首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
A hot press was used to manufacture particleboards (H boards). A radio-frequency hot press (for RH boards) and an air-injection radio-frequency hot press (for ARH board) were also used, and the effects of air injection on preventing blowout and board properties were analyzed. The thicknesses and densities of manufactured boards were 10 and 30 mm, and 0.6, 0.7, and 0.8 g/cm3, respectively. The investigation ascertained the effects of air injection in preventing blowout when a radio-frequency hot press is used. The increasing order of temperature was ARH board > RH board > H board during the final pressing stage. For the 30-mm-thick boards, the temperature of H board increased to 100 °C and remained constant at 100 °C even when the pressing time was extended. The temperature of the RH board increased to 100 °C more quickly than in the case of the H board and remained constant at 110–118 °C. The temperature of the ARH board increased linearly to 130–142 °C. For both the 10- and 30-mm-thick boards, the internal bond strength of the RH board was almost the same as that of the ARH board at densities of 0.6 and 0.7 g/cm3. In contrast, the internal bond strength of the RH board was lower than that of the ARH board at a density of 0.8 g/cm3. For the 10-mm-thick boards, the thickness swelling in the RH board was almost the same as that in the ARH board irrespective of the density. However, for the 30-mm-thick boards, the thickness swelling in the RH board was higher than that in the ARH board. The low plasticization of particles due to air injection presumably results in a high degree of thickness swelling.  相似文献   

2.
The effectiveness of air injection for preventing the blowout of particleboards manufactured using a radio-frequency hot press was investigated by evaluating the board properties under artificially created conditions that were conducive to blowout. For evaluation, 10-mm-thick boards with densities of 0.7 and 0.8 g/cm3 and 20-mm-thick boards with a density of 0.7 g/cm3 were manufactured. Pressing times for the 10-mm-thick boards were 2, 4, 6, and 8 min, and those for the 20-mm-thick boards were 4, 6, 8, and 10 min. Without air injection, blowout occurred in all manufactured boards. With air injection, however, blowout did not occur in the 10-mm-thick boards with a density of 0.7 g/cm3. Moreover, air injection prevented blowout even when the board density and board thickness were increased to 0.8 g/cm3 (for 10-mm-thick boards) and 20 mm (the density was kept at 0.7 g/cm3), respectively. Air-injection radio-frequency pressing reduced the pressing time from 4 to 2 min for 10-mm-thick boards, and from 6 to 4 min for 20-mm-thick boards. Moreover, this reduction in the pressing time was achieved without a large reduction in the internal bond strength of the boards.  相似文献   

3.
Particleboards with thickness of 10 mm and densities of 0.6, 0.7 and 0.8 g/cm3 were manufactured from high-moisture particles using urea–formaldehyde resin and the effectiveness of air injection was examined. The temperature in the 0.6 and 0.7 g/cm3 boards was lower with air injection than without during the initial to middle stages of pressing, while the temperature in the 0.8 g/cm3 board remained lower with air injection than without throughout the entire pressing process. Air injection reduced the pressing time required to manufacture the 0.6 and 0.7 g/cm3 boards and also increased the internal bond strength of boards of all densities. In the 0.6 and 0.7 g/cm3 boards, air injection reduced the modulus of rupture (MOR), while in the 0.8 g/cm3 boards, the MOR was similar between those manufactured by injecting and not injecting air. Air injection was also found to be effective for boards of high densities. The effectiveness of the air injection on thick boards was investigated by manufacturing 20-mm-thick boards of 0.7 g/cm3. Without air injection, it was not possible to manufacture the 20-mm-thick boards, even by extended hot pressing, but air injection allowed the boards to be manufactured by pressing for 16 min. Air injection was also shown to be effective for manufacturing thick boards.  相似文献   

4.
An air-injection press (AIP) was developed to prevent accidental blowouts of boards during production. In this study, the effects of the AIP on preventing blowouts were investigated by artificially creating a blowout-prone condition, and the press was shown to be effective in preventing blowouts. The modulus of rupture of the boards was almost constant irrespective of pressing time. Longer pressing time resulted in higher internal bond strength when pressed at 170 °C. The thickness swelling of the boards pressed at 170 or 190 °C was almost uniform irrespective of pressing time, and the manufactured boards showed performance similar to those manufactured with an ordinary press. The AIP prevented blowouts sufficiently even when the pressure of the injected air was reduced, and this reduction did not adversely decrease the performance of the boards. Air injection reduced formaldehyde emissions from the board.  相似文献   

5.
An air-injection press was developed to prevent particleboard from blowing out during the manufacturing process. The air-injection press, which has holes punched in the heating plates, injects high-pressure air into the board through the holes of one plate and releases the air through the holes of the other plate. The high-pressure air forces out vapor trapped within the board, thus preventing blowout. The newly developed press reduced the pressing time required for manufacturing board from high-moisture-content particles. However, the manufactured boards exhibited mechanical properties and dimensional stability inferior to conventionally manufactured boards.  相似文献   

6.
An air-injection press, which has holes punched in the heating plates, injects high-pressure air through the holes of one plate into boards during press heating. The air-injection press can manufacture boards from high-moisture-content particles by controlling blowouts of the boards. In this study, boards were manufactured from particles that had a moisture content of 25% by using the air-injection press, which reduced the required pressing time. Boards manufactured by injecting air through holes of 5 mm in diameter were of poor quality with a low internal bond strength of only 0.31 MPa. When the hole diameter was reduced to 1 mm, the internal bond strength increased to 0.44 MPa. A high air-injection pressure of 0.55 MPa also resulted in improved board properties over those for boards manufactured at lower pressures. This was probably because a large amount of binder was released from boards through the 5-mm holes, together with water vapor, during air injection; the small-diameter holes reduced the release of binder, resulting in better board properties.  相似文献   

7.
This paper describes the features of binderless particleboard manufactured from sugarcane bagasse, under a high pressing temperature of 200–280 °C. Mechanical properties [i.e., modulus of rupture (MOR) and elasticity (MOE) in dry and wet conditions, internal bonding strength (IB)] and dimensional stability [i.e., thickness swelling (TS)] of the board were evaluated to investigate the effect of high pressing temperature. Recycled chip binderless particleboards were manufactured under the same conditions for comparison, and particleboards bonded with polymeric methylene diphenyl diisocyanate (PMDI) resin were manufactured as reference material. The target density was 0.8 g/cm3 for all of the boards. The results showed that the mechanical properties and dimensional stability of both types of binderless boards were improved by increasing the pressing temperature. Bagasse showed better performance than that of recycled chip as a raw material in all evaluations. Bagasse binderless particleboard manufactured at 260 °C had an MOE value of 3.5 GPa, which was equivalent to the PMDI particleboard, and a lower TS value of 3.7 % than that of PMDI particleboard. The MOR retention ratio under the dry and wet conditions was 87.0 %, while the ratio for the PMDI particleboard was only 54.6 %. The obtained results showed the possibility of manufacturing high-durability binderless particleboard, with good dimensional stability and water resistance, which previously were points of weakness for binderless boards. Manufacturing binderless boards under high temperature was effective even when using particles with poor contact area, and it was possible to express acceptable properties to allow the manufacture of particleboards. Further chemical analysis indicated a contribution of a saccharide in the bagasse to the improvement of the board properties.  相似文献   

8.
An air-injection press, which has holes punched in the heating plates, injects high-pressure air through the holes of one plate into particleboard and discharges the air through the other plate during press heating. The press can manufacture particleboard from high-moisture particles by controlling blowout of the boards. In this study, the optimum diameter and spacing of the air-injection holes and the effects of pre- and post-pressing were investigated. An optimum hole diameter was not found for the modulus of rupture and thickness swelling for a spacing of either 25 or 50 mm. In terms of internal bond strength, the optimum diameter of the holes arranged at a spacing of 25 mm was 1 mm, but the internal bond strength was not changed by the diameter of holes spaced 50 mm apart. Air injection under all hole conditions reduced the formaldehyde emission from the board. Pre-pressing was tested for further increase in the modulus of rupture and internal bond strength, but was found to have no effect. More efficient use of the air-injection press was achieved by injecting air from the early stages of pressing.  相似文献   

9.
Blowouts of particleboards were artificially induced by increasing the vapor pressure inside the boards. Isocyanate resin bonded boards were manufactured from high-moisture particles, and the blowouts and board properties were analyzed. Boards with a high resin content of 5 % showed high bonding strength and did not blow out when pressed at 190 °C, but blew out at a raised temperature of 210 °C to increase vapor pressure inside the boards, thereby showing that blowout occurred when vapor pressure inside the boards exceeded the bonding strength of isocyanate resin. Boards with a low resin content of 2.5 % had low bonding strength and blew out when manufactured without air injection, but were successfully manufactured with air injection that prevents blowouts. However, the injection of high-pressure air reduced the strength properties of the board and increased the coefficient of variation, likely due to the discharge of isocyanate resin from the boards. Therefore, very small local blowouts occurred inside the boards, which lowered the strength properties of some specimens and led to a large coefficient of variation. When the pressure of injected air was lowered, the strength properties increased and the coefficient of variation decreased. This was possibly because the low-pressure air allowed isocyanate resin to remain in the boards, resulting in virtually no parts showing very low-strength properties.  相似文献   

10.
Binderless boards are composite boards that rely on self-bonding mechanisms for inter-fibre bonding. Quercus acutissima and Quercus serrata logs degraded by Lentinula edodes (shiitake fungi) were used in this study to investigate whether physical and chemical changes induced by shiitake fungi can enhance board mechanical properties. Binderless boards were manufactured with 0.8 g/cm3 target density, 220 °C pressing temperature, 5 MPa pressure, and pressing duration of 10 min. Boards made from logs degraded for ≥?26 months were stronger than control boards and met modulus of rupture (MOR) and internal bonding (IB) requirements for fibreboards. Chemical composition and particle size distribution of the wood powder used to make the boards were determined to elucidate the drivers of board mechanical properties. The proportion of small particles (<?150 µm) showed a strong positive correlation with MOR for both species and hot water extractives showed a strong positive correlation with IB for Q. acutissima boards. Introduction of shiitake fungi pre-treatment to the production process may enhance the mechanical strength of binderless boards.  相似文献   

11.
An air-injection press, which has holes punched in the heating plates, injects high-pressure air through the holes of one plate into particleboards and discharges the air and vapor through the other plate during press heating. The press can manufacture particleboards from high-moisture particles by preventing blowouts of the boards. In this study, the effects of pressing temperature were investigated by pressing boards at 190, 210, and 230°C. The internal bond strength increased from 0.43 to 0.60?MPa by raising the temperature from 190 to 210°C, but did not increase further when the temperature was raised to 230°C. Raising the temperature from 190 to 210°C also helped improve the thickness swelling. No relationship was found between the modulus of rupture and pressing temperature.  相似文献   

12.
An outdoor exposure test was conducted on kenaf core binderless boards (pressing temperatures 200°, 180°, and 160°C; pressing pressure 3.0 MPa, time 10 min, target board thickness 5 mm, target board density 0.8 g/cm3) to estimate their bond durability. Modulus of rupture (MOR), modulus of elasticity (MOE), internal bonding strength (IB), thickness change, weight loss, Fourier transform infrared (FTIR) spectra, and color difference (ΔE*) by the CIE L*a*b* system were measured at various outdoor exposure periods up to 19 months. These values were then compared with those of a commercial medium-density fiberboard (MDF; melamine-urea-formaldehyde resin; thickness 9.0 mm, density 0.75 g/cm3). Generally, dimensional stability and the retention ratios of MOR, MOE, and IB after the outdoor exposure test increased with increased pressing temperature of binderless boards. The MOR retention ratio of the kenaf core binderless boards with a pressing temperature of 200°C was 59.5% after 12 months of outdoor exposure, which was slightly lower than that of the MDF (75.6% after 11 months of outdoor exposure). Despite this, the bond durability of the kenaf core binderless boards should be viewed as favorable, especially when considering the fact that the retention ratio of 59.5% was achieved without binder and without obvious element loss. Part of this report was presented at the International Symposium on Wood Science and Technology, IAWPS2005, November 27-30, 2005, Yokohama, Japan  相似文献   

13.
Authors established a new manufacturing technology for crack-free carbonized boards by pressing and carbonizing the medium-density fiberboard. Industrialization of new functional carbon materials was performed by investigating the fundamental properties of the carbonized boards. To be used as a construction material, the carbonized board needs to satisfy the fire performance regulation. In this study, the carbonized boards were manufactured from medium-density fiberboard (c-MDF) at different temperatures and then fire performance including flame retardancy and smoke toxicity was analyzed using a cone calorimeter and noxious gas analyzer. The results show that as the carbonization temperature increases, weight loss ratio decreases and flame retardancy increases. In the c-MDF at 800 and 1000 °C, no external damage was observed after combustion. These c-MDFs satisfy the total heat release (standard below 8 MJ/m2) and heat release rate (standard below 200 kW/m2) regulations according to the Building Standard Law of Korea and Japan. In addition, the c-MDFs showed the lower total smoke release (TSR, 0.213 m2/m2) than that of virgin MDF (94.281 m2/m2). The c-MDF at 800 and 1000 °C were, therefore, classified as a class III flame retardancy material and can be used as indoor finishing material.  相似文献   

14.
The development of a natural adhesive composed of materials derived from non-fossil resources is a very important issue. In this study, only citric acid and sucrose were used as adhesive materials for particleboard. A water solution in which citric acid and sucrose were dissolved was used as an adhesive, and the manufacture of particleboard with a target density of 0.8 g/cm3 was attempted under a press condition of 200 °C for 10 min. The optimum mixture ratio of citric acid and sucrose and the optimum resin content was 25–75 and 30 wt%, respectively. The modulus of rupture (MOR) and the modulus of elasticity in bending were 20.6 MPa and 4.6 GPa, respectively. The internal bond strength (IB) was 1.6 MPa, indicating that the adhesive had excellent bond strength. The thickness swelling (TS) after water immersion for 24 h at 20 °C was 11.9 %. The board did not decompose even under more severe accelerated treatments. This meant that the adhesion had good water resistance. The MOR, IB and TS of the board were comparable to or higher than the requirement of the 18 type of JIS A 5908 (2003). Consequently, there is a possibility that a mixture of citric acid and sucrose can be used as a natural adhesive for particleboard.  相似文献   

15.
Wood-based materials are fabricated with adhesives composed of various materials derived from fossil fuels. It is difficult to identify replacements for these chemical adhesives. This study explored nanofiber technologies as an alternative to these adhesives. In this study, we focused on reinforcement effects of lingo-cellulose nanofiber (LCNF) on fiberboards made from softwood and hardwood fiber. We discuss the density effects of reinforcement with LCNF because the density of medium-density fiberboard (MDF), which is widely used for construction, is standardized at about 0.60–0.80 g/cm3. Fiberboards were manufactured with three densities (0.60, 0.75, and 1.00 g/cm3). For softwood fiberboards, the bending properties for LCNF-mixed boards were higher than those for the control fiberboards at all densities. In this paper, control fiberboard means fiberboard with fiber only. For hardwood fiberboards, the bending properties for LCNF-mixed fiberboard for 1.00 g/cm3-density board were higher than those for the control fiberboard. For internal bond strength (IB), the IB for LCNF-mixed fiberboard was higher than that for the control fiberboard. The thickness swelling (TS) and weight change (WC) with water absorption for fiberboards containing LCNF were lower than those for control fiberboards. As a conclusion, physical and mechanical properties of the resulting fiberboards were significantly improved with the addition of LCNF, especially for softwood fiberboards, due to close binding between LCNF and wood fibers.  相似文献   

16.
Phenol–formaldehyde resin-bonded particleboard (PF board) and isocyanate resin-bonded particleboard (MDI board) were soaked in water at 40, 70 and 100 °C, and the relationships between soaking conditions and board properties were analyzed. The relationships between the deterioration of board properties resulting from water soaking and those arising from outdoor exposure were also analyzed. At 100 °C, the modulus of rupture (MOR) and internal bond strength (IB) of the PF board decreased significantly within the first hour, and subsequently constant values were shown with increasing soaking time. This low constant value was defined as the lower limit. At 70 °C, both the MOR and IB decreased with increasing soaking time, and reached the lower limit. At 40 °C, however, neither decreased significantly with increasing soaking time and neither reached the lower limit. The MOR of the MDI board showed the same trend as the PF board. However, the IB of the MDI board showed a different trend to the PF board, that is, the lower limit of IB required extensive soaking, even at 100 °C. The MOR and IB of both the PF and MDI boards reached the lower limit when thickness change peaked. On the other hand, the MOR and IB for outdoor exposure were lower than those for water soaking, even at the same thickness change. The MOR and IB of water soaking decreased owing to the collapse of the bonding points caused by board swelling. On the other hand, the board properties of outdoor exposure decreased owing to the collapse of the bonding points, and biodegradation also added to the decrease.  相似文献   

17.
Binderless fiberboards with densities of 0.3 and 0.5 g/cm3 were developed from kenaf core material using the conventional dry-manufacturing process. The effects of steam pressure (0.4–0.8 MPa) and cooking time (10–30 min) in the refining process, fiber moisture content (MC) (10%, 30%), and hot-pressing time (3–10 min) on the board properties were investigated. The results showed that kenaf core binderless fiberboards manufactured with high steam pressure and long cooking time during the refining process had high internal bond (IB) strength, low thickness swelling (TS), but low bending strength values. The binderless fiberboards made from 30% MC fibers showed better mechanical and dimensional properties than those from air-dried fibers. Hot-pressing time was found to have little effect on the IB value of the binderless board at the refining conditions of 0.8 MPa/20 min, but longer pressing time resulted in lower TS. At a density of 0.5 g/cm3, binderless fiberboard with the refining conditions of 0.8 MPa/20 min recorded a modulus of rupture (MOR) of 12 MPa, modulus of elasticity (MOE) of 1.7 GPa, IB of 0.43 MPa, and 12% TS under the optimum board manufacturing conditions. Part of this article was presented at the 54th Annual Meeting of the Japan Wood Research Society, Hokkaido, August 3–5, 2004  相似文献   

18.
Binderless particleboards were manufactured from sugi (Cryptomeria japonica D. Don) heartwood and sapwood by hot-pressing (pressure: 5 MPa; temperatures: 180°, 200°, and 220°C; times: 10, 20, and 30 min), and the board properties [internal bonding (IB), thickness swelling (TS), water absorption (WA)] were investigated to evaluate the self-bonding ability. The IB, TS, and WA of the boards from sugi heartwood were better than those of the boards from sugi sapwood at any hot-pressing condition. Therefore, it was suggested that the self-bonding ability of sugi heartwood was superior to that of sugi sapwood. Then, sugi heartwood and sapwood powder with grain size 10 βm were used as a binder for plywoods. Four kinds of plywood were manufactured from the combination of powder and veneer, both of which were prepared from sugi heartwood and sapwood under the same hot-pressing conditions as the binderless particleboard, and the adhesive shear strength and wood failure of the plywood were investigated. As a result, the plywood composed of sugi heartwood veneer met the second grade of JAS for plywood, when either powder was used as a binder, when they were pressed at 200°C for 20–30 min and 220°C for 10 min.  相似文献   

19.
Rice hull–sawdust composite boards were manufactured for sound-absorbing boards in construction. The manufacturing parameters were target density (400, 500, 600, and 700?kg/m3) and rice hull content as percent weight of rice hull/sawdust/phenol resin (10/80/10, 20/70/10, 30/60/10, and 40/50/10). Commercial gypsum board and fiberboard were also used as comparative sound-absorbing materials. The average modulus of rupture (MOR) of the board with a density of 700?kg/m3 and rice hull mixing ratio of 10% was 8.6?MPa, and that of the board with a 400?kg/m3 board density and a rice hull mixing ratio of 40% was 2.2?MPa. The MOR increased with increasing board density or decreasing rice hull mixing ratio. The sound absorption coefficients of some boards (400?kg/m3 and 10%, 500?kg/m3 and 30%, and 500?kg/m3 and 40%) were better than those of the commercial 11-mm-thick gypsum board. Thus, it is concluded that rice hull–sawdust composite boards may be implemented as sound-absorbing barriers in construction due to their high sound absorption coefficients.  相似文献   

20.
This study examined the effects of density and layer structure on the mechanical properties and dimensional stability of strandboard manufactured from moso bamboo (Phyllostachys pubescens). The strandboard was fabricated in a laboratory at five densities and three different structures including a randomly oriented homogenous board, a unidirectionally oriented homogenous board, and a three-layered board with a cross-oriented core layer (BOSB). Bamboo strand alignment distribution could be predicted using the von Mises distribution function. Bending properties increased with increasing density and were affected by layer structure. The modulus of rupture (MOR) of the threelayered board in the parallel direction increased remarkably compared with the random board MOR; in the perpendicular direction, it exhibited less strength reduction. Elastic properties of the three-layered board could be predicted using elastic constants of the unidirectional board. Internal bond strength (IB) was greatly affected by density, but the layer structure effect did not appear in IB. Linear expansion per unit moisture change ranged from 0.017 to 0.022 for random and three-layered boards; these values are comparable with or lower than values for commercial board.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号