首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Ablation of follicles ≥  6 mm in diameter and treatment with PGF2α 10 days after ovulation were used to induce the development of ovulatory waves. Comparisons were made between induced waves with one (33 waves, 72%) and multiple (13 waves, 28%) ovulatory follicles. Diameter deviation was defined as the separation of follicles into dominant and subordinate categories. Multiple ovulatory follicles were preceded by more (p < 0.001) follicles ≥ 20 mm at the beginning of deviation, higher LH preceding deviation (approached significance, p < 0.08), lower (p < 0.05) concentrations of FSH on the day of deviation and thereafter, and higher (p < 0.0003) oestradiol by 2 days after deviation. During the peri-ovulatory period, systemic hormone concentrations for waves with multiple ovulations involved higher oestradiol before ovulation (approached significance, p < 0.07), lower FSH (p < 0.04) before and after ovulation, and both higher progesterone (p < 0.05) and lower LH (p < 0.05) beginning the day after ovulation. Results indicated that by the beginning of deviation there were more follicles ≥  20 mm and subsequently greater oestradiol production in waves that led to the development of multiple ovulatory follicles, and during the peri-ovulatory period differences between one and multiple ovulations were consistent with the negative effects of the ovarian hormones on the gonadotropins.  相似文献   

2.
A GnRH antagonist (Acyline) was used to study the role of FSH in early development of a follicular wave in 61 mares. In Experiment 1, a single dose of 3 mg per mare, compared with 0 and 1 mg, suppressed both the FSH and follicle responses to exogenous GnRH. In Experiment 2, high concentrations of FSH were induced by two successive ablations of all follicles ≥ 6 mm on days 10 and 13 (day 0 = ovulation). A single treatment with Acyline resulted in significantly greater suppression of plasma concentrations of FSH than a single treatment with charcoal-extracted follicular fluid (source of inhibin) or oestradiol. Suppression of FSH was not significantly different between the group treated with Acyline alone and a group treated with a combination of Acyline, inhibin and oestradiol. In Experiment 3, all follicles were ablated on day 10 to induce an FSH surge and a new follicular wave. Acyline treatment on day 10 resulted in an immediate decrease in FSH, without a significant effect on day of emergence of a new wave or growth of follicles from 7 to 11 mm on days 11–13. Treatment on day 15, a day before expected follicle deviation and after the peak of the wave-stimulating FSH surge, resulted in an immediate decrease in FSH and cessation of follicle growth. Results indicated that growth of follicles for about 2 days after wave emergence was independent of FSH. In contrast, during the decline in the wave-stimulating FSH surge and before follicle deviation, growth of follicles was dependent on FSH.  相似文献   

3.
Data were collected daily from 23 mares during two consecutive interovulatory intervals (IOIs). Several significant (p < 0.05) new observations on temporal relationships were made. The FSH increase that begins before ovulation temporarily plateaued on the day of discharge of follicular fluid into the peritoneal cavity in association with ovulation. During the declining portion of the pre-ovulatory oestradiol surge, an abrupt reduction in the rate of decrease occurred in synchrony with the peak of the LH surge and is consistent with a negative effect of LH on oestradiol. Repeatability within mares was based on the following positive and significant correlations between the two IOIs: (i) length of the interval between ovulations and between ovulation and the beginning of follicle deviation; (ii) diameter of the pre-ovulatory follicle on days -3 to -1; (iii) number of follicles in diameter classes of 2–5 mm (correlation for 22/23 days of the IOI), 5.1–10 mm (18/23 days), 10.1–15 mm (12/23 days) and 15.1–20 mm (12/23 days) and (iv) concentrations of FSH (18/23 days) and LH (22/23 days). The greatest repeatability for the follicle-diameter classes occurred in the 2–5 mm class, and thereafter the repeatability progressively decreased as the diameters for the classes increased. Results demonstrated measurable repeatability within mares for several end points between consecutive IOIs.  相似文献   

4.
The aim of this study was to characterize ir-IGF-I pattern and its relation to other hormones during the oestrous cycle in mares. Nine non-pregnant non-lactating pluriparous thoroughbred mares were used. The studied mares were examined ultrasonically and bled daily to follow the ovarian changes and the hormonal milieu for a complete Interovulatory interval (IOI). Two (minor and major) follicular waves were characterized per IOI in thoroughbred mares. The largest follicle of the first follicular wave (DF1) was firstly detected at D - 1.75 ± 0.47 with a growth rate of 2.78 ± 0.14mm/day and maximum diameter of 22.45 ± 0.75mm on day 6.65 ± 0.82. The largest follicle of the second follicular wave (DF2) had a growth rate of 2.15 ± 0.29 mm/day, reached a maximum diameter of 42.70 ± 2.63 mm on D 19.25 ± 0.43. Ir-IGF-I increased significantly prior to ovulation and had a similar pattern to oestrogen (r = 0.84, p < 0.05), suggesting that the ovarian follicles are the main source of circulating ir-IGF-I during the oestrous cycle of mares and that ir-IGF-I may be a crucial factor in follicular differentiation and maturation. In conclusion, this study demonstrated that ir-IGF-I is secreted during the oestrous phase of the cycle concomitant with the development of the future ovulatory dominant follicle, and it may act in synergy with other hormones for the selection and differentiation of the dominant follicle.  相似文献   

5.
Follicular wave emergence was synchronized by treating camels with GnRH when a dominant follicle (DF) was present in the ovaries. Animals were scanned twice a day from day 0 (day of GnRH treatment) to day 10, to characterize emergence and deviation of follicles during the development of the follicular wave. Follicle deviation in individual animals was determined by graphical method. Single DFs were found in 16, double DFs in 9 and triple DFs in two camels. The incidence of codominant (double and triple DFs) follicles was 41%. The interval from GnRH treatment to wave emergence, wave emergence to deviation, diameter and growth rate of F1 follicle before or after deviation did not differ between the animals with single and double DFs. The size difference between future DF(s) and the largest subordinate follicle (SF) was apparent from the day of wave emergence in single and double DFs. Overall, interval from GnRH treatment to wave emergence and wave emergence to the beginning of follicle deviation was 70.6 ± 1.4 and 58.6 ± 2.7 h, respectively. Mean size of the DF and largest SF at the beginning of deviation was 7.4 ± 0.2 and 6.3 ± 0.1 mm, respectively. In conclusion, the characteristics of follicle deviation are similar between the animals that developed single or double DFs.  相似文献   

6.
The characteristics of the major follicular waves (primary and secondary) throughout estrous cycle were studied in 7 healthy Caspian mares (age, 4-15 years; weight, 198.6 ± 0.9 kg) during the breeding season. Ovarian follicular dynamics were monitored by using an ultrasound scanner equipped with a 5-MHz, B-mode, linear-array, rectal transducer throughout 2 complete estrous cycles. The diameters of antral follicles (5 mm) were measured, averaging the narrowest and widest dimensions. To detect follicular wave emergence, the diameter profile of the 3 largest follicles per ovary of each mare was determined without considering day-to-day identity of follicles but with maintenance of distinction between left and right ovaries. The primary waves originated on day 6.4 ± 0.81 (ovulation = day 0) when the mean diameter of ovarian follicles was 9.6 ± 1.05 mm. Divergence between the dominant preovulatory follicle and subordinate follicles occurred on day 13.4 ± 0.81, when the dominant follicle was 18.1 ± 2.67 mm in diameter. The intervals from emergence to divergence and from divergence to ovulation were 7 ± 0.68 and 8.7 ± 0.68 days, respectively. Secondary major follicular waves were not observed during this study. In conclusion, only 1 major follicular wave was detected in a Caspian mare, confirming the data previously described in other equine breeds. It is also indicated that the occurrence of 1 major follicular wave per cycle is a more common phenomena in equine species.  相似文献   

7.
The selection of a single ovarian follicle for further differentiation and finally ovulation is a shared phenomenon in monovulatory species from different phylogenetic classes. The commonality of dominant follicle (DF) development leads us to hypothesize that mechanisms for DF selection are conserved. This review highlights similarities and differences in follicular wave growth between cows, mares and women, addresses the commonality of the transient rises in FSH concentrations, and discusses the follicular secretions oestradiol and inhibin with their regulatory roles for FSH. In all three species, rising FSH concentrations induce the emergence of a follicle wave and cohort attrition occurs during declining FSH concentrations, culminating in DF selection. Cohort secretions are initially responsible for declining FSH, which is subsequently suppressed by the selected DF lowering it below the threshold of FSH requirements of all other cohort follicles. The DF acquires relative FSH-independence in order to continue growth and differentiation during low (cow, mare) or further declining FSH concentrations (women), and thus may be the one cohort follicle with the lowest FSH requirement due to enhanced FSH signalling. In all three monovulatory species a transition from FSH- to LH-dependence is postulated as the mechanism for the continued development of the selected DF. In addition, FSH and IGF enhance each other's ability to stimulate follicle cell function and access of IGF-I and -II to the type 1 receptor is regulated by IGF binding proteins that are in turn regulated by specific proteases; all of which have been ascribed a role in DF development. No fundamental differences in DF selection mechanisms have been identified between the different species studied. Thus functional studies of the selection of DFs in cattle and mares are also valuable for identifying genes and pathways regulating DF development in women.  相似文献   

8.
This study aimed to investigate dynamics of dominant and subordinate follicles' change of dimensions, vascularity, and angiogenic hormones from deviation to ovulation. Ten cyclic mares were subjected to daily blood sampling and Doppler examination along two estrous cycles. Three diameters were recorded for each follicle to estimate its area and volume. Leptin, insulin-like growth factor-I (IGF-1), nitric oxide (NO) and estradiol were measured. Area of color and power Doppler modes with antral area and circumference of all follicles was measured in pixels. Follicles were classified into first large preovulatory follicle (1st F-ov), second large (2nd F-ov), and third large (3rd F-ov) on the ovulating ovary and on the contralateral nonovulating ovary into first (1st F-contra) and second large (2nd F-contra). Days before ovulation significantly (P < .0001) affected all dimensions of preovulatory follicle. With the increase of diameter, area, volume, area in pixel, antrum area, and circumference of 1st F-ov, those of all subordinates were decreasing. The blue flow area, power, and power minus red blood flow area of 1st F-ov increased from day −6 till day of ovulation (day 0), but red blood flow area significantly decreased. First large follicle had the lowest percent of colored pixels and percent of the colored pixels without antrum. Estradiol and leptin increased from day −6 till day 0, but IGF-1 decreased till day −1 and NO achieved a peak on day −3 then decreased till day 0. In conclusion, antrum growth, blood flow, and angiogenic hormones play a role in maturation and ovulation of the dominant follicle in mares.  相似文献   

9.
The final stages of ovarian follicle growth in cattle are typically characterized by the ultrasound-detectable emergence of a cohort of small (3-5mm in diameter) antral follicles, followed by a selection process during which the number of follicles continuing to grow decreases. Finally, only one follicle (the dominant follicle; DF) shows an enhanced growth rate and estradiol synthesis when it attains 8.5mm compared to its closest competitor (the largest subordinate follicle; SF). Cohort emergence is caused by a transient FSH rise, while DF selection occurs during declining FSH indicating differential FSH dependence of DF and SF. In order to elucidate the mechanisms underlying DF survival or SF atresia, this review aims to (i) describe follicular changes in the local production and regulation of members of the inhibin family of proteins and the insulin-like growth factor (IGF) system in relation to FSH deprivation leading to DF selection, and (ii) develop a model for DF selection outlining the putative involvement of inhibins, activin and follistatin on the one hand, and bioavailable IGFs regulated by IGF binding proteins (IGFBPs) and IGFBP proteases on the other hand. It is concluded, that the first indications of differential FSH dependence are seen within 33h of the FSH peak, and high amounts of precursor forms of inhibin and free activin, and low amounts of the lower molecular weight (MW) IGFBPs are related to follicle survival in terms of enhanced growth and estradiol synthesis, and suppression of granulosa cell apoptosis. In addition, maintenance of low amounts of intrafollicular IGFBP4 may constitute an important mechanism in the future DF to attain FSH independence.  相似文献   

10.
With the objective of controlling the day of ovulation, 40 mares were assigned to a control or three treated groups: A3d, A4d, and A5d. The treated groups received antarelix (Teverelix 0.01 mg/kg, i.v., twice a day) for 3, 4, or 5 days from the day the dominant follicle (F1) reached 28 mm (=D0), and one injection of hCG (1600 IU, i.v.) on D1, D2, or D3, respectively. Control mares received one injection of hCG when F1 reached 35 mm. Plasma LH, FSH, progesterone, and total estrogens were assayed. In the A3d, A4d, and A5d groups, 9 (90%), 6 (60%), and 5 (50%) out of 10 mares, respectively, ovulated on the expected day (i.e. between 24 and 48 h after hCG injection). In the control group, 7/10 (70%) presented the typical response to hCG. For 3 mares in both the A4d and A5d groups, the dominant follicle at the time the treatment was started did not ovulate and ovulation was postponed for between 11 and 15 days after the end of treatment. In the treated mares, the LH surge was abolished, and total estrogens were depressed during the preovulatory peak but the concentrations of FSH were not modified. Endocrine parameters were not altered in postponed cycles. Fertility did not differ in treated and control cycles. These results demonstrate that in mares: (1) ovulation can be programmed on a specific day of a 3-day period, with a success rate of 67%, by a treatment associating antarelix and one injection of hCG; (2) nevertheless in 20% of cases the dominant follicle regresses and does not ovulate; (3) for these mares ovulation is postponed by approximately 2 weeks; (4) terminal growth of the preovulatory follicle only requires low circulating concentrations of LH but atresia induced by a GnRH antagonist is significant when this treatment is administrated for more than 18 h.  相似文献   

11.
The anti‐Müllerian hormone (AMH) is an important marker of ovarian reserve and for predicting the response to superovulatory treatments in several species. The objective of this study was to investigate whether AMH and its receptor (AMHR2) are regulated in bovine granulosa cells during follicular development. In the first experiment, granulosa cells were retrieved from the two largest follicles on days 2 (before), 3 (at the expected time) or 4 (after deviation) of follicular wave. In the second experiment, four doses of FSH (30, 30, 20 and 20 mg) or saline were administered twice a day starting on Day 2 of the first follicular wave of the cycle. Granulosa cells and follicular fluid were collected from the two largest follicles 12 h after the last injection of FSH or saline. AMH mRNA abundance was similar in granulosa cells of the two largest follicles (F1 and F2) before deviation (Day 2), but greater in dominant (DF) than subordinate follicles (SF) at the expected time (Day 3) and after (Day 4) deviation (p < 0.05). In experiment 1, AMH mRNA levels declined in both DF and SF near the expected time and after deviation when compared to before deviation. There was no difference in AMHR2 mRNA levels before and during follicular deviation (p > 0.05), but they tended to be greater in DFs than SFs (p < 0.1) after deviation. Experiment 2 showed that AMH and AMHR2 mRNA in granulosa cells and AMH protein abundance in follicular fluid were similar (p > 0.05) between both co‐dominant follicles collected from the FSH‐treated cows. These findings indicate the followings: AMH mRNA levels decrease in both DFs and SFs during follicular deviation; granulosa cells from heathy follicles express more AMH mRNA compared to subordinate follicles undergoing atresia and FSH stimulates AMH and AMHR2 mRNA expression in granulosa cells of co‐dominant follicles.  相似文献   

12.
The aim of the study was to evaluate the feasibility of pre‐selection of high or low responder does prior to the superovulatory protocols. Twenty Saanen does received 800 IU of equine chorionic gonadotropin (eCG) at the end of long‐term progestogen treatment. Fourteen days later, a second progestogen protocol associated with a multiple‐dose follicle stimulation hormone (FSH) treatment (5 IU/kg of FSH, in six decreasing doses between days 4 to 6 of the protocol) was administered. Transrectal ultrasound was used to assess the follicular status at the beginning of superovulatory treatments, at the oestrous onset and on the seventh day of the oestrous cycle for counting corpora lutea (CL). A significant lower number of CL was obtained in eCG‐treated in comparision with FSH‐treated does (p < 0.05). A quartic regression was able to explain the relationship between the number of CL in response to both treatments (r2=0.50; p < 0.05). Seventy per cent (14 of 20) of does maintained the same ovulatory response (high or low) after treatments. The Kappa (κ = 0.40; p < 0.05) and Spearman (rs = 0.39; p = 0.08) coefficients were able to show a relationship between treatments. Regarding the follicular status, there is a significant relationship between the number of small follicles (r = 0.71; r2=0.47; p < 0.01) and total follicles (r = 0.60; p < 0.01) at eCG and first FSH dose with the number of CL. Moreover, it was found a negative relationship between the presence of large follicles and the number of CL in response to eCG treatment (r = ?0.44; p < 0.05), but not from FSH (p > 0.05). In conclusion, the screening test with eCG has the potential to identify Saanen does that will better respond to the superovulatory protocol with FSH. In addition, it highlighted the importance of an ultrasound evaluation prior to the beginning of superovulatory treatments with FSH to characterize the follicular status and identify the potential donors of high ovulatory response in MOET programmes in goats.  相似文献   

13.
A study was conducted to evaluate the effects of maternal undernutrition on the hypothalamic–pituitary–gonadal axis in female sheep offspring. Pregnant ewes were fed to 100% throughout pregnancy (Control) or to 50% from 0 to 30 (R1) or from 31 to 100 days of gestation (R2). Female lambs were selected and fed to appetite throughout the study. At 2, 5.5 and 10 months of age a GnRH challenge was conducted. At the age of 10 months lambs were synchronized and blood samples were collected at 3 h intervals for 72 h following sponge removal. At slaughter (10 months) ovaries were removed and examined macroscopically. Maternal undernutrition did not affect the time of the onset of puberty, defined as the first increase in plasma progesterone concentrations ≥1 ng/ml. The magnitude of the pre-ovulatory gonadotrophin surge and the time to surge were unaffected by treatment. The LH and FSH response to GnRH challenge did not differ between groups at 2 and 5.5 months but at 10 months of age a higher (p < 0.05) FSH response was found in R1 group. Although the total number of visible follicles and corpora lutea did not differ between groups, a significant higher (p < 0.05) number of small (2–3 mm diameter) follicles in R1 group and a significant lower number (p < 0.05) of corpora lutea with diameter 8–11 mm and not even one with diameter >12 mm were detected in the ovaries of R2 lambs. In conclusion, maternal undernutrition during the first month of pregnancy resulted in increased pituitary sensitivity to GnRH and increased number of small follicles in the ovary, while during mid to late gestation resulted in a reduction of large corpora lutea in female offspring.  相似文献   

14.
The incidence of hemorrhagic anovulatory follicles (HAFs) is approximately 5% and 20% of estrous cycles during the early and late ovulatory season, respectively. The structures are more common in old mares (eg, >20 years), tend to occur repeatedly in individuals, and occur most frequently during the late follicular phase. In a recent study, the day of ovulation in controls and the first day of HAF formation, as indicated by cloudiness of follicular fluid, were defined as day 0. On day -1, future ovulating and HAF groups did not differ in follicle diameter or in the frequency of discrete gray-scale ultrasonic indicators of impending ovulation; however, in future HAFs, a greater percentage of the circumference of the follicle exhibited color-Doppler signals of blood flow. No differences were found between the two groups in systemic concentrations of progesterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) on days -4 to 2, but estradiol was elevated in the HAF group on day -3. The wall of the HAFs developed well-vascularized luteal tissue as indicated by echotexture and color Doppler signals and by the production of near normal levels of progesterone. In conclusion, HAFs formed from viable preovulatory follicles that did not differ from ovulatory follicles in diameter or gray-scale echotexture. Estradiol concentrations were elevated a few days before the failure of ovulation, and the wall of the follicle was more extensively vascularized on day -1.  相似文献   

15.
A mathematical method was developed for characterizing follicular waves in early pregnant mares. For validation, the results were compared to those derived by a method using day-to-day identification of individual follicles (identity method); the same data set was used for both methods. The following steps were used for each mare: 1) depicting individual diameter profiles over Days 0 to 40 for the 3 largest follicles per ovary without regard to day-to-day follicle identity; 2) separating the follicles into large (>20 to >26 mm) and small categories; 3) using the large category to profile the diameters of individual follicles; and 4) using the small category to detect significant waves of follicular activity on the basis of Tukey's multiple-range test. The identity method detected wave emergence at 15 to 16 mm using the retrospectively identified dominant follicle. The mathematical method detected emergence of waves at a mean diameter of 9.5 ± 0.5 mm, 2 days earlier than did the identity method. Allowing for the 2 days earlier detection, the 2 methods led to similar conclusions on the characteristics of follicular waves. The mathematical method has the following apparent advantages: 1) data can be collected more quickly and with less skill than for the identify method; 2) bias due to inspecting data of the previous days, as required in the identity method, can be eliminated; and 3) days of emergence of a follicular wave can be identified earlier and with greater objectivity. The first step of the procedure (profiling the diameters of the 3 largest follicles perovary) should be useful to practitioners and others engaged in clinical research who need a simple method of characterizing follicular waves.  相似文献   

16.
The use of equine FSH (eFSH) for inducing follicular development and ovulation in transitional mares was evaluated. Twenty-seven mares, from 3 to 15 years of age, were examined during the months of August and September 2004, in Brazil. Ultrasound evaluations were performed during 2 weeks before the start of the experiment to confirm transitional characteristics (no follicles larger than 25 mm and no corpus luteum [CL] present). After this period, as the mares obtained a follicle of at least 25 mm, they were assigned to one of two groups: (1) control group, untreated; (2) treated with 12.5 mg eFSH, 2 times per day, until at least half of all follicles larger than 30 mm had reached 35 mm. Follicular activity of all mares was monitored. When most of the follicles from treated mares and a single follicle from control mares acquired a preovulatory size (≥35 mm), 2,500 IU human chorionic gonadotropin (hCG) was administered IV to induce ovulation. After hCG administration, the mares were inseminated with fresh semen every other day until ovulation. Ultrasound examinations continued until detection of the last ovulation, and embryo recovery was performed 7 to 8 days after ovulation. The mares of the treated group reached the first preovulatory follicle (4.1 ± 1.0 vs 14.9 ± 10.8 days) and ovulated before untreated mares (6.6 ± 1.2 vs 18.0 ± 11.1 days; P < .05). All mares were treated with prostaglandin F (PGF), on the day of embryo flushing. Three superovulated mares did not cycle immediately after PGF treatment, and consequently had a longer interovulatory interval (22.4 vs 10.9 days, P < 0.05). The mean period of treatment was 4.79 ± 1.07 days and 85.71% of mares had multiple ovulations. The number of ovulations (5.6 vs 1.0) and embryos (2.0 vs 0.7) per mare were higher (P < 0.05) for treated mares than control mares. In conclusion, treatment with eFSH was effective in hastening the onset of the breeding season, inducing multiple ovulations, and increasing embryo production in transitional mares. This is the first report showing the use of FSH treatment to recover embryos from the first cycle of the year.  相似文献   

17.
The period of spring transition, from the anovulatory to the ovulatory season, is characterized in many mares by cyclical growth and regression of large dominant follicles. These follicles produce only low concentrations of estradiol and it is thought that acquisition of steroidogenic competence by large follicles during spring transition is prerequisite in stimulating LH prior to first ovulation. In situ hybridization was used to localize and quantify expression of factors that play a key role in follicular steroidogenesis: StAR, P450scc (CYP11A1), P450c17 (CYP17), P450arom (CYP19), and LH receptor (LHr). One ovary was obtained from mares on the day after detection of an actively growing 30 mm transitional anovulatory follicle (defined as the transitional follicle), and the remaining ovary was removed at the third estrus of the breeding season on the day after the preovulatory follicle reached 30 mm in diameter (defined as the preovulatory follicle). Messenger RNAs encoding StAR, CYP11A1, and CYP17 were detected only in theca cells and CYP19 mRNA was confined to the granulosa layer. There was significantly lower expression of mRNAs for the steroidogenic enzymes, StAR (P<0.001) and LHr (P<0.05) in transitional follicles than in preovulatory follicles. In conclusion, large equine follicles during spring transition have low levels of mRNA encoding steroidogenic enzymes, StAR and LHr which will contribute to the steroidogenic incompetence of dominant follicles during spring transition and their subsequent regression.  相似文献   

18.
The well-documented phenomenon of reduced conception rate in dairy cows during the hot season involves impaired functioning of the ovarian follicles and their enclosed oocytes. Three experiments were performed to examine the administration of low doses of follicle-stimulating hormone (FSH) to induce turnover of follicles that are damaged upon summer thermal stress and to examine whether this FSH administration has beneficial effects on preovulatory follicles. In experiment 1, synchronized heifers were treated with 100 mg of Folltropin-V (n = 7) or 4.4 mg of Ovagen (n = 6) on day 3 of the estrous cycle. Treatment with both FSH sources resulted in greater (P < 0.05) numbers of follicles than in control animals (n = 12) on day 6 of the estrous cycle, indicating that low doses of FSH can increase the number of emerging follicles in a follicular wave. In experiment 2, milking cows were assigned to a control group (n = 4) or treated with 2.2 mg (FSH-2.2; n = 6) or 4.4 mg (FSH-4.4; n = 5) Ovagen. Follicle-stimulating hormone was administrated on day 3 or 4 and day 10 or 11 of the estrous cycle, coinciding with emergence of the first and second follicular waves, respectively. The number of follicles emerging during the first wave tended to be higher (P < 0.1) in FSH-4.4-treated cows than in controls. The second-wave dominant follicles emerged 2 d later in the treated cows and were smaller in diameter (P < 0.05) than controls, 2 d before aspiration. Despite being younger, the preovulatory follicles of FSH-4.4 cows expressed a steroidogenic capacity that was similar to controls with a tendency toward greater insulin concentrations (P < 0.09). In experiment 3, milking cows were assigned to a control group (n = 6) or treated with 4.4 mg Ovagen (FSH-4.4; n = 6). Follicle-stimulating hormone was administrated on day 3 and day 12 or 13 of the estrous cycle. The number of emerging follicles was higher (P < 0.05) in the treated vs control cows. However, the features of the preovulatory follicle developed in the subsequent cycle did not differ between groups. In summary, low doses of FSH can efficiently induce follicular turnover accompanied by a modest effect on the preovulatory follicle of the treated cycle. It appears that the administration of low doses of FSH, precisely timed to synchronize with the emergence of follicular waves, might have a beneficial effect on the preovulatory follicle and its enclosed oocyte.  相似文献   

19.
Adiponectin and its receptors (AdipoR1 and AdipoR2) mRNAs are expressed in various chicken tissues including ovary. However, the cellular expression and the role of adiponectin system have never been investigated in chicken ovary. Here, we have shown that the level of adiponectin mRNA is about 10- to 30-fold higher (p < 0.001) in theca cells than in granulosa cells from each hierarchical yellow follicle studied (F4–F1). In contrast, the level of AdipoR1 mRNA expression was about two-fold lower in theca cells than in granulosa cells (p < 0.05) whereas those of AdipoR2 was similar in both ovarian cells. Whereas expression of adiponectin mRNA increased with follicular differentiation in theca cells, it decreased in granulosa cells. In contrast, mRNA expression of AdipoR1 and AdipoR2 in both theca and granulosa cells remained stable during yellow follicle development. To determine whether adiponectin is involved in the ovarian steroidogenesis, LH (100 ng/ml)-, FSH (100 ng/ml)- and IGF-1 (100 ng/ml)-induced progesterone production was measured in absence or presence of human recombinant adiponectin (10 μg/ml) for 36 h in cultured granulosa cells from F1, F2 and mixed F3 and F4 follicles. In absence of LH, FSH and IGF-1, adiponectin treatment had no effects on progesterone production whatever vitollegenic follicle studied. However, it increased by about two-fold IGF-1-induced progesterone secretion in F2 and F3/4 follicles whereas it halved progesterone production in response to gonadotropins (LH and FSH) in F3/4 follicles. Thus, in chicken, adiponectin, mainly expressed in theca cells, could exert paracrine or autocrine effect on the ovarian steroidogenesis.  相似文献   

20.
Follicle populations and concentrations of circulating gonadotropins were studied during age 2-10 months in 10 spring-born pony fillies. Blood sampling and ultrasound scanning were done every 4 days and daily for four 30 day periods. During 5-12 weeks, FSH concentrations were lower in 6 fillies with follicles > or = 6 mm (mean +/- s.e. 1.4 +/- 0.1 ng/ml) than in 4 fillies with follicles < 6 mm (2.8 +/- 0.3 ng/ml). The diameters and numbers of follicles and gonadotropin concentrations increased progressively during age 2-4 months. A plateau in follicle activity and reduced levels of gonadotropins occurred during 5-7 months. During 8-10 months, follicles grew to > 10 mm and gonadotropin concentrations increased. Waves of follicular growth were identified during the 30 day periods by significant increases in the diameter of the 10 largest follicles. The waves did not partition into dominant and subordinate follicles. Results indicated an initial postnatal period of negative ovarian feedback, temporally related changes in gonadotropins and follicles for months 3-10, and development of follicles in waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号