首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 56‐day feeding trial was conducted to investigate the effects of replacing fish meal with cottonseed protein concentrate (CPC) (free gossypol < 7.9 mg/kg) in the diets on the growth, intestinal microflora, haematological and antioxidant indices of juvenile golden pompano (Trachinotus ovatus). Six diets were designed: fishmeal diets (FM) which contained 340 g/kg fishmeal, as well as five CPC diets, each with differing CPC concentrations (120, 240, 360, 480 and 600 g/kg) to replace the fish meal. The weight gain rate (WGR) and specific growth rate (SGR) showed no significant difference among groups (p > .05) with the dietary CPC level ranged from 0 to 360 g/kg. Serum cholesterol (CHO) of C36 and triglyceride (TG) levels of C36 and C12 were significantly higher than the FM (p < .05). Total protein (TP) levels of C12 were significantly lower than the FM (p < .05). Among the treatments, C36 had higher glutathione peroxidase (GSH‐PX) and total superoxide dismutase (T‐SOD) than FM (p < .05). From the data analysis of 16s sequencing, with increasing CPC concentration, the proportion of harmful microbial taxa (Proteobacteria and Vibrio) increased. The results of this study support that CPC products are acceptable in practical diets for golden pompano. And the optimal dietary CPC replacement of golden pompano was estimated to be 259.3 g/kg.  相似文献   

2.
An 8‐week feeding trial was conducted to investigate the effects of dietary carbohydrate to lipid ratio (CHO: L) on growth, feed utilization, body composition and digestive enzyme activities of golden pompano, Trachinotus ovatus. Five iso‐nitrogenous (450 g/kg protein) and iso‐energetic (19 MJ/kg gross energy) diets with varying CHO: L ratios of 0.68, 1.02, 1.62, 2.61 and 4.35, respectively, were fed to triplicate groups of 30 fish (average 13.8 ± 0.1 g). Results showed that dietary CHO: L ratios did not show any significant influence on survival of golden pompano (> .05) but significantly affected its growth performance and feed utilization (< .05). Fish fed diets with CHO: L ratios at 1.62 and 2.61 exhibited the highest final body weight, weight gain ratio, specific growth rate, feed efficiency ratio and protein efficiency ratio. Fish body lipid and liver glycogen contents were also significantly influenced by CHO: L ratio (< .05). Hepatic amylase activity increased firstly and then decreased as the dietary CHO: L ratio increased, while lipases activity decreased with increasing dietary CHO:L level. The regression model analysis showed that the most suitable dietary CHO: L ratio (protein 450 g/kg) to reach the highest weight gain ratio is 2.38.  相似文献   

3.
Y. Wang  M. Li  K. Filer  Y. Xue  Q. Ai  K. Mai 《Aquaculture Nutrition》2017,23(5):1113-1120
This trial was conducted to evaluate the effects of replacing dietary fish oil with Schizochytrium meal for Pacific white shrimp (Litopenaeus vannamei) larvae (initial body weight 4.21 ± 0.10 mg). Six test microdiets were formulated using Schizochytrium meal to replace 0 g/kg, 250 g/kg, 500 g/kg, 750 g/kg, 1000 g/kg or 1500 g/kg fish oil DHA. No significant differences were observed in survival, growth, final body length and activities of digestive enzyme among shrimp fed different diets (p > .05). No significant differences were observed in C20:5n‐3 (EPA) in muscle samples (p > .05). C18:3n‐3 and C20:4n‐6 in muscle increased as Schizochytrium meal replacement level increased (p < .05). No significant differences were observed in C22:6n‐3 (DHA) and n‐3 fatty acids among shrimp fed diets that algae meal replaced 0 g/kg ‐ 1000 g/kg of fish oil. Shrimp fed diet R150 had higher DHA content than other groups and had higher n‐3 fatty acids than that of shrimp fed diets R50, R75 and R100 (p < .05). C18:2n‐6, PUFA and n‐6 fatty acids in muscle increased, while n‐3/n‐6 ratio decreased with increasing algae meal replacement level from 0 g/kg to 1000 g/kg (p < .05). In conclusion, Schizochytrium meal could replace 1500 g/kg fish oil DHA in the microdiets without negatively affecting shrimp larvae survival, growth and activities of digestive enzyme.  相似文献   

4.
An 8‐week feeding trial was conducted to quantify the dietary valine requirement of cultured juvenile Nile tilapia, Oreochromis niloticus. Six isonitrogenous (280 g/kg crude protein) and isoenergetic (16.06 MJ/kg gross energy) diets with graded levels of valine (amounting to 4.1, 7.2, 9.9, 12.7, 15.6 and 18.8 g/kg of dry diet) were formulated. Each diet was randomly assigned to triplicate groups of 20 fish (6.48 ± 0.06 g). Results showed that the weight gain, specific growth rate, protein efficiency ratio and protein retention efficiency all increased with an increasing level of dietary valine up to 12.7 g/kg, but remained relatively constant for fish fed higher levels of dietary valine. In addition, the total protein concentration and aspirate aminotransferase activity in plasma, hepatic lysozyme and catalase activities were all significantly (< .05) improved by dietary valine supplementation. Based on the broken‐line regression analysis of weight gain and protein retention efficiency, the optimal dietary valine requirement for juvenile Nile tilapia occurred between a level of 11.5 g/kg of diet (equivalent to 41.1 g/kg of dietary protein) and 12.7 g/kg of diet (equivalent to 45.3 g/kg of dietary protein).  相似文献   

5.
To investigate the effects of dietary vitamin C on growth, flesh quality and antioxidant capacity of juvenile golden pompano Trachinotus ovatus, a 56‐day feeding trial with five graded levels of dietary VC (D1: 11.69, D2: 34.89, D3: 59.10, D4: 114.26 and D5: 227.93 mg VC per kg of diet) was performed on 375 fish (triplicate groups of 25 fish per diet, initial weight 13.57 ± 0.09 g). Results showed that fish of D3 group exhibited the maximum specific growth rate (SGR) and the highest liver enzymatic activities of catalase (CAT) and glutathione peroxidase (GSH‐PX), which were consistent with the expression levels of cat and gsh‐px. Besides, the D3 group also showed higher contents of protein and lipid, and lower cooking loss, drip loss and malondialdehyde content in muscle than D1 group. The docosahexaenoic acid proportion in muscle increased with increasing dietary VC levels. Furthermore, the lowest expression levels of carnitine palmitoyltransferase1 (cpt1) and peroxisome proliferator‐activated receptor α (pparα) were detected in livers of D3 group. The optimum dietary VC level was 49.73 mg/kg from the broken‐line analysis based on the SGR, in which better growth performance, antioxidative ability and flesh quality were observed in T. ovatus juveniles.  相似文献   

6.
Golden pompano Trachinotus ovatus is an important farmed carnivorous marine teleost. Although some enzymes for long‐chain polyunsaturated fatty acid (LC‐PUFA) biosynthesis have been identified, the ability of T. ovatus for endogenous biosynthesis is unknown. Here, we evaluated in vivo LC‐PUFA synthesis in a 56‐day culture experiment using six diets (D1–D6) formulated with linseed and soybean oils to produce dietary linolenic/linoleic acid (ALA/LA) ratios ranging from 0.14 to 2.20. The control diet (D0) used fish oil as lipid source. The results showed that, compared with the corresponding indices of fish fed D0, the weight gain rate and specific growth rate as well as the contents of eicosapentaenoic (EPA) and docosahexaenoic acids in tissues (liver, muscle, brain and eye) of D1–D6 groups were significantly lower (p < .05). These data suggested that T. ovatus could not synthesize LC‐PUFA from C18 PUFA or such ability was very low. However, tissue levels of 20:4n‐3 in fish fed diets D1–D6 were higher than that of D0 fish (p < .05), and positively correlated with dietary ALA/LA ratio, while levels of EPA showed no difference among the D1–D6 groups. These results indicated that Δ5 desaturation, required for the conversion of 20:4n‐3 to EPA, may be lacking or very low, suggesting incomplete LC‐PUFA biosynthesis ability in T. ovatus.  相似文献   

7.
To investigate the effects of dietary tryptophan on growth and glycometabolism in juvenile blunt snout bream, 450 fish (initial weight 23.33 ± 0.03 g) were fed six practical diets with graded levels of tryptophan (from 0.79 g/kg to 5.96 g/kg dry matter) for 8 weeks. Results showed that final weight, per cent weight gain (PWG), protein efficiency rate, feed intake and feed conversion ratio (FCR) were significantly improved by 2.80 g/kg diet. The maximum values of protein and ash were observed in 2.80 g/kg diet, while moisture was minimum. Lipid content of fish fed 3.95 g/kg diet was significantly higher than other diets. The highest plasma insulin‐like growth factor‐1 (IGF‐1) content was observed in 0.79 g/kg diet. In the liver, IGF‐1 mRNA levels were significantly downregulated by 2.80 g/kg dietary tryptophan, while glucokinase levels were by 3.95 g/kg, while glucose‐6‐phosphatase and phosphoenolpyruvate carboxykinase mRNA levels showed a converse trend compared with IGF‐1. Based on PWG and FCR, the optimal dietary tryptophan level was determined to be 1.99 g/kg (6.20 g/kg of dietary protein) and 1.96 g/kg (6.11 g/kg of dietary protein), respectively, using broken‐line regression analysis.  相似文献   

8.
Three groups of juvenile golden pompano, Trachinotus ovatus (54.75 ± 0.25 g), were each fed one of three diets containing different lipid sources: fish oil (FO), soybean oil (SO) and lard oil (LO). Fish were reared in sea cages for 8 weeks, and the fish fed the FO diet had significantly higher specific growth rate (SGR) but lower condition factor (CF) than the other treatments. The fatty acid (FA) composition of whole‐body lipids was closely correlated with those in the diets. Although no differences can be found in hepatic fatty acid synthase (fasn) activity, the carnitine palmitoyl transferase 1 (cpt1) activity in fish fed the FO diet was significantly higher compared with other treatments. In addition, the relative gene expression of lipid metabolism‐related enzymes, such as cpt1, fas, apolipoprotein B100 (apoB100), delta‐6 fatty acyl desaturase (fadsd6) and fatty acid‐binding protein 1 (fabp1), was also influenced by the different dietary lipid sources. Serum triglyceride (TG) and glucose content in fish fed the LO and FO diets were significantly higher than those in the SO group. Accordingly, it can be concluded that FO could not be completely replaced by SO or LO in golden pompano diets. The lipid sources of a diet could impose significant influence on body condition factor and hepatic lipid metabolism of golden pompano.  相似文献   

9.
This study was conducted to investigate the effects of dietary protease on growth performance, feed utilization, whole‐body proximate composition, nutrient digestibility, intestinal and hepatopancreas structure of juvenile Gibel carp, Carassius auratus gibelio (mean weight 8.08 ± 0.18 g). Six diets were prepared, including a positive control diet (dietary protein 350 g/kg, PC), one negative control diet (dietary protein 33 g/kg, NC) and four protease supplementations diets, which were 75, 150, 300 and 600 mg/kg protease NC diet. After 12 weeks of diet feeding in indoor recycle aquarium tanks, no significant difference (> .05) was found on growth performance between fish fed diet with 75–600 mg/kg protease and the PC group. Compared with the fish fed the NC diet, the specific growth rate of fish fed 300 mg/kg protease increased significantly (< .05), as well as protein efficiency ratios (< .05), while feed conversion was the opposite (< .05). The nutrient digestibility of crude protein and lipid was higher (< .05) in fish fed 150 mg/kg protease diet than the PC diet. Whole‐body proximate composition of fish was not affected (> .05) by the dietary treatment. Serum alkaline phosphatase and albumin were significantly affected by dietary protease (< .05), while the content of total protein, glucose, triglyceride, total cholesterol, aspartate aminotransferase and alanine aminotransferase activities in serum was not affected (> .05). Foregut muscular thickness was thinner (< .05), when the fish fed diets supplementation of protease in 150 or 600 mg/kg diet than the NC diet. Protease activities in hepatopancreas and foregut were higher (< .05), in the fish fed 150 or 300 mg/kg protease diet than the fish fed the PC diet, but those in the mid‐ and hindgut were not significantly affected (> .05) by the dietary treatments. Based on the regression analysis of weight gain rate, the optimal dietary inclusion level of protease was 400 mg/kg in the diet for juvenile Carassius auratus gibelio.  相似文献   

10.
An 8‐week feeding trial was conducted to evaluate the effects of replacement of fish oil (FO) with blending vegetable oils (VOs) on growth performance, antioxidant enzyme activities and fatty acid composition in tissue of swimming crab Portunustrituberculatus. Five isonitrogenous and isolipidic diets were formulated to contain VOs (colza oil: palm oil: linseed oil = 4:2:1) to replace 0 (the control diet), 250, 500, 750 and 1000 g/kg of FO (defined D0, D25, D50, D75, D100). Three hundred juvenile swimming crabs (initial weight 2.34 ± 0.08 g) were randomly stocked and sorted into 300 individual rectangle plastic baskets in three cement pools. Each treatment has three replicates, one replicate has 20 swimming crabs, and each diet fed 60 crabs distributed in 60 baskets. The results indicated that crabs fed the control diet showed significantly higher survival, final body weight, per cent weight gain (PWG), specific growth rate and moulting frequency, crude protein and crude lipid contents in muscles than those fed the D75 and D100 VO diets (p < .05). Crabs fed the D25 VO diet showed significantly higher concentration of triglyceride, low‐density lipoprotein cholesterol and total protein, activities of superoxide dismutase, catalase and glutathione peroxidase (GSH‐Px) in haemolymph than those fed the control diet (p < .05). Fatty acid composition in hepatopancreas was positively correlated with dietary composition. In summary, based on the PWG, the optimal replacement of FO with VOs was estimated to be 250 g/kg. These findings demonstrated that swimming crabs make better use of FO than VOs.  相似文献   

11.
An 8‐week feeding trial was conducted to assess the interaction between dietary protein levels and fish growth, digestibility and activity of immunity‐related enzymes of Plectropomus leopardus. Five diets with different protein levels (400 g/kg, 450 g/kg, 500 g/kg, 550 g/kg and 600 g/kg protein) were designed. P. leopardus fed with 500 g/kg, 550 g/kg and 600 g/kg dietary protein, showed higher weight gain rates than fish fed 400 g/kg and 450 g/kg dietary protein. Ingestion rate in fish fed with 500 g/kg dietary protein was significantly higher than those with other diets. P. leopardus fed with 500 g/kg, 550 g/kg and 600 g/kg dietary protein, showed that feed coefficients were significantly lower than those fed with 400 g/kg and 450 g/kg dietary protein. Net protein utilization was significantly lower in fish fed with 400 g/kg diet than those with other diets. Fish fed with 400 g/kg and 450 g/kg dietary protein had an apparent feed digestibility coefficient for dry matter that was significantly lower than that with other diets. Protease activity was highest in fish fed on 500 g/kg dietary protein. Fish fed with 500 g/kg dietary protein, had the highest superoxide dismutase activity. Fish fed with 600 g/kg dietary protein, had the highest alkaline phosphatase activity. Thus, a diet containing 500 g/kg protein is recommended for P. leopardus aquaculture.  相似文献   

12.
The study evaluated effects of cholesterol supplementation in a diet with high soybean meal (SBM) on the growth and cholesterol metabolism of giant grouper (Epinephelus lanceolatus). All‐fish‐meal diet was used as control. The diet including SBM (replaced 50% of the fish meal protein, SBM diet) and the SBM diet supplemented with 10 g/kg cholesterol (SBM + cholesterol) were used as experimental diets. Three diets were each fed to triplicate groups of juvenile grouper (initial body weight: 12.39 ± 0.36 g) in a recirculating aquaculture system for 8 weeks. Grouper fed the control diet showed higher (p < .05) weight gain, feed intake, feed efficiency and protein efficiency ratio than the other two dietary treatments. Hepatic cholesterol concentrations and 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase gene expressions were higher in fish fed the control diet than fish fed the control diet and SBM + cholesterol diet. Hepatic cholesterol 7α‐hydroxylase gene expression was higher in fish fed the SBM + cholesterol diet than that in fish fed the control diet. Results indicate that giant grouper on a diet low in cholesterol can regulate cholesterol synthesis, suggesting that the reduced dietary cholesterol intake in the fish fed diet containing SBM is sufficiently compensated by increased cholesterol synthesis.  相似文献   

13.
The objective of this study was to determine the minimum dietary requirements of the branched‐chain amino acids (BCAAs: leucine [Leu], isoleucine [Ile] and valine [Val]) for juvenile red drum, Sciaenops ocellatus. This was accomplished by conducting three independent 49‐day feeding trials with juvenile red drum. Experimental diets were prepared by supplementing a basal diet containing 370 g/kg crude protein from red drum muscle and crystalline amino acids with incremental levels of Leu (9.0, 13.0, 17.0, 21.0, 25.0 and 29.0 g/kg of dry diet), Ile (5.0, 8.0, 11.0, 14.0, 17.0 and 20.0 g/kg of dry diet) and Val (6.8, 8.0, 9.2, 10.4, 11.6, 12.8 and 14.0 g/kg of dry diet). Fish were fed to apparent satiation twice daily in each trial, after which growth performance parameters were calculated and body composition and concentrations of BCAAs in plasma were analysed. Incremental levels of dietary Leu, Ile and Val significantly affected weight gain, feed efficiency and protein retention. Analyses of the weight gain data using a broken‐line regression model estimated the minimum Leu, Ile and Val requirements for maximum growth of juvenile red drum to be 15.7 ± 1.7 g/kg (±95% confidence interval), 11.1 ± 2.3 g/kg and 12.4 ± 0.6 g/kg of dry diet, respectively.  相似文献   

14.
15.
An 8‐week feeding trial was conducted to determine dietary lysine requirement of juvenile Pseudobagrus ussuriensis (initial body weight: 0.60 g). Six isonitrogenous (crude protein, 400 g/kg) and isolipidic (crude lipid, 50 g/kg) diets were formulated to contain graded levels of dietary lysine (12.8, 19.9, 26.5, 34.0, 40.8 and 44.1 g/kg dry diets, respectively). The results indicated that weight gain, specific growth rate, productive protein value and protein efficiency ratio increased, while feed conversion ratio decreased with increasing dietary lysine level up to 34.0 g/kg dry diet and then levelled off. Fish fed diet with 12.8 g/kg lysine had the lowest lysine content (58.6 g/kg dry matter) in muscle, while fish fed diet with 34.0 g/kg lysine had the highest value (61.6 g/kg dry matter; p < .05). Broken‐line analysis on the basis of weight gain showed that the optimal dietary lysine requirement for maximum growth of juvenile Pseudobagras ussuriensis is 33.5 g/kg dry diet (82.4 g/kg dietary protein). Quadratic regression analysis of protein efficiency ratio against dietary lysine levels indicated that the optimal dietary lysine requirement of juvenile Pseudobagras ussuriensis is 36.4 g/kg dry diet (89.5 g/kg dietary protein).  相似文献   

16.
An 8‐week feeding trial was conducted with extruded practical diets containing 320 g/kg of crude protein from plant‐based sources to determine the effects of L‐lysine on growth performances, muscle‐growth‐related gene (myoD, myogenine and myostatin) expression and haemato‐biochemical responses in juvenile genetically improved farmed tilapia (GIFT). Five isonitrogenous and isoenergetic diets were formulated to contain graded levels of lysine (14.3, 16, 17.5, 19 and 20.5 g/kg of diet). Each diet was randomly assigned to triplicate groups of 30 juvenile fish (5.2 ± 0.1 g), which were fed thrice a day (9:00, 13:00 and 17:00 hr). Maximum growth performances were observed in fish fed with lysine at 19 g/kg of diet. There was no significant (p > .05) effect on whole‐body composition and amino acids profile by dietary lysine supplementation. Significant (p < .05) changes were observed in relative expression of muscle‐growth‐related genes namely myoD and myogenine and in plasma metabolites by dietary lysine supplementation. In contrast, the relative expression of myostatin was not affected by dietary lysine supplementation. Broken‐line regression analysis and second‐order polynomial regression analysis of weight gain and N gain against dietary lysine levels showed that the dietary lysine requirement for juvenile GIFT tilapia was 18–18.3 g/kg of diet and 19.3–19.5 g/kg of diet, respectively.  相似文献   

17.
An 8‐week feeding trial was conducted to evaluate the potential of replacing fish meal with poultry by‐product meal (PBM) and feather meal (FEM) in giant croaker (Nibea japonica) diet. The control diet (C) contained 400 g/kg fish meal, and 20%, 40%, 60% and 80% of the fish meal in diet C was replaced by a blend of PBM and FEM (PBM: FEM = 7:3) in diets B20, B40, B60 and B80, respectively. The weight gain and feed intake of fish fed diet C did not differ from those of fish fed diets B20 and B40 (> .05), but were higher than those of fish fed diets B60 and B80 (< .05). Phosphorus retention efficiency was lower in fish fed diets C, B20 and B40 than in fish fed diets R60 and R80 (< .05). No significant differences were found in feed conversion ratio, nitrogen retention efficiency, condition factor, hepatosomatic index, body composition and nitrogen waste among the treatments (> .05). Ratio of fish meal consumption to fish production linearly declined with the decrease in dietary fish meal level. This study indicates that dietary fish meal for giant croaker could be reduced to 240 g/kg by inclusion of the blend of PBM and FEM.  相似文献   

18.
A feeding experiment was conducted to determine the optimal formulation level of algae meal, which is rich in docosahexaenoic acid (DHA), in a non‐fish meal diet. Six iso‐nitrogenous (450 g/kg) and iso‐lipidic (130 g/kg) experimental diets were prepared. The control diet was formulated with fish meal (400 g/kg), fish oil (60 g/kg), plant protein sources (220 g/kg) and rapeseed oil (50 g/kg). Plant protein sources (soy protein concentrate, soybean meal and corn gluten meal), rapeseed and fish oil were formulated in the second diet (NFM + FO). In the third diet, fish oil of the NFM + FO diet was replaced by rapeseed oil (NFM + NFO) and designated as the negative control. In the other three diets, rapeseed oil in the NFM + NFO diet was replaced with algae meal (Schizochytrium sp. powder) at 50 g/kg, 100 g/kg and 150 g/kg (AM5, AM10 and AM15, respectively). Triplicate groups of juvenile red sea bream (8.8 g) were fed the experimental diets for 12 weeks near satiation. The growth was lowest in the fish fed NFM + NFO diet. This was improved by the formulation of algae meal, which reached the growth level of the NFM + FO group in the AM10 group. The lipid content of the whole fish body in the NFM + NFO group was significantly lower than those of other groups. The fatty acid profile showed significant differences among dietary treatments. DHA content in total and polar lipids of the whole body and liver was highest in the AM10 and AM15 groups. These results reconfirm that microalgae are a suitable lipid source for the replacement of dietary fish oil for marine fish, and the optimal level was estimated as 50 g/kg?100 g/kg in diet.  相似文献   

19.
An 8‐week feeding trial was conducted to determine the dietary leucine requirement for juvenile swimming crabs reared in cement pools. Six isonitrogenous and isolipidic practical diets (430 g/kg crude protein and 70 g/kg crude lipid) were formulated to contain graded leucine levels which ranged from 16.7 to 26.7 g/kg (dry weight). Each diet was randomly assigned to triplicate groups of 60 juvenile swimming crabs (initial average weight 3.75 ± 0.12 g) that were stocked in rectangle plastic baskets. The results of the present study indicated that dietary leucine levels significantly influenced weight gain (WG) and specific growth ratio (SGR) (< .05), crab fed the diet containing 22.7 g/kg leucine had significantly higher WG and SGR than those fed the other diets. Feed efficiency and protein efficiency ratio were not significantly affected by the dietary leucine levels (> .05). Total protein, cholesterol, triglyceride and glucose in serum were significantly affected by the dietary leucine levels. Aspartate aminotransferase (AST) and alanine aminotransferase activities in hemolymph, AST and superoxide dismutase activities in hepatopancreas were significantly affected by dietary leucine levels; moreover, crab fed the 16.7 g/kg leucine diet had higher malondialdehyde in hemolymph and hepatopancreas than those fed the other diets. Crab fed the diet containing 24.9 g/kg leucine had higher phenoloxidase activity in hemolymph than those fed the other diets. Based on two‐slope broken‐line model of SGR against dietary leucine levels, the optimal dietary leucine requirement for growth was estimated to be 22.1 g/kg of the dry diet (corresponding to 51.4 g/kg of dietary protein on a dry weight basis). In summary, findings of this study indicated that dietary leucine could improve growth performance and antioxidant status.  相似文献   

20.
A feeding trial was conducted to investigate the effects of partial replacement of soybean meal (SBM) with fermented soybean residue (FSR) on growth performance, body composition and plasma biochemical parameters of largemouth bass, Micropterus salmoides. Soybean residue was fermented with a mixture of microorganisms (Bacillus subtilis, Lactobacillus spp. and Molasses yeast) using the solid‐state fermentation. Four isonitrogenous (crude protein 430 g/kg) and isoenergetic (gross energy 18 MJ/kg) diets were formulated by replacing 0 (the control), 20, 40 and 60g/kg of protein from SBM with FSR (FSR0, FSR20, FSR40 and FSR60, respectively). Each diet was fed to four replicate groups of fish (initial body weight: 17.1 ± 0.19 g) for 12 weeks. Results showed that dietary FSR substitution significantly improved growth of juvenile largemouth bass. The weight gain, specific growth rate and protein efficiency ratio were all significantly improved by dietary FSR level up to 40g/kg substitution level (< .05) and then levelled off beyond this level. Fish fed the diet with 40g/kg and 60g/kg protein from FSR had lower feed conversion ratio than the control group (< .05). The hepatosomatic index, viscera ratio and liver lipid content significantly decreased with increasing dietary FSR level. Total protein content, superoxide dismutase and alkaline phosphates activities in plasma were lower in fish fed the control diet (< .05) than the other groups. However, both alanine aminotransferase and aspartate transaminase were higher in fish fed the control diet (< .05) compared to the other treatments. The plasma catalase activity significantly increased with increasing dietary FSR level, while plasma triglyceride, total cholesterol, glucose and malondialdehyde contents significantly reduced. No significant difference was observed in the glutathione peroxidase activity among dietary treatments. These findings demonstrated that replacing dietary SBM with FSR has beneficial effects on growth of M. salmoides, and the best growth performance was obtained at 40g/kg replacement for SBM protein. In addition, there is a great potential to apply FSR to improve lipid metabolism and antioxidant capacity of M. salmoides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号