterfall. Litter decomposition of Sasa leaf and Sasa culm was significantly slower than that of tree leaf during first and second years. The slow decomposition rates of both Sasa litter types were caused by a significantly higher silicate than in tree leaf. Nitrogen concentration in litter increased as decomposition progressed, especially in Sasa leaf and tree leaf. As a result of the slow decomposition of both Sasa litter types, 111 and 73% of nitrogen to the initial amounts were retained in Sasa leaf and Sasa culm after 3 years, respectively. The amounts of retained nitrogen in Sasa leaf, Sasa culm, and tree leaf after 3 years were 1.29, 0.47, and 3.92 g N m?2, respectively, indicating that the differences of litter decomposition rates among the litter types influence on the nitrogen cycling in forest ecosystem through the differences of the nitrogen release from litter.  相似文献   

17.
Remnant trees have been widely reported to facilitate tropical forest recovery, however, few restoration strategies can mimic the role such trees play in their absence. This study evaluated the establishment success and growth of planting oversized vegetative ‘stakes’ (>4 m tall) of three species: Ficus pertusa (Moraceae), Bursera simaruba (Burseraceae), and Erythrina poeppigiana (Fabaceae) at three different sites in southern Costa Rica. I found high establishment rates for all species (range 67–100%) with no mortality for Erythrina. This result was coupled with a rapid development of canopy area over 1 yr for Erythrina (7.69 ± 0.86 m2) and Bursera (1.82 ± 0.86 m2), but not Ficus (0.23 ± 0.04 m2). Similar results are reported for height. The study presents an important new addition to the growing body of literature on the use of stakes in tropical restoration, where, oversized stakes may be planted as solitary individuals in restoration sites to mimic the role played by remnant trees in forest recovery.  相似文献   

18.
Urban expansion increases the need for, and pressure on, green areas. Reforestation projects in the rural–urban fringe represent an opportunity for enhancing the environmental quality of peri-urban spaces and a means to contribute to cities carbon neutrality policies. Yet, relatively little information exists regarding the long term (10–25 years) survival and growth rate in urban and peri-urban plantations. This paper reports and discusses the results achieved by a reforestation in the peri-urban space of Rome (Italy), 25 years after its establishment. The plantation has been periodically surveyed between 6 and 24 years of age by means of continuous inventories, with the aim of monitoring growth dynamics. Permanent sample plots have been investigated and stratified by tree species composition (broadleaves vs. conifers, single vs. multispecies) for data analysis. On the whole, plantations show suitable results in terms of rate of growth, carbon storage and uptake, especially in coniferous and mixed stands. The average stand volume of the forest plantation, currently ranges from one-and-a third to one-and-a-half times the average values estimated for natural high forest stands of the same age and species groups at country level. The species groups exhibit differential growth patterns over the observed period, that are mainly due to differences in the ecological traits of the planted trees. Ten years after the establishment, the average annual value of carbon uptake in conifer and mixed species group exceeds 10 Mg CO2 equivalent ha?1 year?1, a figure corresponding to 4 times the value of deciduous broadleaves (oaks and other species) and 1.5 times the value of evergreen oaks. Twenty years after the establishment, the average annual carbon uptake peaks to 25 Mg CO2 equivalent ha?1 year?1 in the mixed species group, exceeds 15 Mg CO2 equivalent ha?1 year?1 in the conifers, and ranks between 6 and 12.5 Mg CO2 equivalent ha?1 year?1 in the groups dominated by broadleaved species. Overall with a surface area just under 300 ha, the carbon uptake level of the Castel di Guido reforestation allows to offset the 0.04% of CO2 emissions of the city of Rome. Although the spatial coexistence of even-aged plantation blocks characterized by a range of ecological traits, is expected to ensure a more continuous carbon sequestration, being less susceptible to damage of any kind, the current lack of silvicultural management may also lead to degradation processes, by triggering e.g. fuel accumulation and, by consequence, forest fires. In this line, recommendations are provided in order to improve the ecological and functional efficiency of the investigated reforestation. The field experiment demonstrates, ultimately, the capability of the continuous forest inventory to take the pulse over several decades of tree species performance and carbon uptake levels in urban and peri-urban reforestations.  相似文献   

19.
Secondary evergreen broadleaved forests are precious remnants for biodiversity conservation and templates for sustainable management of natural forests in subtropical China. Floristic composition, size structure, and spatial pattern of dominant tree species have been investigated for a subtropical secondary evergreen broadleaved forest in the Huitong Yingzuijie National Forest Reserve, Hunan, China. The location of all trees greater than 4 cm in diameter at breast height (DBH) were mapped within a 0.96-ha plot in which species, DBH, and total tree height were recorded. Ripley’s K(t) function was used to analyze spatial patterns and associations. The secondary forest consisted of 74 tree species and 1,596 stems per hectare. A reverse-J shaped DBH classes distribution was observed for all stems and trees of later seral species whereas trees of earlier successional species were distributed irregularly. Significant aggregated spatial patterns were observed for all trees within the forest and for conspecific trees of each dominant species. This result, and a repulsive spatial pattern for interspecific trees of Choerospondias axillaries and Cyclobalanopsis glauca against other dominant tree species, support segregation hypothesis. Contributions of seed dispersal, topographic heterogeneity, and competition to spatial patterns of conspecific trees vary depending on tree species. Attractive spatial pattern among interspecific trees of Liquidambar fortunei, Liquidambar formosana, and Pinus massoniana reflects stochastic colonization of pioneer tree species and a facilitation relationship. Although deciduous species are long-lived and persist over long successional processes, they will eventually be replaced by late seral evergreen species within the secondary forest if no disturbance events occur.  相似文献   

20.
《Southern Forests》2013,75(4):311-318
Average wood density of 38-year-old Cariniana legalis (Mart.) Kuntze, a Brazilian native forest species, was found to increase with faster growth and lower stocking, while decreasing from pith to bark. A complete randomised block design was planted with five blocks. Ten trees were harvested in each of three spacing treatments. We hypothesised that the stand stemwood production would not significantly differ depending on tree spacing. However, tree growth would be higher in the wider spacing and wood density would be higher in the narrower spacing. The diameter growth of trees was higher at 3 m × 2.5 m than at 3 m × 2 m and 3 m × 1.5 m. Nevertheless, this higher individual tree growth at 3 m × 2.5 m did not compensate for the greater tree stock density at 3 m × 1.5 m with stand stemwood production at 38 years of 530 m3 ha?1 and 649 m3 ha?1, respectively. These results suggest that C. legalis, which can produce up to 17 m3 ha?1 y?1 of medium-to high-density timber – about 800 kg m?3 – is a promising native species for forest plantations in Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号