首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
多馈源热风微波流态化干燥试验台   总被引:1,自引:0,他引:1  
阐述了多馈源热风微波流态化干燥试验台的总体结构和工作原理,分析了微波干燥室、微波管开口位置和振动流态化装置的设计,确定了具体结构和相关参数。微波干燥室的总模式数为106,品质因素达到1 398,6管单面开口磁控管配置方式的微波场更为均匀,调节振动电动机频率可使物料处于流态化状态,保证物料更均匀地吸收热能和微波能。利用试验台对鲜胡萝卜的分段组合干燥工艺进行了试验,脱水胡萝卜颗粒之间的含水率差异在1.22%之内,保持胡萝卜原有色泽、气味和滋味的干制品合格率达到88.63%。  相似文献   

2.
Accurate estimation of the reference crop evapotranspiration (ET0) is investigated due to its critical role in affecting calculation of crop water use and efficiency in agricultural ecosystems. The main emphasis in this paper is to clarify the possible uncertainty in the estimation of ET0 associated with using un-calibrated Ångström-Prescott (A-P) coefficients. We first calibrated the coefficients using long-term data records from 34 sites in the Yellow River basin in China, and then applied these coefficients to estimate short wave irradiance (Rs) and ET0 at 16 sites to evaluate the difference in ET0 between the FAO recommended and the locally calibrated. We found that the direct use of the FAO recommended coefficients significantly affected the estimation of ET0 at most sites, which differed from −3% to 15% at daily scale and from −4% to 16% at monthly scale from the locally calibrated ones. These differences are comparable with or larger than those caused by some alternatives of the FAO recommended algorithms for net irradiance or vapor pressure, which further highlights the importance of using the locally calibrated coefficients. The degree of difference in ET0 showed a significant threshold relation with altitude and longitude in such a way that relatively small impact lies around 2233 m and 98°E, and away from these, the effect begins to increase. Given the large overestimation in water use as a consequence of the significant overestimation in ET0 associated with the direct use of the FAO coefficients, especially in those high yield production areas with altitude <1200 m, we developed several relationships between the A-P coefficient a, b, (a + b) and other easily obtainable factors (altitude, longitude and air temperature). A three-step procedure was recommended in applying these relations, which was (1) determine if calibration is needed or not for a given location; (2) estimate one of the A-P coefficients, either a or b if calibration is needed; (3) estimate the remaining coefficient using relations of (a + b) due to its higher coefficient of determination. In summary, we have revealed the errors and areas that are most affected when using the un-calibrated coefficients, and discussed the consequence of such error on agricultural production, and proposed practical solutions to avoid large errors. These results are intended to make the research community aware of such errors so that more appropriate choice of these coefficients is made. We hope that similar assessment will be done in other climates, contributing to managing water resources efficiently in water basins.  相似文献   

3.
基于机器视觉的胡萝卜表面缺陷识别方法研究   总被引:2,自引:0,他引:2  
胡萝卜在生长与收获运输过程中,不可避免会出现一些外观缺陷,缺陷胡萝卜的剔除是胡萝卜上市销售前的重要环节。目前缺陷胡萝卜主要依靠人工分选,具有分选标准不稳定、劳动强度大、成本高等缺点。为了快速、准确、无损地检测缺陷胡萝卜,将机器视觉技术引入到胡萝卜分选过程中,以提高分选准确率和效率。胡萝卜表面缺陷包括青头、弯曲、断裂、分叉和开裂等,缺陷特征互不相同,所以不同缺陷需要不同的检测算法。青头检测利用胡萝卜正常区域与青头区域的颜色差异实现,胡萝卜图像在HSV颜色空间下,利用统计方法确定青头区域H、S和V的判别阈值;弯曲、断裂和分叉识别是根据正常胡萝卜与缺陷胡萝卜之间的形状差异实现,凸壳算法、Hu不变矩和Harris角点检测算法分别用来检测胡萝卜弯曲、断裂和分叉缺陷;开裂检测则是利用胡萝卜正常与开裂区域的纹理差异实现,Sobel水平边缘检测算子、Canny边缘检测算子结合形态学操作实现胡萝卜开裂区域提取。结果表明青头、弯曲、断裂、分叉和开裂的识别准确率分别为100%、91.14%、90.57%、94.57%和95.45%,总体识别准确率达94.91%,满足胡萝卜在线分选精度要求。  相似文献   

4.
An easy-to-follow methodology is developed for the assessment of regional evapotranspiration in Castilla-La Mancha, a semi-arid region of Spain. The methodology is applied to barley crops to monitor the irrigation scheduling over the region, by using remote sensing techniques supplemented by ground measurements. The methodology can be based on either of two models. In the first one, established by Caselles and Delegido,1the reference evapotranspiration,ETo, derives from the expressionETo=ARg(Ta)max+BRg+CwhereA, BandCare empirical coefficients, depending on climatic parameters and determined for each region;Rgis the daily global radiation; and (Ta)maxis the maximum air temperature. The second model, proposed by Jacksonet al.,2considers the actual evapotranspirationER=Rn+D(TaTs) whereRn, is the net radiation,TaandTsare the air and crop surface temperatures, respectively, andDis a semi-empirical coefficient. Both methods were compared with the method of Penman (considered standard), and resulted in differences of ±1 mm  d−1. The developed methodology has been applied to map the reference and the actual evapotranspiration over a 10×10 km area, using the thermal-infrared information provided by the AVHRR (advanced very high resolution radiometer) sensor on board the NOAA (national oceanic atmosphere administration) satellite on a selected date.  相似文献   

5.
A field experiment was carried out to evaluate the METRIC (mapping evapotranspiration at high resolution with internalized calibration) model to estimate the actual evapotranspiration (ETa) and crop coefficient (K c) of a drip-irrigated Merlot vineyard during the 2007/2008 and 2008/2009 growing seasons. The Merlot vineyard located in the Talca Valley (Chile) was trained on a vertical shoot positioned system. The performance of METRIC was evaluated using measurements of ETa and K c from an eddy covariance (EC) system. METRIC overestimated ETa by about 9?% with a root mean square error (RMSE) and mean absolute error (MAE) of 0.62 and 0.50?mm?d?1, respectively. For the main phenological stages of the Merlot vineyard, METRIC overestimated the K c by about 10?% with RMSE?=?0.10 and MAE?=?0.08. Furthermore, the indexes of agreement were 0.70 for K c and 0.85 for ETa. Mean values of K c measured from EC were 0.41, 0.53, 0.56, and 0.46, while those estimated by METRIC were 0.46, 0.54, 0.59, and 0.62 for the bud break to flowering, flowering to fruit set, fruit set to veraison, and veraison to harvest stages, respectively.  相似文献   

6.
A method to determine the soil hydraulic conductivity via an internal drainage experiment is presented. Identifying the parameters of the hydraulic conductivity is achieved by solving an inverse global optimization problem that uses the water contents measured at different depths and times as matching flow variables. The optimization procedure is combined with a recently developed analytical model for the water content propagation, which essentially assumes that the flow is gravity-driven. A crucial (from the identification point of view) parameter of such a model is the initial position zW of the draining front, determining the interface between the wetted and dried zone. By using an evolutionary algorithm specifically developed for this problem, it is shown that if information upon zW is not a priori available, the identification of the hydraulic conductivity is not possible. However, assuming that zW is known (i.e. measured), and by dividing the model variables by zW, the optimization is able to fully identify the soil hydraulic conductivity. Finally, in order to show the robustness of the proposed approach, it is shown that the method leads to very good estimates of the hydraulic conductivity even if data are noise-affected, provided that the optimization procedure is coupled to the (Tikhonov) regularization approach.  相似文献   

7.
Research was conducted in northern Colorado in 2011 to estimate the crop water stress index (CWSI) and actual transpiration (T a) of maize under a range of irrigation regimes. The main goal was to obtain these parameters with minimum instrumentation and measurements. The results confirmed that empirical baselines required for CWSI calculation are transferable within regions with similar climatic conditions, eliminating the need to develop them for each irrigation scheme. This means that maize CWSI can be determined using only two instruments: an infrared thermometer and an air temperature/relative humidity sensor. Reference evapotranspiration data obtained from a modified atmometer were similar to those estimated at a standard weather station, suggesting that maize T a can be calculated based on CWSI and by adding one additional instrument: a modified atmometer. Estimated CWSI during four hourly periods centered on solar noon was largest during the 2 h after solar noon. Hence, this time window is recommended for once-a-day data acquisition if the goal is to capture maximum stress level. Maize T a based on CWSI during the first hourly period (10:00–11:00) was closest to T a estimates from a widely used crop coefficient model. Thus, this time window is recommended if the goal is to monitor maize water use. Average CWSI over the 2 h after solar noon and during the study period (early August to late September, 2011) was 0.19, 0.57, and 0.20 for plots under full, low-frequency deficit, and high-frequency deficit irrigation regimes, respectively. During the same period (50 days), total maize T a based on the 10:00–11:00 CWSI was 218, 141, and 208 mm for the same treatments, respectively. These values were within 3 % of the results of the crop coefficient approach.  相似文献   

8.
A field study was carried out in order to determine the effect of deficit irrigation regimes on grain yield and seasonal evapotranspiration of safflower (Carthamus tinctorius L.) in Thrace Region of Turkey. The field trials were conducted on a loam Entisol soil, on Dincer, the most popular variety in the research area. A randomised complete block design with three replications was used. Combination of four well-known growth stages of the plant, namely vegetative (Va), late vegetative (Vb), flowering (F) and yield formation (Y) were considered to form a total of 16 (including rain fed) irrigation treatments. The effect of irrigation and water stress at any stage of development on grain yield per hectare and 1000 kernels weight was evaluated. Results showed that safflower was significantly affected by water stress during the sensitive late vegetative stage. The highest yield was obtained in VaVbFY treatment. Seasonal irrigation water use and evapotranspiration were 501 and 721 mm, respectively, for the non-stressed treatment. Safflower grain yield of this treatment was 5.22 Mg ha−1 and weight of 1000 kernels was 55 g. The seasonal yield-water response factor value was 0.87. The total water use efficiency was 7.2 kg ha−1 mm−1. Irrigation schedule of the non-stressed treatment may be as follows: the first irrigation is at the vegetative stage, when after 40-50 days from sowing/elongation and branching stage, that is the end of May; the second irrigation is at the late vegetative stage, after 70-80 days from sowing/heading stage, that is in the middle of June; the third irrigation is at the flowering stage, approximately 50% level, that is the first half of July; and the fourth irrigation is at the yield formation stage, seed filling, that is the last week of July.  相似文献   

9.
The effects of drip irrigation on the yield and crop water productivity responses of four tea (Camellia sinensis (L.) O. Kuntze) clones were studied four consecutive years (2003/2004-2006/2007), in a large (9 ha) field experiment comprising of six drip irrigation treatments (labelled: I1-I6) and four clones (TRFCA PC81, AHP S15/10, BBK35 and BBT207) planted at a spacing of 1.20 m × 0.60 m at Kibena Tea Limited (KTL), Njombe in the Southern Tanzania in a situation of limited water availability. Each clone × drip irrigation treatment combination was replicated six times in a completely randomized design with 144 net plots each with an area of 72 m2. Clone TRFCA PC81 gave the highest yields (range: 5920-6850 kg dried tea ha−1) followed by clones BBT207 (5010-5940 kg dried tea ha−1), AHP S15/10 (4230-5450 kg dried tea ha−1) and BBK35 (3410-4390 kg dried tea ha−1) and drip irrigation treatment I2 gave the highest yields, ranging from 4954 to 6072 kg dried tea ha−1) compared with those from other treatments (4113-5868 kg dried tea ha−1). Most of these yields exceeded those (4200 kg dried tea ha−1) obtained from overhead sprinkler irrigation system in Mufindi also Southern Tanzania, and Kibena Estate itself. Results showed that drip irrigation of tea not only increased yields but also gave water saving benefits of up to 50% from application of 50% less water to remove the cumulative soil water deficit (treatment I2), and with labour saving of 85% for irrigation. The yield of dried tea per mm depth of water applied, i.e., “the crop water productivity” for drip irrigation of clones TRFCA PC81, BBT207 and BBK35, in 2003/2004 for instance, were 9.3, 8.5 and 7.1 kg dried tea [ha mm]−1, respectively. The corresponding values in 2004/2005 were 2.7, 4.5 and 2.0 kg dried tea [ha mm]−1 while the yield responses from clone AHP S15/10 were linear decreasing by 1 and 1.6 kg dried tea [ha mm]−1 in 2003/2004 and 2004/2005, respectively. In 2005/2006 the crop water productivity from clones TRFCA PC81, AHP S15/10, BBK35 and BBT207 were 4.5, 0.4, 5.2 and 6.9 kg dried tea [ha mm]−1, respectively with quadratic yield response functions to drip irrigation depth of water application. The results are presented and recommendations and implications made for technology-transfer scaling-up for increased use by large and smallholder tea growers.  相似文献   

10.
针对胡萝卜种子体积小、质量轻、形状不规则且籽粒中含有杂质等问题,设计了一种气吸式胡萝卜播种机。该播种机可一次完成开沟、播种、覆土和压实等作业环节,通过理论计算与分析,确定了胡萝卜播种机及其排种器吸种装置的结构和关键参数。田间试验验证了其播种性能,其中播深合格率90%,伤种率0,满足胡萝卜精密播种的相关国家标准,为胡萝卜机械化播种奠定了基础。   相似文献   

11.
Dimensionless advance curves of border irrigation have been developed for Soil Conservation Service (SCS) infiltration families. The volume balance equation was nondimensionally formulated and then used to plot a dimensionless advance curve for each infiltration family that is a function of the exponent a in the infiltration power function and the dimensionless time t*. Initially, the SCS infiltration formula was fitted into a power function. The equivalent parameters for each SCS infiltration family were obtained through a nonlinear regression analysis. The dimensionless curves for a given inflow rate, slope, and roughness coefficient can be used to determine either advance distance at a particular time or time of advance for a certain distance through a few simple steps. The curves also allow reviewing the advance trend of each infiltration family for a sufficiently wide range of dimensionless time covering any condition of dimensioned input parameters. It is anticipated that the curves will help in designing, evaluating, and managing irrigation borders. The more complex zero inertia model has also been used to enhance results of obtained dimensionless advance curves and of fitted SCS infiltration parameters.  相似文献   

12.
Available water holding capacity (AWC) and field capacity (FC) maps have been produced using regression models of high resolution apparent electrical conductivity (ECa) data against AWC (adj. R2 = 0.76) and FC (adj. R2 = 0.77). A daily time step has been added to field capacity maps to spatially predict soil water status on any day using data obtained from a wireless soil moisture sensing network which transmitted hourly logged data from embedded time domain transmission (TDT) sensors in ECa-defined management zones. In addition, regular time domain reflectometry (TDR) monitoring of 50 positions in the study area was used to assess spatial variability within each zone and overall temporal stability of soil moisture patterns. Spatial variability of soil moisture within each zone at any one time was significant (coefficient of variation [% CV] of volumetric soil moisture content (θ) = 3-16%), while temporal stability of this pattern was moderate to strong (bivariate correlation, R = 0.52-0.95), suggesting an intrinsic soil and topographic control. Therefore, predictive ability of this method for spatial characterisation of soil water status, at this site, was limited by the ability of the sensor network to account for the spatial variability of the soil moisture pattern within each zone. Significant variability of soil moisture within each ECa-defined zone is thought to be due to the variable nature of the young alluvial soils at this site, as well as micro-topographic effects on water movement, such as low-lying ponding areas. In summary, this paper develops a method for predicting daily soil water status in ECa-defined zones; digital information available for uploading to a software-controlled automated variable rate irrigation system with the aim of improved water use efficiency. Accuracy of prediction is determined by the extent to which spatial variability is predicted within as well as between ECa-defined zones.  相似文献   

13.
Information don the shrinkage of grain both in bulk and as individual kernels is important in postharvest processing of these materials. The mass and volume of samples of wheat and canola seeds exposed either to humid or dry air were measured during adsorption or desorption cycles. When the grains were exposed to 90% r.h. at 40°C, the bulk density of wheat decreased almost linearly from 790 to 686 kg/m3as the kernel moisture content increased from 8% to 22% w.b. The bulk density of canola descreased by 11 kg/m3, from 672 to 661 kg/m3as the kernel moisture content increased from 5% to 19% w.b. The laws of mixtures were used to develop the following equations to predict grain kernel (vk)and grain bulk volume (vb)respectively as functions of moisture adsorption or desorption:vk/vk0=[1-M0/1+(γ-1)M0] [1+(γ-1)M/1-M]andvb/vb0={[1-(M0-M)][1+(γ-1)M]/[1+(γ-1)M0]} (1-ϵ0)/(1-ϵ)wherevkandvk0are the kernel volumes,vbandvb0are the bulk porosities at the kernel moisture contents ofMandM0respectively;γis the dry kernel density and is assumed to be a constant for each grain. Compared with experimental data, the kernel volumes of both wheat and canola, adequately predicted by the first equation. The second equation gave an adequate prediction of the bulk volume of canola by assumingϵ= ϵ0,but not for wheat unlessϵwas expressed as a polynomial function of kernel moisture content.  相似文献   

14.
The influence of pond management on water quality for drip-irrigated crops was studied throughout a field survey and a mesocosm experiment. Water sources were pooled into two groups: ground or surface water (GW/SW) and recycled wastewater. Pond covering, which was limited to about a quarter of them, improved water quality by reducing phytoplankton biomass. However, biocide applications and pond dredging were ineffective at improving in-pond water quality. Dredging did not reduce the concentrations of planktonic chlorophyll a or total suspended solids (TSS) in GW/SW fed ponds, whereas biocide applications increased both parameters. Field and experimental data proved that the two predominant taxa of submerged aquatic vegetation (SAV) found in ponds (Potamogeton pectinatus and Chara spp.) improved water quality by increasing water oxygenation and decreasing chlorophyll a and TSS concentrations. Preserving SAV (especially Chara spp.) appears to be an environment-friendly, cost-effective and recommendable alternative strategy for irrigation pond management.  相似文献   

15.
Canopy temperature, which may be estimated by infrared thermometry (IRT), can serve as an indicator of plant water status. [Idso et al., 1981a] and [Idso et al., 1986] proposed the nowadays much used concept of the crop water stress index, which relates observed canopy surface temperature (Ts) to maxima and minima temperature bounds. Jackson et al. (1981) defined those bounds on the basis of the energy balance. Those bounds vary with the meteorological situation. In this paper a chart is offered for general use with a fixed frame for the upper and lower bound. It relates canopy surface temperatures with r1(=1 + rc/ra)-values (rc the canopy resistance and ra the aerodynamic resistance) as a function of a specifically defined temperature sum (S). It links the curved lower bound with the straight upper bound by a bundle of r1-curves (the Ts-S-r1-chart). The lower bound can be expressed by an equation, which approximates the energy balance solution with high accuracy. The sensitivity of the upper bound is also discussed. A comparison was made between bounds following Jackson et al. (1981) and the proposed alternative method, which, however, is limited by the short data-set available for this paper.  相似文献   

16.
Maize (Zea mays L.) is an important food crop for irrigated regions in the world. Its growth and production may be estimated by different crop models in which various relationships between growth and environmental parameters are used. For simulation of maize growth and grain yield, a simulation model was developed (Maize Simulation Model, MSM). Dynamic flow of water, nitrogen (N) movement, and heat flow through the soil were simulated in unsteady state conditions by numerical analysis in soil depth of 0–1.8 m. Hourly potential evapotranspiration [ETp(t)] for maize field was estimated directly by Penman–Monteith method. Hourly potential evaporation [Ep(t)] was estimated based on ETp(t) and canopy shadow projection. Actual evaporation of soil surface was estimated based on its potential value, relative humidity of air, water pressure head and temperature at soil surface layer. Actual transpiration (Ta(t)) was estimated based on soil water content and root distribution at each soil layer. Hourly N uptake by plant was simulated by N mass flow and diffusion processes. Hourly top dry matter production (HDMAj + 1, where j is number of hours after planting) was estimated by hourly corrected intercepted radiation (RSLTj + 1) by plant leaves [determined from leaf area index (LAIj + 1)] with air temperature, the maximum and minimum plant top N concentration and the amounts of nitrogen uptake. The value of LAIj + 1 at each hour was estimated by the accumulated top dry matter production at previous hour using an empirical equation. Maize grain yield was estimated by a relationship between harvest index and seasonal plant top dry matter production. The model was calibrated using data obtained under field conditions by a line source sprinkler irrigation. When the values of water and nitrogen application were optimum, grain yield (moisture content of 15.5%) was 16.2 Mg ha−1. Model was validated using two independent experimental data obtained from other experiments in the Badjgah (Fars province). The experimental results validated the proposed simulation model fairly well.  相似文献   

17.
In this paper, based on the analysis of a long-term energy balance monitoring programme, a Bowen ratio-based method (BR) was proposed to resolve the lack of closure of the eddy covariance technique to obtain reliable sensible (H) and latent heat fluxes (λE). Evapotranspiration (ET) values determined from the BR method (ETc,corr) were compared with the upscaled transpiration data determined by the sap flow heat pulse (HP) technique, evidencing the degree of correspondence between instantaneous transpirational flux at tree level and the micrometeorological measurement of ET at orchard level. Using the BR-corrected λE fluxes, a crop ET model implementing the Penman–Monteith approach, where the canopy surface resistance was determined from standard microclimatic variables, was applied to determine the crop coefficient values. The performance of the model was evaluated by comparing it with the sap flow HP data. The results of the comparison were satisfactory, and therefore, the proposed methodology may be considered valid for characterizing the ET process for orange orchards grown in a Mediterranean climate. By contrast to reports in the FAO 56 paper, the crop growth coefficient of the orange orchard being studied was not constant throughout the growing season.  相似文献   

18.
The HYDRUS-2D model was experimentally verified for water and salinity distribution during the profile establishment stage (33?days) of almond under pulsed and continuous drip irrigation. The model simulated values of water content obtained at different lateral distances (0, 20, 40, 60, 100?cm) from a dripper at 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140 and 160?cm soil depths at different times (5, 12, 19, 26 and 33?days of profile establishment) were compared with neutron probe measured values under both irrigation scenarios. The model closely predicted water content distribution at all distances, times and soil depths as RMSE values ranged between 0.017 and 0.049. The measured mean soil water salinity (ECsw) at 25?cm from the dripper at 30, 60, 90 and 150?cm soil depth also matched well with the predicted values. A correlation of 0.97 in pulsed and 0.98 in continuous drip systems with measured values indicated the model closely predicted total salts in the root zone. Thus, HYDRUS-2D successfully simulated the change in soil water content and soil water salinity in both the wetting pattern and in the flow domain. The initial mean ECsw below the dripper in pulsed (5.25?dSm?1) and continuous (6.07?dSm?1) irrigations decreased to 1.31 and 1.36?dSm?1, respectively, showing a respective 75.1 and 77.6% decrease in the initial salinity. The power function [y?=?ax ?b ] best described the mathematical relationship between salt removal from the soil profile as a function of irrigation time under both irrigation scenarios. Contrary to other studies, higher leaching fraction (6.4–43.1%) was recorded in pulsed than continuous (1.1–35.1%) irrigation with the same amount of applied water which was brought about by the variation in initial soil water content and time of irrigation application. It was pertinent to note that a small (0.012) increase in mean antecedent water content (θ i ) brought about 8.25–9.06% increase in the leaching fraction during the profile establishment irrespective of the emitter geometry, discharge rate, and irrigation scenario. Under similar θ i , water applied at a higher discharge rate (3.876?Lh?1) has resulted in slightly higher leaching fraction than at a low discharge rate (1.91?Lh?1) under pulsing only owing to the variation in time of irrigation application. The influence of pulsing on soil water content, salinity distribution, and drainage flux vanished completely when irrigation was applied daily on the basis of crop evapotranspiration (ETc) with a suitable leaching fraction. Therefore, antecedent soil water content and scheduling or duration of water application play a significant role in the design of drip irrigation systems for light textured soils. These factors are the major driving force to move water and solutes within the soil profile and may influence the off-site impacts such as drainage flux and pollution of the groundwater.  相似文献   

19.
北虫草干燥特性与粉碎工艺试验   总被引:1,自引:0,他引:1  
北虫草经过热风干燥、真空干燥和真空冷冻干燥后,利用图像处理技术分析干燥方法对表面积收缩率的影响,并结合干燥后北虫草的剪切和压碎力学特性,确定适宜粉碎的干燥方式;以通过200目标准检验筛的粉体质量分数为评价指标,通过分析干燥后北虫草的剪切粉碎和球磨粉碎工艺,确定北虫草的最优粉碎工艺参数。结果表明,真空冷冻干燥后的北虫草面积收缩率、剪切力和压碎力均最小,真空冷冻干燥为北虫草粉碎最适宜的干燥方法;剪切粉碎最优工艺参数为:粉碎时间3 min,物料填充率25%,物料含水率3%,此时粉碎效率为68.5 g/h,耗电量为0.46 kW.h/kg;球磨粉碎最优工艺参数为:粉碎转速266 r/min,粉碎时间60 min,介质填充率23%,物料填充率15%,此时粉碎效率为36.5 g/h,耗电量为2 kW.h/kg。  相似文献   

20.
Physically, evaporative demand is driven by net radiation (Rn), vapour pressure (ea), wind speed (u2), and air temperature (Ta), each of which changes over time. By analyzing temporal variations in reference evapotranspiration (ET0), improved understanding of the impacts of climate change on hydrological processes can be obtained. In this study, variations in ET0 over 58 years (1950-2007) at 34 stations in the Haihe river basin of China were analyzed. ET0 was calculated by the FAO Penman-Monteith formula. Calculation of Kendall rank coefficient was done by analyzing the annual and seasonal trends in ET0 derived from its dependent climate variables. Inverse distance weighting (IDW) was used to analyze the spatial variation in annual and seasonal ET0, and in each climate variable. An attribution analysis was performed to quantify the contribution of each input variable to ET0 variation. The results showed that ET0 gradually decreased in the whole basin over the 58 years at a rate of −1.0 mm yr−2, at the same time, Rn, u2 and precipitation also decreased. Changes in ET0 were attributed to the variations in net radiation (−0.9 mm yr−2), vapour pressure (−0.5 mm yr−2), wind speed (−1.3 mm yr−2) and air temperature (1.7 mm yr−2). Looking at all data on a month by month basis, we found that Ta had a positive effect on dET0/dt (the derivative of reference evapotranspiration to time) and Rn and u2 had negative effects on dET0/dt. While changes in air temperature were found to produce a large increase in dET0/dt, changes in other key variables each reduced rates, resulting in an overall negative trend in dET0/dt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号