首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The Huanglong Mountain forest zone is one of the major natural secondary forest zones in the southern Loess Plateau in Shaanxi Province, China. Since 1950, a mode of fully closed hillside afforestation (FHA) has been applied in the forest. On some special sites, the forest age exceeds 80 years. Pinus tabulaeformis forests form the most important vegetation cover in the warm temperate regions of China. Similarly, populations of P. tabulaeformis are dominant in existing forest ecosystems. Quercus liaotungensis, Syringa oblata, Populus davidiana, Prunus davidiana, Betula platyphylla and Toxicodendron vernicifluum can be occasionally found in the tree layer and shrub species are abundant. Based on the data collected from 31 plots and 93 soil samples, the state of health of the forest ecosystem is discussed and the appropriate FHA age has been determined. Twelve indices representing vegetation and soil properties in natural, secondary P. tabulaeformis forest ecosystems were generated by sensitivity analysis and an assessment index system for the FHA mode was established. According to the equal distance method, a clustering technique and five grades of an integrated index for evaluating the FHA mode were compartmentalized. The effect of the FHA mode on natural secondary P. tabulaeformis forests was evaluated by an integrated index method with the aid of an analytical hierarchy process (AHP). The results are as follows: values of the integrated index in the FHA mode of 16, 25, 30, 45, 60 and 75 year old stands were 7.25, 6.88, 7.82, 5.51, 4.78 and 2.79 respectively. With an increase over age of the FHA stands, the effect of the FHA mode deteriorated. We conclude that natural forests should not be protected in the FHA way after 45 years. At that stage, mixing suitable tree species, selection cutting and other silvicultural and management measures should be adopted. __________ Translated from Acta Ecologica Sinica, 2007, 27(1): 288–295 [译自: 生态学报]  相似文献   

2.
Vegetation restoration is a key measure to improve the eco-environment in Loess Plateau, China. In order to find the effect of soil microbial biomass under different vegetation restoration models in this region, six trial sites located in Zhifanggou watershed were selected in this study. Results showed that soil microbial biomass, microbial respiration and physical and chemical properties increased apparently. After 30 years of vegetation restoration, soil microbial biomass C, N, P (SMBC, SMBN, SMBP) and microbial respiration, increased by 109.01%–144.22%, 34.17%–117.09%, 31.79%–79.94% and 26.78%–87.59% respectively, as compared with the farmland. However, metabolic quotient declined dramatically by 57.45%–77.49%. Effects of different models of vegetation restoration are different on improving the properties of soil. In general, mixed stands of Pinus tabulaeformis-Amorpha fruticosa and Robinia pseudoacacia-A. fruticosa had the most remarkable effect, followed by R. pseudoacacia and Caragana korshinkii, fallow land and P. tabulaeformis was the lowest. Restoration of mixed forest had greater effective than pure forest in eroded Hilly Loess Plateau. The significant relationships were observed among SMBC, SMBP, microbial respiration, and physical and chemical properties of soil. It was concluded that microbial biomass can be used as indicators of soil quality. __________ Translated from Journal of Natural Resources, 2007, 22(1): 20–27 [译自: 自然资源学报]  相似文献   

3.
According to fixed-position data for 1985–2003 from nine runoff plots of Caijiachuan watershed which lies in Jixian County of Shanxi Province in Loess area, this paper studied the relationship between vegetation and runoff and sediment production in sloping lands in detail, which helps to provide scientific basis for vegetation re-construction and studies on environmental transformation of water and sediment in watersheds of Loess area. Although, many study results testify that forest vegetation has an important function in soil and water conservation and cutting runoff, the effect of vegetation on runoff and sediment transmission is complicated, and this needs to be studied in depth. The results of the paper showed the following. Firstly, the natural secondary forest performs better function of soil and water conservation than artificial Robinia pseudoacacia forest, and runoff and sediment produced in the former in individual rainfall were 65%–82% and 23%–92% of those produced in the latter. At the same time, better correlative relationship between runoff and sediment production and rainfall and rainfall intensity were testified by multiple regression, but the correlation decreased gradually with the increase of canopy density of forest. Secondly, the difference of runoff and sediment production in several land use types was very distinct, and the amount of runoff and sediment produced from Ostryopsis davidiana forest and natural secondary forest were the least, and runoff and sediment produced from in artificial Robinia pseudoacacia forest and Pinus tabulaeformis forest were 5-fold as much as those from O. davidiana forest. Besides, runoff and sediment produced in mixed planting of apple trees and crops were 16.14-fold and 2.96-fold than those of O. davidiana forest, respectively, but the amount decreased obviously after high-standard soil preparation in the case of the former. Thirdly, based on gray cognate analyses of factors affecting runoff and sediment production in sloping land, the factors of stand canopy density and herb and litter biomass were the most significant ones, whose gray incidence degree exceeded 0.6. Therefore, mixed forest with multi-layer stand structure and shrub forest should be developed in vegetation re-construction of Loess area, which will help to increase coverage and litter thickness in order to cut down the runoff and sediment dramatically in sloping land. __________ Translated from Chinese Journal of Applied Ecology, 2005, 16(9): 1,613–1,617 [译自: 应用生态学报, 2005, 16(9): 1,613–1,617]  相似文献   

4.
The influence of woodland soil bulk density on the growth and distribution of fine root system of main planting tree species in the Weibei Loess Plateau was investigated by means of pot culture and field survey. Results indicated that in the woodland of Pinus tabulaeformis, soil bulk density increased with the depth at different sites, while in the woodland of Robinia pseudoacacia, soil bulk density was higher than that in P. tabulaeformis, and there was no clear difference across the profile. Further analysis implied that there existed negative correlations between soil bulk density and fine root length in the woodland of P. tabulaeformis. Results from pot culture indicated that although the effects of pot culture media on the fine root growth and development of different tree species seedlings were different, all treated seedlings grew better in the soil matter with medium bulk density and porosity and with the biggest biomass. Bulk density of pot culture media had clear effects on the growth and development of P. tabulaeformis and R. pseudoacacia seedling roots, especially on the former, whereas it had little effect on that of Platycladus orientalis and Prunus armeniaca var. ansu, whose fine root biomass changed little in different pot culture media. Translated from Scientia Silvae Sinicae, 2004, 40(5) (in Chinese)  相似文献   

5.
Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up inR. pseudoacacia stand and its clearcut area in the western Liaoning Province (18°50’–122°25’ E, 40°24’–42°34’ N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites ofR. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut are were much bigger than those inR. pseudoacacia stand, with an increase amount of 40%–177% for runoff and 180%–400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff inR. pseudoacacia stand was decreased by 1.0–2.5×10−3m3·s−1 compared with that in its clearcut area, and the occurring time of peak value of runoff inR. pseudoacacia stand was 10–20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture inR. pseudoacacia stand was 2.3% higher than that in clearcut area, and the soil moisture both inR. pseudoacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual raifall precipitation. It was concluded thatR. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion. Foundation item: This paper was supported by Chinese “863” Plan Water-Saving Agriculture (2002AA2Z4321), the Key Knowledge Innovation Project (SCXZY0103), and The “Tenth-five” Plan of Liaoning Province (2001212001). Biography: GAO Peng (1967-), male, Dr. candidate, associate professor of Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

6.
In order to offer a scientific basis for cultivation and management of forests, effects of light radiation intensity on photosynthetic characteristics and water use efficiency of Platycladus orientalis and Pinus tabulaeformis were studied under different soil moisture contents. By adopting artificial control methods to soil moisture, and under simulated photosynthetic radiation (SPR), the net photosynthetic rate (P N), transpiration rate (T r), water use efficiency (WUE) and intercellular CO2 concentration (C i) of Platycladus orientalis and Pinus tabulaeformis in the semi-arid region of the Loess Plateau, were studied. Results are as follows: within the photon range of 0–2,200 μmol/(m2·s), P N, T r and WUE were enhanced with an increase in SPR in both species. P N and WUE of Platycladus orientalis and Pinus tabulaeformis, however, declined with continued increase in SPR. P N, T r, WUE and light saturation point (LSP) of Platycladus orientalis were higher than those of Pinus tabulaeformis, while light compensation point (LCP) of Platycladus orientalis was lower than that of Pinus tabulaeformis at the same soil moisture content. The efficiency of light energy utilization of Platycladus orientalis was higher than that of Pinus tabulaeformis; P N, T r and C i of Platycladus orientalis and Pinus tabulaeformis were enhanced by increasing soil moisture content, whereas WUE declined. At soil moistures of 7.90%, 13.00% and 19.99%, LSP of Platycladus orientalis was 1,275, 1,450 and 1,675 μmol/(m2·s) respectively, and LCP was 42, 25 and 13 μmol/(m2·s) respectively, with corresponding maximal net CO2 photosynthetic rates (P max) of 3.04, 4.06 and 5.53 μmol/(m2·s). At soil moistures of 7.83%, 13.04% and 20.15%, the LSP of Pinus tabulaeformis was 1,100, 1,325 and 1,500 μmol/(m2·s) respectively, and LCP was 60, 30 and 23 μmol/(m2·s), with P max of 1.08, 3.35 and 4.36 μmol/(m2·s) respectively. __________ Translated from Science of Soil and Water Conservation, 2006, 4(3): 108–113 [译自: 中国水土保持科学]  相似文献   

7.
In order to explore the forest soil physical property in the Three Gorges Reservoir areas, the fractal theory was adopted to study the soil fractal features of the four typical forest stands (mixed Pinus massoniana-broadleaf forests, evergreen broadleaved forests, Phyllostachys pubescens forests and evergreen broadleaved shrub forests) in Jinyun Mountain, Chongqing City, and they were compared with arable land. It has been proposed that the model can be used for the analysis of the relationship between the fractal dimensions and the properties of forest soil. The impacts of fractal dimensions on the soil properties were analyzed with the elasticity analysis and marginal yield analysis. Results showed that the fractal dimension of particle size distribution (PSD), the micro-aggregate size distribution (ASD) and the soil pore size distribution (SPD) can be used as the indices to evaluate the soil structure. In the typical stands of Jinyun Mountain, the fractal dimension of PSD is 2.7–2.9, the ASD is 2.5–2.8, and the SPD is 2.3–2.8. The soil structure of evergreen broadleaved shrub forests performed best in PSD, ASD and SPD, and the soil of P. pubescens forests is the worst. There were some relationships among the PSD, ASD, SPD and some soil properties in the different forests and farmland. The related coefficients are over 0.5. Based on the elasticity analysis and marginal yield analysis, the effect of PSD was more than those of ASD and SPD. Obviously, the further study on the fractal theory application in soil structure and soil properties has important significance. __________ Translated from Science of Soil and Water Conservation, 2006, 4(4): 39–46 [译自: 中国水土保持科学]  相似文献   

8.
The relationship between eco-hydrographic benefit of forest vegetation and climatic environmental factors is one of the focuses in the research on environmental protection and ecosystem countermeasures in Wetland. The runoff, sediment and soil moisture rate dynamics in Robinia pseudoacacia plantation and its clearcut area were investigated in the natural runoff experiment plots in Yellow River Delta Wetland, Shandong Province, China. The correlation of height increment of R. pseudoacacia with nine climate factors such as light, water, heat, etc. was analyzed by stepwise regression analysis. The results showed that the amounts of runoff and sediment in clearcut area of R. pseudoacacia were 53.9%–150.8% and 172.8%–387.1% higher than that in Robinia pseudoacacia plantation, respectively. The runoff peak value in R. pseudoacacia stand was obviously lower than that in clerarcut area, meantime, the occurrence of runoff peak in R. pseudoacacia stand was 25 min later than in its clerarcut area. The soil moisture rates in R. pseudoacacia stand and its clearcut varied periodically with annual rainfall precipitation in both dry season and humid season. The annual mean soil moisture rate in R. pseudoacacia stand was 23.3%–25.6% higher than that in its clearcut area. Meanwhile, a regression model reflecting the correlation between the height increment of R. pseudoacacia and climatic factors was developed by stepwise regression procedure method. It showed that the light was the most important factor for the height increment of R. pseudoacacia, followed by water and heat factors. Foundation project: Subsidized by the National “11th Five Year” Plan of Science and technology (2006BAD26B06, 2006BAD03A1205) and Ecological Restore Project of Water Resources Ministry of China (2006-2008).  相似文献   

9.
在晋西黄土区,研究了荒草地、锦鸡儿灌木林地和刺槐乔木林地3种典型植被不同土层的土壤密度、含水量、贮水能力和入渗性能的差异及其相关性,结果显示:3种植被类型都能有效减小表层(0 20 cm)土壤密度;3种植被类型表层(0 20 cm)的土壤滞留贮水量较大,锦鸡儿林地(198.80 t·m-3)刺槐林地(166.10 t·m-3)荒草地(87.37 t·m-3),20 40 cm土层的土壤滞留贮水量也是锦鸡儿林地(127.30 t·m-3)刺槐林地(55.60 t·m-3)荒草地(47.30 t·m-3),表明在3种植被类型中,锦鸡儿林地对晋西黄土丘陵区土壤水分的涵养作用最强;锦鸡儿林地的土壤稳渗速率最大,为1.80 mm·min-1,刺槐林地次之,为1.46 mm·min-1,荒草地依然最小,且锦鸡儿林地土壤的均渗速率最大,为4.81 mm·min-1,其次是刺槐林地,为4.51 mm·min-1,荒草地最小。土壤密度与滞留贮水量呈极显著负相关关系,与土壤初渗速率和均渗速率呈极显著负相关关系,与稳渗速率呈显著负相关关系,非毛管孔隙度与稳渗速率和均渗速率存在极显著相关关系。Kostiakov模型和Horton模型对晋西黄土区3种植被类型土壤入渗过程模拟的拟合系数高达0.97和0.95,明显优于Philip模型(0.43)。  相似文献   

10.
Windward slopes of the inland mountain ranges in British Columbia support a unique inland temperate rainforest (ITR) ecosystem. Increasing fragmentation and the loss of old ITR stands have highlighted the need for determining conservation biology priorities among remaining old forest stands. We have addressed this issue by surveying foliose macrolichens within 53 old ITR stands in British Columbia's 135,000 ha very wet-cool interior-cedar hemlock (ICHvk2) biogeoclimatic subzone in the upper Fraser River watershed. Study plots were stratified by leading tree species and by “wet” versus “dry” relative soil moisture conditions. Other plot variables included: temperature, precipitation, incident solar loading, and canopy openness. Ordination plots showed a distinct assemblage of foliose cyanolichens, including Lobaria pulmonaria, Lobaria retigera, Sticta fuliginosa, Nephroma isidiosum, Nephroma occultum, and Pseudocyphellaria anomala, whose abundance was correlated with increasing relative soil moisture, temperature, canopy openness, precipitation, and basal area of spruce. Logistic regression models similarly identified relative soil moisture and temperature in all parsimonious models. Leading tree species, in combination with “wet” relative soil moisture and/or temperature, were important factors explaining the presence or absence of five (Cavernularia hultenii, L. retigera, N. occultum, Platismatia norvegica, and Sticta oroborealis) of the eight modeled old-growth associate lichen species. This combination of conditions favouring the development of canopy lichen communities in old forests was best expressed in low elevation water receiving sites. We hypothesize that groundwater availability in these sites promotes species richness and abundance of canopy lichens by creating more favourable conditions for growth, and by reducing fire return intervals which allows for the accumulation of rare species over time. Historically, forests in these wet “toe-slope” positions were disproportionately targeted for logging. Their conservation should now be a high priority, given their disproportionate significance to maintaining canopy lichen diversity in the present-day landscapes.  相似文献   

11.
The objectives of our study were to explore the relationship of leaf area and stand density and to find a convenient way to measure stand leaf areas. During the 2004 growing season, from May to October, we used direct and indirect methods to measure the seasonal variation of the leaf areas of tree and shrub species. The trees were from Robinia pseudoacacia stands of four densities (3333 plants/hm2, 1666 plants/hm2, 1111 plants/hm2, and 833 plants/hm2) and Platycladus orientalis stands of three densities (3333 plants/hm2, 1666 plants/hm2, and 1111 plants/hm2). The shrub species were Caragana korshinskii, Hippophae rhamnoides, and Amorpha fruticosa. Based on our survey data, empirical formulas for calculating leaf area were obtained by correlating leaf fresh weight, diameter of base branches, and leaf areas. Our results show the following: 1) in September, the leaf area and leaf area index (LAI) of trees (R. pseudoacacia and P. orientalis) reached their maximum values, with LAI peak values of 10.5 and 3.2, respectively. In August, the leaf area and LAI of shrubs (C. korshinskii, H. rhamnoides, and A. fruticosa) reached their maximum values, with LAI peak values of 1.195, 1.123, and 1.882, respectively. 2) There is a statistically significant power relation between leaf area and leaf fresh weight for R. pseudoacacia. There are significant linear relationships between leaf area and leaf fresh weight for P. orientalis, C. korshinskii, H. rhamnoides, and A. fruticosa. Moreover, there is also a significant power relation between leaf area and diameter of base branches for C. korshinskii. There are significant linear relations between leaf area and diameter of base branches of H. rhamnoides and A. fruticosa. 3) In the hills and gully regions of the Loess Plateau, the LAIs of R. pseudoacacia stand at different densities converged after the planted stands entered their fast growth stage. Their LAI do not seem to be affected by its initial and current density. The same is true for P. orientalis stands. However, the leaf area of individual trees is negatively and linearly related with stand density. We conclude that, in the hills and gully regions of the Loess Plateau, the bearing capacity of R. pseudoacacia and P. orientalis stands we studied have reached their maximum limitation, owing to restricted access to soil water. Therefore, in consideration of improving the quality of single trees, a stand density not exceeding 833 and 1111 plants/hm2 is recommended for R. pseudoacacia and P. orientalis, respectively. In consideration of improving the quality of the entire stands, the density can be reduced even a little more. __________ Translated from Journal of Plant Ecology (Chinese Version), 2008, 32 (2): 440–447 [译自: 植物生态学报]  相似文献   

12.
北京市3种道路防护林春季滞尘规律研究   总被引:2,自引:1,他引:1       下载免费PDF全文
[目的]研究不同道路防护林的滞尘能力及滞尘的动态变化和空间分布规律。[方法]在春季对3种道路防护林(油松林、圆柏林、银杏林)距道路不同宽度的滞尘量进行连续观测,对比3种道路防护林滞尘能力,分析降雨、极大风速、相对湿度、PM10等因子对滞尘动态的影响以及3种道路防护林滞尘的空间分布特征。使用单位叶干质量滞尘量(mg·g-1)表征叶面滞尘能力。[结果]表明:(1)3种植物叶面滞尘能力差异显著,圆柏银杏油松,分别为4.79±0.20、2.48±0.07、1.42±0.04 mg·g-1,单株和单位林分面积滞尘量均为圆柏林油松林银杏林;(2)3种道路防护林在外界影响下滞尘量处于动态变化之中,油松林具有比银杏和圆柏林更高的滞尘稳定性;(3)降雨量较低时3种道路防护林滞尘量均增加,降雨量较高时3种道路防护林滞尘量均降低,油松和银杏林的滞尘量更容易受降雨影响而降低;随着风速增大,3种道路防护林滞尘作用不断加强,风速继续增大时,油松和圆柏林滞尘量均有减少,银杏林滞尘量仍有显著增加。(4)3种道路防护林滞尘量在五环路侧(北)均高于香山路侧(南),油松和圆柏林均呈现为道路防护林中间位置为最低点,银杏林中间位置滞尘量最高。(5)油松和圆柏林滞尘量外部比内部变化大,银杏林滞尘量内部比外部变化大。[结论]道路防护林的滞尘效益受树种、林分结构、所处环境、天气条件等多方面因素共同影响,在营建和管理过程中应充分考虑各种因素,充分发挥滞尘作用。  相似文献   

13.
Precipitation chemistry was monitored in two different types of forests (mixed Pinus tabulaeformis and Quercus variabilis forest and pure Q. variabilis forest) in Jiufeng National Forest Park, in western Beijing. Results showed that the pH value of precipitation ranged between 6.13 and 6.97 and no acid rain appeared; the mean electrical conductivity (EC) was 0.18 mS/cm and mean total suspended particles (TSP) was 44.02 mg/L, but these values changed significantly with different amounts of stem-flow. Acidification occurred in the stem-flow to different extents: that of P. tabulaeformis > Q. variabilis. The mean EC value of stem-flow in P. tabulaeformis in the mixed forest was 1.00 mS/cm, which was 5.88 times as high as that of precipitation outside the forest. EC values of Q. variabilis in pure and mixed forests show little difference, 0.34 and 0.30 mS/cm, respectively and were 2.00 and 1.76 times higher than that of precipitation. During the summer, EC values of stem-flow of P. tabulaeformis decreased over time and with an increase in the amount of precipitation. The mean TSP of stem-flow in mixed forest was 116.95 mg/L, but 87.14 mg/L in the pure forest, which were 72.93 and 43.12 mg/L higher than that of precipitation. __________ Translated from Journal of Beijing Forestry University, 2005, 27(1): 88–91 [译自: 北京林业大学学报]  相似文献   

14.
[目的]研究北京海淀区3种道路防护林(油松林、圆柏林、银杏林)的滞尘能力、林内滞尘的空间分布规律、滞尘作用与气象因子和PM10浓度的相关性。[方法]滞尘量的测定用单位叶干质量滞尘量(mg·g-1)表征叶面滞尘能力。于冬、春、夏、秋4季对3种道路防护林内距道路不同距离处的滞尘量进行连续观测,比较3种道路防护林滞尘能力,分析3种道路防护林滞尘的空间分布特征及降雨等气象因子及PM10浓度与滞尘作用的相关性。[结果](1) 3种道路防护林总体单位滞尘量圆柏林(4. 20±0. 19 mg·g-1)银杏林(1. 98±0. 07 mg·g-1)油松林(1. 71±0. 07 mg·g-1);油松和圆柏林的单位滞尘量冬季春季秋季夏季,银杏林的单位滞尘量春季和秋季基本无差异,夏季最低; 3种道路防护林的单位滞尘量在各季节均为圆柏林最高,银杏林次之,油松林最低。(2) 3种道路防护林空间分布的总体特征为:油松和圆柏林的滞尘空间分布均表现为"两端高、中间低",银杏林单位滞尘量林分中间位置略高于两侧;不同季节表现为冬季北侧高,春季南侧高,夏、秋季南北侧差异不显著。(3)降水量对3种道路防护林滞尘作用影响最大,是3种道路防护林滞尘的最主要限制因子,极大风速、气温、相对湿度和PM10浓度对3种道路防护林滞尘均具有不同程度的正的直接作用。[结论]在相同配置模式(5 m×5 m)及林龄(18年)下,林地尺度滞尘量油松林最大、圆柏林次之、银杏林最低。道路防护林迎风一侧往往具有较高滞尘量,可根据盛行风向强化迎风侧的树木配置。降雨是树木滞尘的主要限制因子,冬季和春季降雨少,树木滞尘量较大,可结合人工冲洗措施使其发挥更大滞尘作用。  相似文献   

15.
To discover the site adaptability and density suitability of Larix principis-rupprechtii as a water conservation forest in Wutai Mountain, Shanxi Province, the growth process and diameter distribution characteristics of 10-year-old artificial L. principis-rupprechtii forests with density structures of 2600 trees/hm2 and 3500 trees/hm2 were studied using trunk analysis of a sample tree. The results showed that: 1) The tree height increment of the two kinds of forests were the same, and it was almost not affected by density. However, the growth process of the diameter and timber volume showed a great distinction. The growth status and density structure of the low density forest were superior to the high density forest. 2) The skewness (S k) of diameter distribution had great distinction. The S k (0.01) of the low density forest approached a normal distribution, which showed that the density structure was reasonable, while the S k (0.45) of the high density forest was partial to a normal distribution, which showed that the density structure was on the high side. The kurtosis (K) of the two forests (one was −0.64, the other was −0.74) had little distinction and the density factor had limited function to forest polarization. 3) The increment of diameter at breast height, timber volume and trunk stock of the low density forest increased yearly without the effect of density. However, the increment of high density forests had declined from the sixth year, which was restricted by high density. 4) The reasonable density of the 10-year-old L. principis-rupprechtii artificial forest was about 2600 trees/hm2, which is also the reasonable planting density if the utilization of double cutting is not considered. __________ Translated from Science of Soil and Water Conservation, 2007, 5(1): 1–6 [译自: 中国水土保持科学]  相似文献   

16.
This investigation of three Abies alba stands differing in stem density (338–715 per ha) and vertical structure (one-storeyed or multi-layered) explored the relations between distance from neighbouring tree stems and local canopy openness and selected topsoil properties. The null hypothesis was that in relatively densely stocked forests of close–random stem distribution topsoil morphology, pH and moisture do not differ in inter-crown and under-crown patches. In three plots 1.1 ha in area, soil samples were taken in a square grid 5.0 × 5.0 m and analysed using semivariogram estimation and spatial autocorrelation. The local configuration of trees around the sampled locations was characterised using hemispheral photography and a local stand density index based on tree locations and diameters. The largest portion of the total variation in the soil variables analysed (68–100%) was attributable to small-scale variation in scales <5 m. In all stands, irrespective of density and vertical structure, local stand density/canopy openness correlated positively/negatively with ectohumus layer thickness but negatively/positively with upper soil pH and moisture. Variation in the local configuration of trees explained up to 17% of the total variation in organic horizon thickness, up to 22–29% in topsoil pH (depending on the horizon) and up to 19–27% in topsoil moisture. The results indicate that even in stands of random tree patterning, stem neighbourhood and small-scale variation in canopy density may contribute significantly to topsoil heterogeneity and potentially affect the functioning and structure of forest floor vegetation.  相似文献   

17.
晋西黄土区三种林地土壤养分随林分生长的变化   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的]研究不同林分类型以及林龄对晋西黄土区土壤养分的改良效应,以期为森林可持续经营提供参考、丰富该区域的生态服务评估资料。[方法]采用林分调查、土壤取样和室内分析方法,于2011年和2016年7—8月对3种不同林龄(山杨中龄林、油松幼龄林、侧柏中龄林)林地内的不同土层有机碳、全氮、全磷含量进行分析,并研究林内各土层间的C、N、P化学计量关系。[结果]表明:各林地土壤养分都有极强的表聚性,0~30 cm土层内有机质、全氮、全磷含量占0~100 cm土层的70%以上;经过5年时间,山杨、油松和侧柏林地0~50 cm土层内平均全氮含量分别增长了9.4%、7.4%、7.5%,全磷含量分别增长了11.6%、12.2%、21.4%;0~100 cm土层内碳储量分别增加了21.17、23.74、2.21 t·hm-2。不同林地之间土壤C:N值随土层深度逐渐减小,而N:P、C:P值随土层变化并没有规律;随着林龄的增加,土壤表层(0~10 cm)的N:P和C:P值明显减小,而C:N值变化不明显。[结论]根据全国土壤养分分级标准,试验林地内碳和氮含量较为丰富,而全磷平均含量为0.36~0.46 g·kg-1、为4~5级标准。在试验林地内,对土壤碳储量、全氮、全磷改良效果相对较好的分别为油松林、山杨林和侧柏林。  相似文献   

18.
Based on a detailed investigation of vertical distributions of fine roots in Robinia pseudoacacia plantations at the Ansai Soil and Water Conservation Station, Shaanxi Province, a model was developed for the deep distribution of fine roots of R. pseudoacacia, which reflects the growth of fine roots affected by the mixed process of infiltration water and deep soil water. The maximum depth of the distribution h max and the depth of the highest fine root density (FRD) h p were determined and the maximum depth of infiltration water supplied for fine root growth h q could also be calculated, h q was considered as the approximate boundary between infiltration water and deep soil water in support of the growth of fine roots. According to the model, the soil water of R. pseudoacacia woodland in the profile could be classified into three layers: the first layer from the soil surface to h p was the active water exchange layer, very much affected by precipitation; the second was the soil water attenuation layer, between h p and h q and largely affected by the vertical distribution of fine roots; the third was the relatively stable soil water layer below h q, below which soil water did not change much. The percentage of infiltration water supplied for the growth of fine roots reached a level of 88.32% on the shaded slopes and 85.21% on sunny slopes. This indicated infiltration of precipitation played a crucial role in the growth of R. pseudoacacia in the gully region of the Loess Plateau. The research of interaction between the distribution of fine roots and soil water in the profile will help to explain the reasons for the complete drying out of soils and provide a theoretical basis for continuing the policy of matching tree species with sites on the Loess Plateau. Translated from Scientia Silvae Sinicae, 2006, 42(6): 40–48 [译自: 林业科学]  相似文献   

19.
Vegetation recovery is a key measure to improve ecosystems in the Loess Plateau in China. To understand the evolution of soil microorganisms in forest plantations in the hilly areas of the Loess Plateau, the soil microbial biomass, microbial respiration and physical and chemical properties of the soil of Robinia pseudoacacia plantations were studied. In this study, eight forest soils of different age classes were used to study the evolution of soil microbial biomass, while a farmland and a native forest community of Platycladus orientalis L. were chosen as controls. By measuring soil microbial biomass, metabolic quotient, and physical and chemical properties, it can be concluded that soil quality was improved steadily after planting. Soil microbial biomass of C, N and P (SMBC, SMBN and SMBP) increased significantly after 10 to 15 years of afforestation and vegetation recovery. A relatively stable state of soil microbial biomass was maintained in near-mature or mature plantations. There was an increase of soil microbial biomass appearing at the end of the mature stage. After 50 years of afforestation and vegetation recovery, compared with those in farmland, the soil microbial biomass of C, N and P increased by 213%, 201% and 83% respectively, but only accounting for 51%, 55% and 61% of the increase in P. orientalis forest. Microbial soil respiration was enhanced in the early stages, and then weakened in the later stage after restoration, which was different from the change of soil organic carbon. The metabolic quotient (qCO2) was significantly higher in the soils of the P. orientalis forest than that in farmland at the early restoration stage and then decreased rapidly. After 25 years of afforestation and vegetation recovery, qCO2 in soils of the R. pseudoacacia forest was lower than that in the farmland soil, and reached a minimum after 50 years, which was close to that of the P. orientalis forest. A significant relationship was found among soil microbial biomass, qCO2 and physical and chemical properties and restoration duration. Therefore, we conclude that it is possible to artificially improve the ecological environment and soil quality in the hilly area of the Loess Plateau; a long time, even more than 100 years, is needed to reach the climax of the present natural forest. __________ Translated from Acta Ecologica Sinica, 2007, 27(3): 909–917 [译自: 生态学报]  相似文献   

20.
The effects of soil water and meteorological factors affecting transpiration of Pinus tabulaeformis were studied under different levels of soil water content to offer a scientific basis for increasing efforts in afforestation survival and management of soil water in forested land. Under artificial control methods for soil water and potting experiments, the transpiration rate (T r) of P. tabulaeformis and environmental factors were measured using a portable steady porometer (Li-1600) and a speedy weight method (BP-3400) during a representative fine day in the growing season of 2004. The results indicated that the diurnal course of T r and R st of P. tabulaeformis displayed a double-peaked curve and a “W” curve under different levels of soil water content. Given a representative fine day, the T r could be represented as a cubic relation with soil water content (SWC). The SWC which caused maximum T r values of P. tabulaeformis was 17.7%, 19.8%, and 17.5% in July, August and October respectively. T r was affected not only by physiological characteristics, but also by SWC and meteorological factors. T r was significantly correlated with meteorological factors when the soil water was sufficient, but this correlation would decrease under conditions of serious water stress. Under such stress conditions, air temperature was the primary factor to affect T r in July and August and photosynthetically active radiation (PAR) was the primary factor in October. When soil water is sufficient, the main factors affecting T r were relative humidity (RH), air temperature (T a) and leaf temperature (T l) in July, August and October respectively. __________ Translated from Science of Soil and Water Conservation, 2007, 5(1): 49–54 [译自: 中国水土保持科学]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号