首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil cracking is a well-known phenomenon, also seen in clay soils in the boreal climatic zone. This study was carried out to quantify soil shrinkage properties in six differently managed clay soils in Finland (Vertic Cambisols, 51% clay). Cylinder samples (100 cm3) were taken in spring from two depths (0–5 and 5–10 cm), then saturated with water and dried as a function of applied suction. The heights of the sample were measured after each drying step and the volume of soil was calculated assuming isotropic shrinkage. The volume loss by shrinkage at a suction of −50 kPa was 1.6–3.8% and the total shrinkage was 5.2–10.5% of the total soil volume, respectively. All shrinkage curves showed structural shrinkage which occurred in the matric potential range from saturation to around −6 kPa. The shrinkage curves were characterized by minor proportional and wide residual shrinkage zones. Eight of twelve sites showed a steeper shrinkage in the proportional shrinkage zone than the theoretical 1:1 line. Large slope values, up to 3.0, reflect the collapse of inter-aggregate pore space due to shrinkage pressure. The results indicate significant particle rearrangement and structural changes, e.g. structural collapse and changes in inter-aggregate pore space due to shrinkage pressure. Continuous water saturation and variable periods of freezing between spring and autumn are mostly responsible for soil weakness against increasing effective stress as soil dries. It is presumed that shrinkage behaviour will change substantially with increases in drying and wetting cycles.  相似文献   

2.
Knowledge of the soil hydraulic functions is required for various hydrological studies and for the simulation of water and solute fluxes in unsaturated soils. Sand/kaolin boxes are frequently used to determine these properties in the low‐tension range. For higher tensions the pressure plate extractor is mainly applied. The extended evaporation method allows a more efficient determination of the water‐retention curve in an adequate range. Besides this method enables to quantify simultaneously the unsaturated hydraulic‐conductivity function. The objective of this study was to compare the water‐retention curves obtained from the standard methods (STM) with those determined with the extended evaporation method (EEM). A set of 90 natural soil samples of different texture and origin was analyzed, and the agreement between the methods was statistically evaluated. The average water‐content deviation (AWCD) of all samples was 1.83 vol.%, and the root mean square error (RMSE) 2.08 vol.%. The deviation of soil water‐storage capacity in the pore‐size classes 0–6, 6–30, 30–500, 500–1500 kPa varied between minimum –0.17 and 0.25 vol.% and maximum –2.89 and 2.36 vol.%, and confirmed the good comparability among the adopted methods. Systematic deviations between the methods were not found.  相似文献   

3.
The drying process of volcanic ash soils often results in the formation of shrinkage cracks with consequences for their physical properties (i.e., decrease of water retention capacity) and land use management. This study presents the soil water characteristics and shrinkage behaviour (shrinkage phases in terms of void and moisture ratio), the shrinkage potential (COLE index), and the pore shrinkage capacity (PSI) for 5 and 20 cm depth of a Haplic Arenosol (tephric) and two Silandic Andosols under pasture management along a soil gradient from the Andean mountains to the coastal range in southern Chile. The main focus of the presented study is on the effect of soil development in conjunction with the weathering of volcanic ash soils on the shrinkage properties. The water retention and shrinkage curves were continuously determined for undisturbed soil samples (100 cm3) during a drying process under laboratory conditions. In addition, the shrinkage curve data were modelled to distinguish different shrinkage zones. The results suggest that the investigated soil properties vary depending on soil development. The more developed Andosols had higher total porosities (up to 70 cm3 cm?3) than the less developed Arenosol. The shrinkage behaviour of the Haplic Arenosol showed a wide structural shrinkage phase, whereas the Silandic Andosols revealed a more pronounced proportional shrinkage phase, which is related to the pore size distribution. In addition, wide and narrow coarse pores of the Haplic Arenosol and medium and fine pores of the Silandic Andosols determine the shrinkage potential (COLE) and the pore shrinkage capacity, respectively. The finer‐grained and organic matter‐rich Andosols indicate a higher COLE index (> 0.03–0.09) compared to the Arenosol (≤ 0.03). The pore shrinkage index (PSI) of the total pores (TP) varied significantly (P < 0.05) with values of 0.042–0.149 in 5 cm depth and 0.04–0.091 in 20 cm depth of sites 1–3, respectively.In summary, the shrinkage potential and pore shrinkage capacity are positively correlated to the organic carbon content and decrease with increasing dry bulk density. The study points out a higher risk of soil degradation due to irreversible drying processes for the more clayey and allophane containing Andosols than the Arenosol.  相似文献   

4.
Uncertainty in estimating water use in shrinking soils from changes in gravimetric water content arises from the difficulty in ensuring that samples are taken from comparable depths at different sampling times, and of identifying the correct bulk density for the conversion to volumetric water content. Equations which express the amount of water held by the same mass of soil solid matter during soil drying and shrinking are derived for two models. In one the soil properties vary continuously with depth and in the other the values are averages for layers. The models are applied to field water content measurements made in the Sudan Gezira. Systematic errors (biases) are examined and their magnitudes calculated. The maximum overestimate of gravimetric water content arising from ignoring vertical shrinkage on drying was 2.3%. The maximum overestimate of volumetric water content from ignoring volumetric contraction was 24%; this was corrected by using for all sampling times bulk densities of layers before contraction.  相似文献   

5.
Drainage and intensive use of fens lead to alterations in the physical characteristics of peat soils. This was demonstrated using parameters of water balance (available water capacity) and the evaluated unsaturated hydraulic conductivity. Deriving the distribution of the pore size from the water retention curve was flawed because of shrinkage due to drainage, especially at high soil water potentials. These errors became greater as the peat was less influenced by soil‐genetic processes. The water retention curves (desorption) evaluated in the field and the laboratory satisfactorily corresponded. However, the wetting‐ and drainage‐curves obtained in the field differed up to 30 vol.‐% water content at same soil water potentials. These differences were largely due to a wetting inhibition.  相似文献   

6.
Porosity and soil water properties of Caribbean volcanic ash soils   总被引:6,自引:0,他引:6  
Abstract. Volcanic ash soils are generally recognized as soils with excellent and stable physical properties. Here we characterized the porosity and water properties of volcanic ash Andosols and Nitisols from Guadeloupe in contrasting banana systems: (1) perennial crop without mechanization, (2) mechanized and regularly replanted crop. Desiccation from 1 kPa to 1550 kPa moisture tension leads to significant shrinkage in the Andosol, representing a 50% reduction of the void space. The clayey Nitisol exhibited limited shrinkage. Soil clods from the mechanized plots had a significantly smaller macroporosity than that from perennial plots. The soil hydraulic conductivity was also drastically reduced in the compacted layers of the mechanized plots. However, Nitisols appeared to be less affected than Andosols. Laboratory compression tests showed that both soils were susceptible to compaction at soil moisture close to field capacity. The shrinkage properties of the Andosol were due to microaggregation of non-crystalline components upon drying. The relative stability of the macroporosity in the Nitisol was probably related to the presence of stable microaggregates made of halloysite and iron oxide. Two major processes promote soil structure degradation in the Andosol under mechanized banana cropping, surface desiccation and soil compaction. They are both induced by repeated tillage after clearing.  相似文献   

7.
Knowledge of hydraulic properties is essential for understanding water movement in soil. However, very few data on these properties are available from the Loess Plateau of China. We determined the hydraulic properties of two silty loam soils on agricultural land at sites in Mizhi and Heyang in the region. Undisturbed soil cores were collected from seven layers to one meter depth to determine saturated hydraulic conductivity, soil water retention curves and unsaturated hydraulic conductivity (by the hot-air method). Additional field methods (internal drainage and Guelph permeameter) were applied at the Heyang site to compare differences between methods. Soil water retention curves were flatter at Mizhi than at Heyang. Water contents at saturation and wilting point (1500 kPa) were higher at Heyang than at Mizhi. However, unsaturated hydraulic conductivity was lower at Heyang than at Mizhi, with maximum differences of more than six orders of magnitude. Nevertheless, the two soils had similar saturated hydraulic conductivities of about 60 cm day− 1. Comparison between the methods showed that soil water retention curves obtained in the laboratory generally agreed well with the field data. Field-saturated conductivities had similar values to those obtained using the soil core method. Unsaturated hydraulic conductivities predicted by the Brooks–Corey model were closer to field data than corresponding values predicted by the van Genuchten model.  相似文献   

8.
9.
利用CT数字图像和网络模型预测近饱和土壤水力学性质   总被引:7,自引:2,他引:5  
在近饱和状态下,土壤的有效水力学性质主要取决于较大孔隙的结构特征,而这又决定了土壤中的优势流通道以及溶质的运移.基于孔隙形态学特征的网络模型可以很好的表现出较大孔隙的几何形态与拓扑特征对有效水力学性质的影响.本文通过对连续土壤切片CT图像的分析,定量获取了土壤孔隙的大小分布以及连通性参数.在此基础上建立了相关网络模型,在孔隙尺度上模拟了土壤中的水分运动过程并预测了近饱和土壤水力学性质.实验结果表明,虽然随机网络模型对室内填装土样本水力学性质的预测结果要优于相关网络模型,但是结合了实测孔隙形态特征的相关网络模型能够表现出田间原状土样本的双重孔隙度结构,其预测结果更符合实际的土壤结构特征.  相似文献   

10.
11.
In order to determine if soil hydraulic properties present a direction‐dependent behavior, undisturbed samples were collected at different horizons and orientations (vertical, diagonal [45°], and horizontal) in structured soils in the Weichselian moraine region in northern Germany. The water‐retention curve (WRC), the saturated hydraulic conductivity (kf), and the air permeability (ka) were measured. The air‐filled porosity (?a) was determined, and pore‐continuity indices (ka/?a, ka/?a2, N) and blocked porosities (?b) were derived from the relationship between ka and ?a. The development of soil structures with defined forms and dimensions (e.g., platy by soil compaction or prismatic up to subangular‐blocky by swelling–shrinkage processes) and the presence of biopores can induce a direction‐dependent behavior of pore functions. Although the pore volume as a scalar is isotropic, the saturated hydraulic conductivity and air permeability (as a function of air‐filled porosity) can be anisotropic. This behavior was observed in pore‐continuity indices showing that the identification of soil structure can be used as a first parameter to estimate if hydraulic properties present a direction‐dependent behavior at the scale of the soil horizon.  相似文献   

12.
To characterize the fabric of a wet soil sample two sets of experiments were performed. In one, water retention and shrinkage curves were determined with samples stored at the field water content, and in the other, pore size distribution curves and microscopic observations were made as samples progressively dried. The experiments were performed with soil samples of different aggregate sizes to determine the contribution of each class of pores to porosity.
Data were analysed by comparing (i) the amount of water extracted from the sample, (ii) the air-filled porosity of the sample and (iii) the accumulated pore volume by mercury injection, each in relation to the equivalent pore radius. This gives information on the geometry of pores developed during the drying process. It has shown that micrometric cracks in dried soils are not artefacts but the result of a more severe drying never reached by the material in the field.  相似文献   

13.
To improve the predictive capability of transport models in soils we need experimental data that improve their understanding of properties at the scale of pores, including the effect of degree of fluid saturation. All transport occurs in the same soil pore space, so that one may intuitively expect a link between the different transport coefficients and key geometrical characteristics of the pores such as tortuosity and connectivity, and pore‐size distribution. To understand the combined effects of pore geometry and pore‐size distribution better, we measured the effect of degree of water saturation on hydraulic conductivity and bulk soil electrical conductivity, and of degree of air saturation on air conductivity and gaseous diffusion for a fine sand and a sandy loam soil. To all measured data were fitted a general transport model that includes both pore geometry and pore‐size distribution parameters. The results show that both pore geometry and pore‐size distribution determine the functional relations between degree of saturation, hydraulic conductivity and air conductivity. The control of pore size on convective transport is more for soils with a wider pore‐size distribution. However, the relative contribution of pore‐size distribution is much larger for the unsaturated hydraulic conductivity than for gaseous phase transport. For the other transport coefficients, their saturation dependency could be described solely by the pore‐geometry term. The contribution of the latter to transport was much larger for transport in the air phase than in the water phase, supporting the view that connectivity dominates gaseous transport. Although the relation between effective fluid saturation and all four relative transport coefficients for the sand could be described by a single functional relation, the presence of a universal relationship between fluid saturation and transport for all soils is doubtful.  相似文献   

14.
可耕种坡地的土壤水力参数非均质性变化   总被引:3,自引:0,他引:3  
The spatial variations of the soil hydraulic properties were mainly considered in vertical direction. The objectives of this study were to measure water-retention curves, θ(ψ), and unsaturated hydraulic conductivity functions, K(ψ), of the soils sampled at different slope positions in three directions, namely, in vertical direction, along the slope and along the contour, and to determine the effects of sampling direction and slope position of two soil catenas. At the upper slope positions, the surface soils (0-10 cm) sampled in the vertical direction had a lower soil water content, 0, at a certain soil water potential (-1 500 kPa 〈 ψ 〈 -10 kPa) and had the greatest unsaturated hydraulic conductivity, K, at ψ 〉 -10 kPa. At the lower slope positions, K at ψ〉 -10 kPa was smaller in the vertical direction than in the direction along the slope. The deep soils (100 110 cm) had similar soil hydraulic properties in all the three directions. The anisotropic variations of the hydraulic properties of the surface soils were ascribed to the effects of natural wetting and drying cycles on the structural heterogeneity. These results suggested that the anisotropy of soil hydraulic properties might be significant in influencing soil water movement along the slope and need to be considered in modeling.  相似文献   

15.
Pore size distributions obtained from the relationship between moisture content and suction are not dependable in fine-textured soils because of shrinkage. To overcome this problem, methods such as nitrogen sorption, mercury intrusion porosimetry, non-polar liquid desorption and thin sectioning have been used. In order to pre-dry samples without changes in the pore system, freeze-drying, organic liquid replacement of soil water, and critical point drying techniques have been employed. These methods of soil drying and pore size measurement are described and compared, and the validity of their use in soil studies is examined. The measurement of pore sizes by water desorption is also discussed.  相似文献   

16.
Ecological safe management of rice paddy landscapes is in focus of a joint research project comprising five German working groups and Chinese partners. The project is aiming at characterizing the scale-depending structures and processes of agricultural landscape of terraced paddy fields in southeast China. The specific objectives were the enlightenment of the linkage between remote sensible information and the spatial distribution of soil features, as well as soil structural processes and their relation to vertical and lateral water losses and solute leaching.The experimental watershed is located in southeast China. The soils which either developed from quaternary clay or red sandstone exhibit a (man-made) layered structure with three hydraulic-functional horizons: puddled layer, plough pan and the (water unsaturated) subsoil.The analysis of soil texture and selected chemical parameters on the catenary and catchment scale confirmed that even in old terraced and thoroughly modified landscapes, the original structures (unaffected by man) of catenary soil property distributions persist. Thus, the application of co-regionalization techniques incorporating topographical attributes as explaining variables was found to be suitable to characterize soil property distributions on both the catenary and the catchment scale.On-site field scale investigations revealed that paddy soils exhibit a dynamic soil–water system which is driven by the mechanical seed bed preparation (puddling) on the one hand and drying and wetting cycles including ponded/flooded periods on the other. It was found that the hydraulic properties depend mainly on the duration of cultivation as a rice paddy. In contrast to earlier studies, we found that a further decrease in the saturated hydraulic conductivity of the plough pan may still occur after 20 years. Even in older rice paddies, however, water losses may be significant mainly because of ineffective functioning of the surrounding bunds.Pedon and aggregate investigations demonstrated the pronounced dual porosity nature of the paddy soils with a macropore network consisting of cracks and biopores penetrating both the plough pan and the bunds. The shrinkage potential of the puddle layer was higher in older paddy fields than in younger ones while it was vice versa for soil from the plough pan. Swelling and shrinkage affected also the living conditions for soil microorganisms especially after drainage when the habitable pore space was significantly reduced. Pore scale and micro-biological investigations revealed that drainage induced stress reduced micro-biodiversity and decreased abundances of soil inhabiting microorganisms.In addition to newly proposed management strategies with recurrent wetting and drying cycles, we suggest maintaining (saturated) equilibrium conditions over longer periods to reduce soil structural dynamics and the risks of water losses and chemical leaching involved with preferential flow.  相似文献   

17.
Soil compaction and related changes of soil physical parameters are of growing importance in agricultural production. Different stresses (70, 230, 500, and 1000 kPa) were applied to undisturbed soil core samples of eight typical soils of a Saalean moraine landscape in N Germany by means of a confined compression device to determine the effect on (1) total porosity/pore‐size distribution, (2) saturated hydraulic conductivity, and (3) air conductivity to assess the susceptibility towards compaction. Different deformation behaviors after exceeding the mechanical strength particularly resulted from a combination of soil characteristics like texture and initial bulk density. The saturated hydraulic conductivity, as an indicator for pore continuity, was largely affected by the volume of coarse pores (r² = 0.82), whereas there was no relationship between bulk density and saturated hydraulic conductivity. Since coarsely textured soils primarily possess a higher coarse‐pore fraction compared to more finely textured soils, which remains at a high level even after compaction, only minor decreases of saturated hydraulic conductivity were evident. The declines in air conductivity exceeded those in hydraulic conductivity, as gas exchange in soils is, besides the connectivity of coarse pores, a function of water content, which increases after loading in dependence of susceptibility to compaction. A soil‐protection strategy should be focused on more finely textured soils, as stresses of 70 kPa may already lead to a harmful compaction regarding critical values of pore functions such as saturated hydraulic conductivity or air capacity.  相似文献   

18.
Vegetated buffer zones (BZs) between arable fields and bodies of water are commonly established to reduce erosion and run‐off of particle‐bound nutrients. Functioning of a BZ depends on soil structure, as it is important for water infiltration. Therefore, it is vital to understand how varying management practices affect soils of BZs. We studied the structural and hydraulic properties of three differently managed BZs established in a boreal Vertic Stagnic Cambisol (clay, 51%). The three management practices for vegetation were as follows: natural with no treatment, harvested yearly and grazed by cattle. We used bulk density and macroporosity, together with a pore geometry index (air permeability per unit air‐filled porosity), to describe the soil structural properties. Hydraulic properties were measured at different length scales by means of an aggregate sorptivity test, saturated hydraulic conductivity of the core samples and field‐saturated hydraulic conductivity. Vegetation management markedly affected the physical properties in the top 5 cm of the soil. Properties were least favourable for infiltration at the grazed site, with the greatest bulk density, least macroporosity and hydraulic conductivity or greatest pore tortuosity. In general, spatial variation in zones with restricted and good hydraulic conductivity together with reduced aggregate sorptivity in the deeper horizons made the soil prone to preferential flow when initially dry. Prolonged wetness, on the other hand, reduced saturated hydraulic conductivity significantly, resulting in surface run‐off. Harvesting was considered the best management practice due to its inherent capacity for reducing the soil nutrient content and because it has minor implications for soil physical properties.  相似文献   

19.
Eight pedotransfer functions (PTF) originally calibrated to soil data are used for evaluation of hydraulic properties of soils and deeper sediments. Only PTFs are considered which had shown good results in previous investigations. Two data sets were used for this purpose: a data set of measured pressure heads vs. water contents of 347 soil horizons (802 measured pairs) from Bavaria (Southern Germany) and a data set of 39 undisturbed samples of tertiary sediments from deeper ground (down to 100 m depth) in the molasse basin north of the Alps, containing 840 measured water contents vs. pressure head and unsaturated hydraulic conductivity. A statistical analysis of the PTFs shows that their performance is quite similar with respect to predicting soil water contents. Less satisfactory results were obtained when the PTFs were applied to prediction of water content of sediments from deeper ground. The predicted unsaturated hydraulic conductivities show about the same uncertainty as for soils in a previous study. Systematic deviations of predicted values indicate that an adaptation of the PTFs to the specific conditions of deeper ground should be possible in order to improve predictions.  相似文献   

20.
Knowledge of soil shrinkage behavior is needed to improve the understanding and prediction of changes of unsaturated hydraulic properties in non-rigid soils. The heterogeneity and interaction of horizontal and vertical soil shrinkages that produce soil cracks and associated soil subsidence require additional quantification. Vertical shrinkage can be calculated easily by soil height with vernier caliper. However, a quantitative and feasible measurement of horizontal shrinkage has not been developed yet because of the complicated and irregular geometry of soil cracks. This paper introduces a new method to measure soil cracks non-destructively and continuously by digital image analysis. Using Adobe Photoshop and Windows Scion 4.02 image processing, the proposed procedure accurately identifies changes as small as 1.0 mm2 and shows differences even when areas of soil cracks were increased by as little as 1%. Various geometry factor values indicated soil shrinkage in the two dimensions was anisotropic during the whole drying. During initial dehydration from saturation, only subsidence shrinkage could be identified. With the further dehydration, the soil cracks developed and increased in size. These results suggest that the heterogeneity of soil shrinkage in 2D should be taken into account when modeling the total soil shrinkage behavior and associated unsaturated hydraulic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号