首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: To evaluate gonadotropin secretion and ovarian function after administration of deslorelin acetate to induce ovulation in mares. DESIGN: Randomized controlled trial. ANIMALS: 16 healthy mares with normal estrous cycles. PROCEDURE: 8 control mares were allowed to ovulate spontaneously, whereas 8 study mares received deslorelin to induce ovulation when an ovarian follicle > 35 mm in diameter was detected. Follicle development and serum concentrations of gonadotropins were monitored daily during 1 estrous cycle. Pituitary responsiveness to administration of gonadotropin-releasing hormone (GnRH) was evaluated 10 days after initial ovulation. RESULTS: Interovulatory intervals of mares treated with deslorelin (mean +/- SD, 25.6 +/- 2.6 days) were longer than those of control mares (22.9 +/- 1.8 days). Diameter of the largest follicle was significantly smaller during 2 days of the diestrous period after ovulation in deslorelin-treated mares than in control mares. Concentrations of follicle-stimulating hormone (FSH) were lower in deslorelin-treated mares on days 5 through 14 than in control mares. Concentrations of luteinizing hormone were not different between groups during most of the cycle. Gonadotropin release in response to administration of GnRH was lower in mares treated with deslorelin acetate than in control mares. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of deslorelin was associated with reduction in circulating concentrations of FSH and gonadotropin response to administration of GnRH during the estrous cycle. Low concentration of FSH in treated mares may lead to delayed follicular development and an increased interovulatory interval.  相似文献   

2.
Follicular and hormonal dynamics during the estrous cycle in goats   总被引:3,自引:0,他引:3  
Transrectal ultrasonography of ovaries was performed daily in 6 goats for 3 consecutive estrous cycles. Blood samples collected daily were measured for concentrations of FSH, inhibin A, and estradiol-17beta. Follicular and hormonal data were analyzed for associations between the follicular waves and hormonal concentrations. During the interovulatory intervals, follicular growth and regression occurred in a wave like pattern (2-5 waves), and the predominant patterns were three and four follicular waves. In addition, there was no significant difference among the diameters of dominant follicles during the growth phase of the follicular waves. The number of 3 mm follicles peaked on days 0, 7, and 11 in interovulatory intervals that had three follicular waves and on days -1, 5, 11, and 15 in those that had four follicular waves. Plasma concentrations of FSH increased around the day of follicular wave emergence and declined with the growth of follicles. Circulating FSH increased again concomitant with regression of dominant follicles in the anovulatory wave, whereas FSH levels remained low in the ovulatory wave. Inhibin A was negatively correlated with FSH, while it was positively correlated with estradiol-17beta, suggesting that inhibin A is a product of healthy growing follicles and that it contributes to the suppression of FSH secretion. In conclusion, the growth of ovarian follicles in goats exhibits a wave-like pattern, and follicular dominance is less apparent in goats. Moreover, inhibin A may be a key hormone for regulation of the follicular wave through suppression of FSH secretion in goats.  相似文献   

3.
A GnRH antagonist (Acyline) was used to study the role of FSH in early development of a follicular wave in 61 mares. In Experiment 1, a single dose of 3 mg per mare, compared with 0 and 1 mg, suppressed both the FSH and follicle responses to exogenous GnRH. In Experiment 2, high concentrations of FSH were induced by two successive ablations of all follicles ≥ 6 mm on days 10 and 13 (day 0 = ovulation). A single treatment with Acyline resulted in significantly greater suppression of plasma concentrations of FSH than a single treatment with charcoal-extracted follicular fluid (source of inhibin) or oestradiol. Suppression of FSH was not significantly different between the group treated with Acyline alone and a group treated with a combination of Acyline, inhibin and oestradiol. In Experiment 3, all follicles were ablated on day 10 to induce an FSH surge and a new follicular wave. Acyline treatment on day 10 resulted in an immediate decrease in FSH, without a significant effect on day of emergence of a new wave or growth of follicles from 7 to 11 mm on days 11–13. Treatment on day 15, a day before expected follicle deviation and after the peak of the wave-stimulating FSH surge, resulted in an immediate decrease in FSH and cessation of follicle growth. Results indicated that growth of follicles for about 2 days after wave emergence was independent of FSH. In contrast, during the decline in the wave-stimulating FSH surge and before follicle deviation, growth of follicles was dependent on FSH.  相似文献   

4.
To clarify the effect of lactation period on ovarian follicular activity and associated hormonal levels in goats, six goats were monitored daily by ultrasonographic examination with blood sampling during early (Days 5 to 25; Day 0 was the day of kidding) and late (Days 40 to 60) lactation. While the presence of a corpus luteum of pregnancy retarded follicular growth in the ipsilateral ovary until Days 11-13 postpartum, the total follicular number (TFN) and area (TFA) increased during late lactation due to the significant increase in the number of medium- and large-sized follicles and decrease in the number of small follicles. Four goats showed a similar pattern of follicular development during the period studied characterized by the emergence of five and six waves during the early and late lactation, respectively. The largest follicle diameter of the first three waves monitored during early lactation was significantly smaller as compared with the diameter of those existing during late lactation. TFN showed a positive correlation with FSH but showed a negative correlation with immunoreactive (ir-) inhibin and estradiol during the postpartum period. TFA was positively correlated with ir-inhibin, estradiol and PRL and negatively correlated with FSH during the monitored periods. The plasma levels of ir-inhibin and progesterone were significantly higher during late lactation compared with the levels recorded during early lactation. Ir-inhibin levels showed a significant positive correlation with LH and estradiol during early and late lactation but showed a negative correlation with FSH during the whole lactation period. LH was positively correlated with estradiol and PRL during early and late lactation, respectively. These results suggest that the lactation period has a detrimental effect on ovarian activity during the early postpartum period in goats.  相似文献   

5.
The present investigation was undertaken to study the relationship between circulating inhibin and FSH concentrations during the estrous cycle in buffaloes and Sahiwal cattle. The pattern of inhibin concentrations was similar, with peak concentrations on Day -2 (Day 0 = day of estrus) and minimum concentrations on Days 12 and 11 in buffaloes and cattle, respectively. Circulating FSH concentrations were the highest on Day 0 and lowest on Days 8 and 13 in buffaloes and cattle, respectively. Peripheral plasma inhibin concentrations were negatively correlated to FSH concentrations in buffaloes (r = -0.27, P < 0.01) and cattle (r = -0.35, P < 0.01) indicating that inhibin is involved in negative feedback regulation of FSH in both these species.  相似文献   

6.
Recent studies (2005–2008) on the interrelationships among the preovulatory follicle and periovulatory circulating hormones are reviewed. Close temporal and mechanistic relationships occur between estradiol/inhibin and follicle-stimulating hormone (FSH), between estradiol and luteinizing hormone (LH), and between progesterone and LH. Estradiol from the dominant follicle forms a surge that reaches a peak 2 days before ovulation. Estradiol, as well as inhibin, has a negative effect on FSH, and estradiol has a negative effect on LH. When estradiol decreases, the negative effect diminishes and accounts for the beginning of an FSH increase and a transition from a slow to rapid increase in LH on the day of the estradiol peak. The decrease in estradiol and the reduction or cessation in the growth of the preovulatory follicle beginning 2 days before ovulation are attributable to the development of a reciprocal negative effect of LH on follicle estradiol production when LH reaches a critical concentration. The LH decrease after the peak of the LH surge on the day after ovulation is related to a negative effect of a postovulatory increase in progesterone. Measurable repeatability within mares between consecutive estrous cycles occurs during the preovulatory period in diameter of the ovulatory follicle and concentrations of LH and FSH. Hormone-laden follicular fluid passes into the peritoneal cavity at ovulation and transiently alters the circulating concentrations of LH and FSH. Double ovulations are associated with greater estradiol concentrations and reduced concentrations of FSH.  相似文献   

7.
Relatively few studies have been reported regarding the reproductive physiology of female Thai native cattle. Therefore, the objective of the present study was to evaluate the follicular dynamics and concentrations of follicle stimulating hormone (FSH), estradiol (E2) and progesterone (P4) during the estrous cycle in Thai native heifers (TNH) and to compare obtained results with those of European and Indian cattle breeds previously reported. For the detection of estrus, ovaries of all 20 heifers were examined twice daily (12 h intervals) by ultrasonography for three consecutive estrous cycles. From data of 60 estrous cycles (n = 60 estrous cycles from 20 heifers), it was found that 14 (70%) and 6 heifers (30%) had two (42 estrous cycles collected from 14 heifers) and three follicular waves (18 estrous cycles collected from 6 heifers), respectively. The days when estrus was detected, interovulatory intervals, life‐spans of corpus lutea (CL), and days for growing and regression of CLs were shorter in the two follicular waves than those in the three follicular waves (P < 0.05). In both two and thre follicular waves, larger maximum diameters and higher growth rates of the dominant follicle (DF) in an ovulatory wave were observed than those of the preceding waves without ovulation (P < 0.05). There was a progressive increase in follicular size and FSH and E2 production during follicular growth in each follicular wave. In addition, the FSH and E2 peak concentrations during the ovulatory wave were higher than those of the anovulation waves (P < 0.05). Moreover, although the ovarian follicular dynamic patterns in Thai native heifers were similar to those previously reported for European and Indian cattle breeds, the diameter of the largest preovulatory follicle (OF), subordinate follicles (SF) and CLs were smaller than those in European and Indian cattle breeds. In conclusion, when compared with European and some breeds of Indian cattle, the length of interovulatory intervals was shorter, and the sizes of dominant SF and CLs were smaller in Thai native heifers.  相似文献   

8.
Two pony mares were immunized against recombinant porcine inhibin alpha subunit three times with 39 day intervals. Clinical findings and endocrinological changes before immunization were taken as the control. The first significant rise in the anti-inhibin titre (P<0.05) in the circulation was found 27 days after the first injection. Maximum binding activity was reached by the 12th day after the second booster dose. The number of small, medium and large sized follicles had increased significantly compared to before immunization (11.75 +/- 4.30, 2.75 +/- 0.69 and 2.51 +/- 0.63 vs 6.50 +/- 1.43, 1.83 +/- 0.44 and 1.33 +/- 0.38, respectively), but the ovulation rate remained unchanged after immunization. The average plasma concentration of FSH and estradiol-17beta during the estrous cycle increased significantly (P<0.05) after immunization. These results suggest that immunization against inhibin is a useful tool to increase the number of ovarian follicles during the estrous cycle of pony mares. Moreover, the present study supported the concept that inhibin plays a major role in the control of follicular growth through its inhibitory effect on FSH secretion synergistically with steroid hormones.  相似文献   

9.
Unsolicited reports of estrous behavior in mares thought to be pregnant were received from owners or caretakers of Arabian mares. Estrous behavior was confirmed and mares were examined for pregnancy. Gender of the conceptus was determined at foaling in 11 mares in which estrous behavior was confirmed while an apparently viable, ultrasonically normal-appearing conceptus was present. In 9 mares in which the day of ovulation was known (Day 0), the estrous behavior occurred on Day 12, 13 or 14 (5 mares), Day 18 or 20 (2 mares), Day 40 (1 mare) and Day 60 (1 mare). In another study, 55 pony mares were observed for estrous behavior every 3 days for 20 minutes during Days 11 to 40. Estrous behavior was observed in 1 mare (2%) on Day 24. Combined for the 2 studies, the incidence of a female conceptus (12/12) was greater (P<0.01) than the incidence of a male conceptus (0/12) in mares that exhibited estrous behavior.  相似文献   

10.
The two-wave hypothesis for follicular development during the bovine estrous cycle was tested by ultrasonically monitoring individual follicles in 10 heifers during an interovulatory interval. A dominant follicle was defined as one that reached a diameter of at least 11 mm. Subordinate follicles were defined as those that appeared to originate from the same follicular pool as a dominant follicle. A dominant follicle and its cohorts were defined as a wave. Two waves during an interovulatory interval were identified in 9 of 10 heifers. The first wave was first identified, retrospectively, on a mean of Day 0.2 +/- 0.1 (ovulation = Day 0) and gave origin to a dominant anovulatory follicle and a mean of 1.4 +/- 0.3 identified subordinates. The dominant follicle reached maximum diameter (mean, 15.8 +/- 0.8 mm) on an average of Day 7 and then decreased (P less than .04) by Day 11. The subordinate follicles increased in diameter for a few days and then regressed. The second wave was first identified on a mean of Day 10.0 +/- 0.4 and gave origin to the ovulatory follicle and a mean of 0.9 +/- 0.3 subordinates. One of the 10 heifers had 3 waves of follicular activity characterized by an anovulatory wave emerging on Day 0, another anovulatory wave emerging on Day 10, and an ovulatory wave emerging on Day 16. Results strongly supported the two-wave hypothesis but also indicated that a minority of interovulatory intervals in this heifer population may have 3 waves of follicular activity.  相似文献   

11.
The present experiment characterized the pituitary responsiveness to exogenous GnRH in the first 10 d after ovulation following commercially available deslorelin acetate implantation at the normal dosage for hastening ovulation in mares. Twelve mature, cyclic mares were assessed daily for estrus and three times weekly for ovarian activity starting May 1. Mares achieving a follicle at least 25 mm in diameter or showing signs of estrus were checked daily thereafter for ovarian characteristics. When a follicle >30 mm was detected, mares were administered either a single deslorelin acetate implant or a sham injection and then assessed daily for ovulation. On d 1, 4, 7, and 10 following ovulation, each mare was challenged i.v. with 50 microg GnRH, and blood samples were collected to characterize the LH and FSH responses. The size of the largest follicle on the day of treatment did not differ (P = 0.89) between groups. The number of days from treatment to ovulation was shorter (P < 0.001) by 2.0 d for the treated mares indicating a hastening of ovulation. The size of the largest follicle present on the days of GnRH challenge was larger in the treated mares on d 1 (P = 0.007) but smaller on d 10 (P = 0.02). In addition, the interovulatory interval was longer (P = 0.036) in the treated mares relative to controls by 4.4 d. Concentrations of FSH in plasma of the treated mares were lower (P < 0.05) than control concentrations from d 3 to 12; LH concentrations in the treated mares were lower (P < 0.05) relative to controls on d 0 to 5, d 7, and again on d 20 to 23. Progesterone values were the same (P = 0.99) for both groups from 2 d before ovulation though d 23. There was an interaction of treatment, day, and time of sampling (P < 0.001) for LH and FSH concentrations after injection of GnRH. Both the LH and FSH responses were suppressed (P < 0.009) in the treated mares relative to controls on d 1, 4, and 7; by d 10, the responses of the two groups were equivalent. In conclusion, deslorelin administration in this manner increased the interovulatory interval, consistently suppressed plasma LH and FSH concentrations, and resulted in a complete lack of responsiveness of LH and FSH to GnRH stimulation at the dose used during the first 7 d after the induced ovulation. Together, these results are consistent with a temporary down-regulation of the pituitary gland in response to deslorelin administered in this manner.  相似文献   

12.
Ultrasonically detectable characteristics of the uterus and embryo and palpable uterine tone were assessed in 10 postpartum mares. A bright fern-like pattern of ultrasonic uterine echogenicity, outlining the endometrial folds, was observed for an average of 2.1 ±0.2 days following parturition (range, 1 to 3 days). Unexpectedly, the uterus was quiescent throughout the postpartum interval, based on daily one-minute contractility scans. Contractility was maximal on Days 12 to 15 of pregnancy in both postpartum (n=7) and nonparturient (n=7) mares. The mean diameter of ultrasonically detectable intrauterine fluid collections increased (P<0.05) abruptly between days 1 and 2 postpartum and gradually decreased (P<0.05) between days 4 and 7; no collections were detected after day 16. There was no effect of day on echogenicity of the intrauterine fluid collections; on all days, fluid was relatively black or nonechogenic, suggesting that puerperal endometritis was not a problem in this group. Because the increase in intraluminal fluid occurred after parturition and in temporal association with a decrease in diameter and tone of the uterus, the fluid collections apparently represented a physiologic influx from the involuting uterus rather than residual placental fluid. Involution of the horns was completed by day 27 (formerly nongravid horn) and day 31 postpartum (formerly gravid horn), based on failure to detect further significant decreases in diameter. However, the formerly gravid horn was larger (P<0.05) in diameter than the formerly nongravid horn on each of Days 1 to 35 postpartum (end of experiment), indicating residual effects on uterine size. When averaged over both horns, uterine diameters were larger on Days 0 to 24 (Day 0=day of ovulation) of pregnancy in postpartum mares than in nonparturient mares; by Day 25, diameters were similar between statuses. By approximately Day 6 of pregnancy, uterine contractility and ultrasonic endometrial exhotexture were similar between postpartum mares and nonparturient mares. Uterine tone was greater (P<0.05) in postpartum mares than in nonparturient mares on all days between Day 0 and 25. An unexpected, transient increase in uterine tone was detected on Day 5 of pregnancy in both postpartum mares and nonparturient mares. No differences were found between reproductive statuses in patterns of embryo mobility, the day of fixation of the embryonic vesicle (postpartum, Day 15.3 ±0.4; nonparturient, Day 15.0 ±0.3), and diameter of the embryonic vesicle on the day of fixation (postpartum, 22.1 ±1.4 mm; nonparturient, 19.4 ±l.6mm). However, mean uterine tone and mean horn diameters on the side of fixation were greater (cranial and middle cornual segments; P<0.05) or tended to be greater (caudal segment; P<0.1 ) on the day of fixation in postpartum mares than in nonparturient mares. In all postpartum mares, fixation occurred in the formerly nongravid horn. Enhanced uterine tone in postpartum mares may account for the occurrence of fixation on the same day for the two reproductive statuses, despite the larger uterus in postpartum mares.  相似文献   

13.
OBJECTIVE: To determine whether concentrations of dimeric inhibin (CaCA) are greater in plasma and tumor fluid from mares with granulosa-theca cell tumors (GTCT), compared with concentrations in plasma and equine follicular fluid (eFF) from control mares. ANIMALS: 6 mares with GTCT and 12 clinically normal mares. PROCEDURE: The alphabetaA immunoradiometric assay used 2 antibodies, one against each subunit of inhibin (alpha and betaA subunits). Tumor tissue, tumor fluid, and a single blood sample were collected at the time of surgical removal of the GTCT. A single blood sample was collected from 7 control mares during various stages of the estrous cycle. Five other control mares were ovariectomized when their ovaries contained growing follicles of 25 to 35 mm in diameter. A blood sample and eFF from the largest follicle were collected at the time of ovariectomy. RESULTS: Mares with GTCT had significantly greater plasma concentrations of betabetaA (mean +/- SEM, 0.86 +/- 0.53 ng of recombinant human-alphabetaA/ml), compared with control mares (0.14+/-0.02 ng/ml). Concentrations of alphabetaA in tumor fluid and eFF were similar. Concentrations of alphabetaA were significantly lower after ovariectomy. CONCLUSIONS AND CLINICAL RELEVANCE: Dimeric inhibin concentration was higher in plasma from mares with GTCT than in plasma from control mares. Increased granulosa cell mass and loss of mechanisms regulating alphabetaA release in mares with GTCT likely accounted for the increase in plasma concentrations. Measurement of alphabetaA concentrations may be useful for identifying mares with GTCT.  相似文献   

14.
The follicle and hormone aspects of diameter deviation and development of one dominant (≥28 mm) follicle (1DF) vs two dominant follicles (2DF) were studied in 32 ovulatory follicular waves in mares. Follicles were ranked each day as F1 (largest) to F3. The beginning of deviation was designated day 0 and preceded the first increase in the differences in diameter between F1 and F2 in the 1DF group and between a combination of F1 and F2 vs F3 in the 2DF group. One dominant follicle and 2DF developed in 21 (66%) and 11 (34%) waves, respectively. Double ovulations occurred in only one of the waves with 2DF. In 8/11 waves with 2DF, a second deviation occurred between F1 and F2 on 2.5 ± 0.4 days after the first deviation. On day 0, 1DF and 2DF waves were similar in number of days after ovulation, number of follicles, difference in diameter between F1 and F2, and plasma concentrations of LH, estradiol and immunoreactive inhibin. The interval from maximum FSH concentration to day 0 was longer (p < 0.05) and FSH concentration was lower (p < 0.05) on days -1 to 4 in the 2DF group. The similarities on day 0 in the characteristics of 1DF and 2DF waves despite the differences in the declining portions of the FSH profile indicated that a specific day of the FSH decline or a specific concentration were not factors in initiating deviation. Unlike reported results in heifers, the results in mares did not indicate a hormonal basis for the development of 2DF or two deviations.  相似文献   

15.
Palpation records of 155 Throughbred broodmares maintained on one of seven farms (3–80 mares per farm) that were administered deslorelin on one or more estrous cycles (204 treated cycles) during the 1999 breeding season were retrospectively examined. Some deslorelin-treated mares were also treated with hCG (2500 units intravenously), or had no ovulation-inducing drugs administered, during different estrous cycles of the same season. Most mares were treated with an ovulation- inducing drug after returning to their resident farm following breeding and were subsequently examined by transrectal ultrasonography daily until ovulation was confirmed, and again 13–14 and 15–16 days after ovulation for determination of pregnancy status.Per-cycle pregnancy rate for all 155 mares bred was 53%, and for all deslorelin breeding was 57%. Per-cycle pregnancy rates for mares ovulating 0–1 days, 1–2 days, and 2–3 days after treatment with deslorelin did not differ (P>0.05). Forty-six mares received more than one treatment during the breeding season, yielding 115 breedings (estrous cycles) for comparison of pregnancy rates among treatment. Per-cycle pregnancy rates for these mares did not differ among treatments (P>0.10).No differences due to treatment were detected in mean interval to ovulation (P>0.10). Mean interovulatory interval was longer for deslorelin-treated mares than for untreated or hCG treated mares (P>0.01). Eighty percent (80%) of deslorelin-treated mares had interovulatory intervals of 18–25 days, and 19% had interovulatory intervals>25 days. Ninety-seven percent (97%) of untreated or hCG-treated mares had interovulatory interovulatory intervals>25 days. More deslorelin-treated mares had extended (>25 days) interovulatory intervals than hCG- or nontreated-mares (P>0.05). In this group of Thoroughbred mares, it appeared that season (month) and management (farm) factors had only minor effects on the incidence of extended interovulatory intervals following use of deslorelin.  相似文献   

16.
Granulosa cells from pooled bovine follicles were cultured under chemically-defined (serum-free) conditions to study the effects of exogenous steroids and FSH on production of immunoactive (ia) inhibin, oestradiol and progesterone. Levels of ia-inhibin in media samples and cell lysates were measured by radioimmunoassay (RIA) using an antiserum raised against a synthetic fragment of human inhibin -subunit [hI(1–32)].

Cells secreted measurable amounts of ia-inhibin, oestradiol and progesterone for at least 7 d of culture, although intracellular levels of inhibin were very low, indicating that newly-synthesized ia-inhibin is rapidly released from the cells. Treatment with androstenedione (0.2μmol/l) or testosterone (0.2μmol/l) increased ia-inhibin secretion markedly; levels on Day 5 of culture were approximately 6-fold (P<0.005) higher than control values. In contrast, treatment with the non-aromatizable androgen dihydrotestosterone (DHT; 0.2μmol/l) resulted in only a one- to two-fold increase (P<0.05) over control values (Day 5). Addition of exogenous oestradiol (8nmol/l) markedly increased ia-inhibin secretion (8–9 fold on Day 5; P<0.05) compared with basal levels, whereas progesterone had no effect. Secretion of oestradiol, undetectable in the absence of exogenous androgens, rose daily in the presence of either androstenedione or testosterone, levels rising approximately 6-fold and 9-fold respectively over a 4-d treatment period. Progesterone secretion increased 2-fold over the culture period and was unaffected by any steroid treatment.

Treatment with ovine FSH (10ng/ml) alone stimulated secretion of progesterone over basal levels (3-fold higher on Day 6; P<0.005), but did not affect output of either ia-inhibin or oestradiol. However, exposure to FSH in the presence of androstenedione not only promoted a further 4-fold increase in progesterone output but also led to a dose-dependent suppression of both ia-inhibin (90% lower on Day 6; P<0.001) and oestradiol (80% lower on Day 6; P<0.001) secretion compared to cells treated with androstenedione alone.

These observations indicate that the secretion of ia-inhibin by bovine granulosa cells in culture is positively regulated by oestradiol, implying an autocrine/paracrine role for this hormone in control of ovarian inhibin production. The ability of aromatizable androgens to stimulate secretion of inhibin, coupled with the inability of the non-aromatizable androgen DHT to elicit such an effect, suggests that inhibin output is largely unaffected by androgens prior to their conversion to oestradiol. The absence of any change in output of ia-inhibin or oestradiol following treatment with exogenous progesterone argues against a local role for this steroid hormone in regulation of inhibin or oestradiol production in the bovine follicle. Finally, the observation that co-treatment with FSH and andostenedione not only stimulated progesterone output but also suppressed secretion of ia-inhibin and oestradiol, indicates a synergistic positive effect of FSH and androgens on cellular luteinization.  相似文献   


17.
Three experiments were performed to study effects of decreased concentrations of estradiol-17β (E2) on lifespan and function of ensuing ovine corpora lutea (CL). In experiment 1, 52 follicles were collected from 10 ewes and placed into individual culture with 0 or .01 μCi 3H-androstenedione (10 ng; 3H-A) and 0, 10−11, 10−9, 10−7, or 10−5 M of a nonsteroidal aromatase inhibitor, CGS16949A (CGS). Concentrations of E2 secreted into the medium, and synthesis of estrogens as estimated by formation of 3H-water from 3H-A were decreased by 10−5 and 10−7 (P<.01), but not 10−9 or 10−11 M CGS. In experiment 2, luteolysis was induced in 24 ewes by injection of PGF2 on days 5 to 10 of the estrous cycle (0 hr). Ewes received 0, 0.5, 1.0, 2.0 or 4.0 mg CGS per kg BW i.v. at −12, 0, 12 and 24 hr, and an ovulatory dose of hCG at 36 hr. Jugular (P<.001) and vena caval (P<.001) concentrations of E2 were decreased by CGS at all doses tested for 8 to 10 hr, but had returned to levels similar to control ewes by the time of the next injection. Concentrations of E2 around the time of the LH surge were similar in control and treated ewes. During the subsequent luteal phase, concentrations of progesterone (P4) were similar in control and treated ewes. Thus, transient decreases in E2 during the follicular phase were not deleterious to the subsequent luteal phase. In experiment 3, luteolysis was induced in 18 ewes by injection of PGF2 on days 6 or 7 (0 hr) of the estrous cycle. Ewes received 0 or 1 mg CGS per kg BW i.v. every 8 hr from 0 to 40 hr. Ovulation was induced with hCG at 36 hr. CGS reduced jugular (P<.001) and vena caval (P<.001) concentrations of E2, prevented an endogenous surge of LH (P<.05) and increased (P<.001) concentrations of FSH. All ewes had ovulated a marked follicle by 72 hr, but onset of the luteal phase, as assessed by concentrations of P4, was delayed (P<.01) in ewes receiving CGS. Delayed luteal phases were not solely attributable to the presence of new CL or to luteinization of follicular cysts. When data were aligned according to the day ewes were observed in estrus, profiles of P4 did not differ with treatment. Therefore, normal luteal function ensued following estrus whether or not ewes re-ovulated. In conclusion, decreased secretion of E2 by the preovulatory follicle was not involved in the ontogeny of CL of short lifespan or subnormal function. Instead, adequate production of E2 or precisely timed E2 secretion may be required during follicular development for subsequent functional luteinization.  相似文献   

18.
The selection of a single ovarian follicle for further differentiation and finally ovulation is a shared phenomenon in monovulatory species from different phylogenetic classes. The commonality of dominant follicle (DF) development leads us to hypothesize that mechanisms for DF selection are conserved. This review highlights similarities and differences in follicular wave growth between cows, mares and women, addresses the commonality of the transient rises in FSH concentrations, and discusses the follicular secretions oestradiol and inhibin with their regulatory roles for FSH. In all three species, rising FSH concentrations induce the emergence of a follicle wave and cohort attrition occurs during declining FSH concentrations, culminating in DF selection. Cohort secretions are initially responsible for declining FSH, which is subsequently suppressed by the selected DF lowering it below the threshold of FSH requirements of all other cohort follicles. The DF acquires relative FSH-independence in order to continue growth and differentiation during low (cow, mare) or further declining FSH concentrations (women), and thus may be the one cohort follicle with the lowest FSH requirement due to enhanced FSH signalling. In all three monovulatory species a transition from FSH- to LH-dependence is postulated as the mechanism for the continued development of the selected DF. In addition, FSH and IGF enhance each other's ability to stimulate follicle cell function and access of IGF-I and -II to the type 1 receptor is regulated by IGF binding proteins that are in turn regulated by specific proteases; all of which have been ascribed a role in DF development. No fundamental differences in DF selection mechanisms have been identified between the different species studied. Thus functional studies of the selection of DFs in cattle and mares are also valuable for identifying genes and pathways regulating DF development in women.  相似文献   

19.
An overnight double antibody RIA, employing a rabbit antiserum raised to bovine 31 kDa inhibin (rAs-#1989, NICHD) and purified bovine 31 kDa inhibin (bINH-I-90/1, NICHD) as trace and standard, was validated to measure immunoreactive inhibin (iINH) concentrations in equine peripheral plasma, follicular fluid (FF), ovarian vein (OV) plasma, testicular tissue extracts (TTE) and testicular vein (TV) plasma. The dynamic relationship of iINH and follicle stimulating hormone (FSH) was investigated during the estrous cycle of the mare and the annual reproductive cycle of the stallion.In the RIA, parallel dose-response curves were observed between the bovine inhibin standard and serial dilutions of equine FF, OV, TTE, TV and plasma. The average recovery of a known amount of purified bovine inhibin added to gelding plasma was approximately 100%. In the inhibin bioassay, serial dilution of equine FF and TTE were observed to be parallel to the bovine inhibin standard. A five-fold difference (p<0.05) between jugular and gonadal vein plasma iINH concentrations was observed in the mare and an eight-fold difference (p<0.05) was observed in the stallion. Plasma levels of iINH in ovariectomized mares or geldings were undetectable in the RIA.Concentrations of FSH, estradiol and iINH changed significantly in the mare during the estrous cycle (p<0.05). Immunoreactive inhibin levels were highest (0.54 ± 0.06 ng/ml) on the day of ovulation, declined rapidly following ovulation and reached a nadir (0.21 ± 0.03 ng/ml) on day 7 post-ovulation. Plasma iINH and estradiol concentrations followed a similar profile and were found to be positively correlated (r=0.7064; p<0.01), whereas iINH and FSH levels demonstrated an inverse relationship (r=−0.7359, p<0.01) throughout the estrous cycle. Concentrations of FSH were also inversely related (−0.8498, p<0.01) with estradiol during the cycle. In the stallion, plasma iINH and FSH levels changed significantly during the year (p<0.05). The iINH profile reflected seasonal changes in testicular activity, with highest concentrations in late spring (3.37 ± 0.44 ng/ml) and lowest concentrations in the fall (2.21 ± 0.33 ng/ml). Plasma concentrations of iINH were positively correlated (r=0.7691, p<0.01) with FSH concentrations throughout the year.In conclusion, a specific and sensitive RIA for iINH has been validated for plasma and biological fluids in the horse. Furthermore, the gonads appear to be the source of bioactive and immunoreactive inhibin as observed in other species. The dynamic relationship between iINH and FSH that is present in both the mare and stallion suggests that iINH may be a useful marker of gonadal activity in this species.  相似文献   

20.
The use of equine FSH (eFSH) for inducing follicular development and ovulation in transitional mares was evaluated. Twenty-seven mares, from 3 to 15 years of age, were examined during the months of August and September 2004, in Brazil. Ultrasound evaluations were performed during 2 weeks before the start of the experiment to confirm transitional characteristics (no follicles larger than 25 mm and no corpus luteum [CL] present). After this period, as the mares obtained a follicle of at least 25 mm, they were assigned to one of two groups: (1) control group, untreated; (2) treated with 12.5 mg eFSH, 2 times per day, until at least half of all follicles larger than 30 mm had reached 35 mm. Follicular activity of all mares was monitored. When most of the follicles from treated mares and a single follicle from control mares acquired a preovulatory size (≥35 mm), 2,500 IU human chorionic gonadotropin (hCG) was administered IV to induce ovulation. After hCG administration, the mares were inseminated with fresh semen every other day until ovulation. Ultrasound examinations continued until detection of the last ovulation, and embryo recovery was performed 7 to 8 days after ovulation. The mares of the treated group reached the first preovulatory follicle (4.1 ± 1.0 vs 14.9 ± 10.8 days) and ovulated before untreated mares (6.6 ± 1.2 vs 18.0 ± 11.1 days; P < .05). All mares were treated with prostaglandin F (PGF), on the day of embryo flushing. Three superovulated mares did not cycle immediately after PGF treatment, and consequently had a longer interovulatory interval (22.4 vs 10.9 days, P < 0.05). The mean period of treatment was 4.79 ± 1.07 days and 85.71% of mares had multiple ovulations. The number of ovulations (5.6 vs 1.0) and embryos (2.0 vs 0.7) per mare were higher (P < 0.05) for treated mares than control mares. In conclusion, treatment with eFSH was effective in hastening the onset of the breeding season, inducing multiple ovulations, and increasing embryo production in transitional mares. This is the first report showing the use of FSH treatment to recover embryos from the first cycle of the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号