首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 403 毫秒
1.
基于土壤剖面测定数据计算中国土壤有机碳贮量   总被引:10,自引:0,他引:10  
Soil organic carbon (SOC) storage under different types of vegetations in China were estimated using measured data of 2 440 soil profiles to compare SOC density distribution between different estimates, to map the soil organic carbon stocks under different types of vegetation in China, and to analyze the relationships between soil organic carbon stocks and environmental variables using stepwise regression analyses. Soil organic carbon storage in China was estimated at 69.38 Gt (1015 g). There was a big difference in SOC densities for various vegetation types, with SOC distribution closely related to climatic patterns in general. Stepwise regression analyses of SOC against environmental variables showed that SOC generally increased with increasing precipitation and elevation, while it decreased with increasing temperature. Furthermore, the important factor controlling SOC accumulation for forests was elevation, while for temperate steppes mean annual temperature dominated. The more specific the vegetation type used in the regression analysis, the greater was the effect of environmental variables on SOC. However, compared to native vegetation, cultivation activities in the croplands reduced the influence of environmental variables on SOC.  相似文献   

2.
CHEN Yue  HUANG Yao  SUN Wenjuan 《土壤圈》2017,27(5):890-900
Regression models for predicting soil bulk density (BD) have usually been related to organic matter content,but it remains unknown whether soil acidity modifies this relationship,particularly for afforested/reforested soils.We measured soil BD along with organic matter content and pH in an afforested/reforested area in Northwest and Northeast China.Using these measurements,we parameterized and validated three BD models:the Adams equation,and exponential and radical models.Model validation showed that the Adams equation failed to predict the BD of the afforested/reforested soils,producing a large overestimation.Incorporation of soil pH into the Adams equation significantly improved its performance.The exponential and radical models parameterized by the measured data simulated soil BD quite well,particularly when soil pH was incorporated.However,incorporation of soil texture variables into these models did not improve model performance compared with the pH-modified models.This led to the conclusion that the Adams equation,exponential,and radical models with pH modification are applicable to afforested/reforested soils with various acidities.  相似文献   

3.
有机物质阴阳离子对调节土壤pH的作用   总被引:2,自引:0,他引:2  
The process of organic materials increasing soil pH has not yet been fully understood. This study examined the role of cations and organic anions in regulating soil pH using organic compounds. Calcareous soil, acid soil, and paddy soil were incubated with different simple organic compounds, pH was determined periodically and CO2 emission was also measured. Mixing organic acids with the soil caused an instant decrease of soil pH. The magnitude of pH decrease depended on the initial soil acidity and dissociation degree of the acids. Decomposition of organic acids could only recover the soil pH to about its original level. Mixing organic salts with soil caused an instant increase of soil pH. Decomposition of organic salts of sodium resulted in a steady increase of soil pH, with final soil pH being about 2.7-3.2 pH units over the control. Organic salts with the same anions (citrate) but different cations led to different magnitudes of pH increase, while those having the same cations but different anions led to very similar pH increases. Organic salts of sodium and sodium carbonate caused very similar pH increases of soil when they were added to the acid soil at equimolar concentrations of Na^+. The results suggested that cations played a central role in regulating soil pH. Decarboxylation might only consume a limited number of protons. Conversion of organic salts into inorganic salts (carbonate) was possibly responsible for pH increase during their decomposition, suggesting that only those plant residues containing high excess base cations could actually increase soil pH.  相似文献   

4.
A field experiment was conducted at Kezuohouqi County, Inner Mongolia Autonomous Region of China, which was located on the southeastern edge of the Horqin Sandy Land, to study the spatial variability of soil nutrients for a small-scale, nutrient-poor, sandy site in a semi-arid region of northern China; to investigate whether or not there were "islands of fertility" at the experimental site; and to determine the key nutrient elements that sustained ecosystem stability. Results obtained from geostatistical analysis indicated that the spatial distribution pattern of soil total nitrogen (STN) was far different from those of soil organic matter (SOM), total phosphorus (STP), and total potassium (STK). Compared to SOM, STP, and STK, STN had a lower structural heterogeneity ratio and a longer range, while other elements were all similar. In addition, STN had an isotropic spatial structure, whereas the others had an anisotropic spatial structure. The spatial structure patterns of herbage species, cover, and height also differed, indicating that spatial variability was subjected to different ecological factors. Differences in the spatial variability patterns among soil nutrients and vegetation properties showed that soil nutrients for a small-scale were not the primary limiting factors that influenced herbage spatial distribution patterns. Incorporating spatial distribution patterns of tree species, namely, Pinus sylvestris var. mongolica Litv. and shrub Lespedeza bicolor Turcz. in a research plot and using fractal dimension, SOM, STP, and STK were shown to contribute to the "islands of fertility" phenomenon, however STN was not, possibly meaning that nitrogen was a key limiting element. Therefore, during restoration of similar ecosystems more attention should be given to soil nitrogen.  相似文献   

5.
Soil samples at 0--10 cm in depth were collected periodically at paired fields in Corvallis, Oregon, USA to compare differences in soil microbial and faunal populations between organic and conventional agroecosystems Results showed that the organic soil ecosystem had a significantly higher (P < 0.05) average number or biomass of soil bacteria; densities of flagellates, amoebae of protozoa; some nematodes, such as microbivorous and predaceous nematodes and plant-parasitic nematodes; as well as Collembola. Greater numbers of Rhabditida (such as Rhabditis spp.), were present in the organic soil ecosystem while Panagrolaimus spp. Were predominant in the conventional soil ecosystem. The omnivores and predators of Acarina in the Mesostigmata (such as Digamasellidae and Laelapid), and Prostigmata (such as Alicorhaiidae and Rhagidiidae), were also more abundant in the organic soil ecosystem. However, fungivorous Prostigmata (such as Terpnacaridae and Nanorchestidae) and Astigmata (such as Acarida) were significantly higher (P < 0.05) in the conventional soil ecosystem, which supported the finding that total fungal biomass was greater in the conventional soil ecosystem. Seansonal variations of the population depended mostly on soil moisture condition and food web relationship. The population declined from May to October for both agroecosystems. However, higher diversities and densities of soil biota survived occurred in the organic soil ecosystem in the dry season.  相似文献   

6.
耕作对土壤有机物和土壤团聚体稳定性的影响   总被引:17,自引:8,他引:17  
Agricultural sustainability relates directly to maintaining or enhancing soil quality. Soil quality studies in Canada during the 1980‘s showed that loss of soil organic matter (SOM) and soil aggregate stability was standard features of non-sustainable land management in agroecosystems. In this study total soil organic carbon (SOC), particulate organic matter (POM), POM-C as a percentage of total SOC, and aggregate stability were determined for three cultivated fields and three adjacent grassland fields to assess the impact of conventional agricultural management on soil quality. POM was investigated using solid-state ^13C nuclear magnetic resonance (NMR) to determine any qualitative differences that may be attributed to cultivation. Results show a highly significant loss in total SOC, POM and aggregate stability in the cultivated fields as compared to the grassland fields and a significant loss of POM-C as a percentage of total SOC.Integrated results of the NMR spectra of the POM show a loss in carbohydrate-C and an increase in aromatic-C in the cultivated fields, which translates to a loss of biological lability in the organic matter. Conventional cultivation decreased the quantity and quality of SOM and caused a loss in aggregate stability resulting in an overall decline in soil quality.  相似文献   

7.
中国禹城土壤盐渍化的时空变异及其预测   总被引:5,自引:0,他引:5  
This research used both geostatistics and GIS approach to compare temporal change of soil salt between 1980 and 2003, to analyze the spatial distribution of surface soil salt, to developed methods for predicting soil salinization potential based on recent improvements to the Dempster-Shafer theory, and to develop probability maps of potential salinization in Yucheng City, China. A semivariogram model of soil salt content was developed from the spherical model, and then employing kriging interpolation the spatial distribution of salt content in 2003 was obtained utilizing data from 100 soil sampling points. Potential salinization distribution was mapped using an approach that integrated soil data of the second general survey in 1980 in Yucheng City, which included groundwater salinity, groundwater depth, soil texture, soil organic matter content, and geomorphic maps. With the support of Dempster-Shafer theory and fuzzy set technique the factors that affected potential soil salinization were characterized and integrated;and then soil salinization was predicted. Finally a prognosis map of potential salinization distribution in the research area was obtained, with higher probability values indicating higher hazards to salinity processes. The distribution of the potential soil salinization probability was a successive surface.  相似文献   

8.
黑土开垦后水稳性团聚体与土壤养分的关系   总被引:3,自引:0,他引:3  
Water-stable aggregates, which are an index for the evaluation of the structural properties of the soil, are affected by many factors. Zhaoguang Farm, Longzhen Farm, and Jiusan Farm were chosen as the representative study sites in the region of black soils, a typical soil resource in Northeast China. The variation in the content of 〉 0.25 mm water-stable aggregates and its relationship with the nutrients in black soil were investigated after different years of reclamation. The results showed that the 〉 0.25 mm water-stable aggregates were more in the surface than in the subsurface soil and they changed in the following order: Longzhen Farm 〉 Zhaoguang Farm 〉 Jiusan Farm. The water-stable aggregates decreased sharply at the initial stage of reclamation and then became stable gradually with time. They were significantly correlated with the contents of organic C, total N, total P, and CEC in black soil, with the correlation coefficients r being 0.76, 0.68, 0.61, and 0.81 (P 〈 0.01), respectively; however, their relationships with available P, available K, and total K were unclear. These showed that organic matter was the cementation of soil water-stable aggregates. Increasing decompositions and decreasing inputs of organic matter after reclamation were responsible for the amount of reduction of the water-stable aggregates. Thus, to maintain good soil aggregate structure, attention should be paid to improvement of soil nutrient status, especially the supply of organic C and N.  相似文献   

9.
Spatial variation is a ubiquitous feature of natural ecosystems, especially in arid regions, and is often present at various scales in these regions. To determine the scale dependence of the heterogeneity of soil chemical properties and the dominant scales (factors) for soil heterogeneity in arid regions, the spatial variability of soil resources was investigated in the Gurbantunggut Desert of Central Asia at the scales of 10-3, 10-2, 10-1, 100, 101, 102, 103 and 104 m (from individual plant to population or community to ecosystem). Soil chemical properties including pH, electrical conductivity (EC), organic carbon, total nitrogen, available nitrogen, total phosphorus, and available phosphorus were considered in the investigation. At a scale of 10-1 m, which represented the scale of individual plant, significant enrichment of soil resources occurred under shrub canopy and "fertile islands" formed in the desert ecosystem. Soil EC exhibited the largest heterogeneity at this scale, indicating that individual plants exerted a great influence on soil salinity/alkalinity. Soil nutrients exhibited the greatest heterogeneity at a scale of 102 m, which represented the scale of sand dune/interdune lowlands (between communities). The main important factors contributing to soil spatial heterogeneity in the Gurbantunggut Desert were individual plants and different topographic characteristics, namely, the appearance of vegetation, especially shrubs or small trees, and existing sand dunes. Soil salinity/alkalinity and soil nutrient status behaved differently in spatial heterogeneity, with an inverse distribution between them at the individual scale.  相似文献   

10.
For the purpose of evaluating the role of ligand exchange of sulfate ions in retarding the rate of acidification of variable charge soils,the changes in pH after the addition of different amounts of HNO3 or H2SO4 to representative soils of China were measured .A difference between pH changes caused by the two kinds of acids was observed only for variable charge soils and kaolinite,but not for constant charge soils and bentonite,The larger the proportion of H2SO4 in the HNO3-H2SO4 mixture,the lower the calculated H^ ion activities remained in the suspension.The difference in H^ ion activities between H2SO4 systems and HNO3 systems was larger for soils with a low base-saturation(BS) percentage than those with a high BS percentage.The removal of free iron oxides from the soil led to a decrease in the difference,while the coating of Fe2O3 on a bentonite resulted in a remarkable appearance of the difference.The effect of ligand exchange on the acidity status of the soil varied with the soil type.Surface soils with a high organic matter content showed a less pronounced effect of ligand exchange than subsoils did.It was estimated that when acid rain chiefly containing H2SO4 was deposited on variable charge soils the acidification rate might be slower by 20%-40% than that when the acid rain chiefly contained HNO3 for soils with a high organic matter content,and that the rate might be half of that caused by HNO3 for soils with a low organic matter content,especially for latosols.  相似文献   

11.
绿肥对植烟土壤酶活性及土壤肥力的影响   总被引:20,自引:2,他引:18  
通过田间试验,研究翻压绿肥对植烟土壤酶活性及土壤肥力的影响。结果表明, 翻压绿肥能够明显提高土壤酶活性和土壤肥力水平,当绿肥翻压量在15000 kg/hm2以上时,尤其在22500~30000 kg/hm2之间时对土壤各项指标的影响更加明显。与对照相比,翻压绿肥的各处理土壤脲酶、 酸性磷酸酶、 蔗糖酶、 过氧化氢酶增幅分别为13.10%2~3.81%、 12.92%~29.38%、 75.35%~234.51%、 29.17%~37.08%; 土壤有机质、 全氮、 碱解氮、 有效磷、 速效钾、 pH、 孔隙度增幅分别为13.01%~70.41%、 6.42%~27.52%、 1.14%~10.99%、 15.97%~34.99%、 10.28%~38.30%、 2.74%~7.05%、 0.19%~2.50%,土壤容重降幅为1.47%~5.15%。简单相关分析表明,脲酶、 酸性磷酸酶、 蔗糖酶、 过氧化氢酶4种酶之间以及4种酶与土壤理化因子之间均有极显著的相关关系,而土壤酶活性之间的相互关系表明,土壤酶在促进土壤有机物质转化中不仅显示其专性特性,同时也存在共性关系; 典型相关分析结果为,第一对典型变量线性函数反映了土壤酶活性和土壤养分因子对土壤综合肥力水平的影响,第二对典型变量线性函数反映了施入绿肥对土壤内部重要的生理生化过程变化的影响; 主成分分析结果显示,第一主成分反映了土壤的综合肥力水平,所有因子均对土壤肥力水平起到了正效应,土壤酶活性能够和土壤理化因子共同评价土壤综合肥力水平。以上结果说明,翻压绿肥后土壤生物过程活跃,有利于土壤有机物质的转化和烤烟正常生长所需的营养供应。  相似文献   

12.
王珏  杜琴  彭双  林先贵  王一明  李军营  戴勋  谢新乔 《土壤》2021,53(5):998-1007
摘 要 :施肥对维持烟草土壤微生物生态平衡和改善土壤质量起着十分重要的作用,但无机化肥、有机肥和有机无机复混肥料长期施用后,植烟土壤微生物群落的响应差异尚不明确。基于此科学问题,应用定量PCR技术和高通量测序技术研究施用有机肥(YJ)、有机无机肥(YW)和无机肥(WJ)3年后,土壤理化性质和细菌群落结构、数量和功能的变化。结果显示不同施肥处理下,土壤理化性质发生改变,其中WJ和YJ处理降低了土壤pH值,但YJ处理能显著提升土壤有机质含量,而YW处理在维持土壤pH的同时提高土壤速效养分和有机质含量。土壤细菌数量、群落结构和功能也相应的发生变化,YJ和YW处理土壤中的细菌16S rRNA基因拷贝数显著高WJ,YW处理的土壤细菌群落alpha多样性最高。主坐标分析和ANOSIM检验进一步表明,影响土壤细菌群落结构的最主要因素是土壤pH。此外,施肥3年后土壤中部分益生菌相对丰度也发生明显的变化,YW处理土壤中Gemmatimonadaceae、Micrococcaceae和Haliangiaceae等植物促生菌的丰度显著较高,YJ处理土壤中Intrasporangiaceae、Xanthomonadaceae、Chitinophagaceae、Burkholderiaceae等具有固氮或生防功能的细菌丰度较高,YW和YJ处理均增加了固氮菌Rhizobiaceae的丰度。细菌群落结构的改变进一步影响了细菌群落的功能,YW处理显著增加了土壤细菌群落的硝化功能。本研究结果可为烟叶生产中合理施肥提供科学依据。  相似文献   

13.
卢孟雅  丁雪丽 《土壤》2024,56(1):10-18
稻田土壤碳循环是我国陆地生态系统碳循环的重要组成部分。促进稻田生态系统碳的固定及稳定对减缓全球气候变化起着不容忽视的作用。微生物主导的有机碳转化过程是土壤碳循环研究的核心,微生物同化代谢介导的细胞残体迭代积累在土壤有机碳长期截获和稳定过程中发挥重要作用。与旱地土壤相比,关于稻田土壤中微生物残体积累动态对外源有机物质如作物秸秆输入的响应及主要影响因子的认识还相对有限,对微生物通过同化作用参与土壤固碳的过程和机制尚缺乏系统认识。基于此,本文介绍了微生物残体对土壤有机碳库形成和积累的重要性及评价指标,重点探讨了秸秆还田对稻田土壤微生物残体积累动态以及外源秸秆碳形成细胞残体转化过程的影响,分析了影响微生物残体积累转化的主要气候因素和土壤因素,最后提出了未来应借助先进的光谱和高分辨率成像技术并结合同位素示踪对微生物残体的稳定性与机理开展更为深入的研究。  相似文献   

14.
Alpine wetlands and meadows across the Three Rivers Source Region (TRSR) store high soil organic carbon (SOC). However, information on factors affecting SOC storage is scanty. Herein, we investigated SOC storage and explored factors affecting SOC storage, including climate, soil properties and above- and belowground biomass, using 50 soil profiles across the TRSR on the Tibetan Plateau. The SOC storage was 491.9 ± 158.5 Tg C and 545.2 ± 160.8 Tg C in the TRSR alpine wetlands and meadow, respectively. The SOC stock was positively correlated with the mean annual precipitation. However, no significant correlation between SOC stock and mean annual temperature was observed, as opposed to the global trend. In addition, SOC stock was positively correlated with both the aboveground biomass (AGB) and belowground biomass (BGB). Soil pH indirectly affected SOC stock, while SOC stock positively correlated with Al and Fe oxyhydroxides. Compared with vegetation biomass and climatic factors, soil properties, including soil pH and Al and Fe oxyhydroxides (Alo and Feo), affected not only SOC stock variation but also affected the impact of vegetation and climatic factors on SOC stock. Climate factors, AGB, BGB, soil pH, Alo and Feo jointly accounted for 59% of SOC stock variation in alpine wetlands and 64% of SOC stock variation in alpine meadow. This study suggests that soil properties are the dominant factors affecting SOC variation in alpine wetlands and meadow on the Tibetan Plateau.  相似文献   

15.
湘西典型植烟土壤酸碱缓冲特性及影响因素   总被引:3,自引:0,他引:3  
为探明山地植烟土壤酸碱缓冲特性,采集了湘西山区烤烟典型生产区的28个土壤样本,采用酸碱滴定法和灰色关联法分析了湘西山地植烟土壤酸碱缓冲特性以及土壤缓冲容量与各影响因素之间的量化关系。结果表明:湘西山地植烟土壤酸碱缓冲量为11.35~43.29 mmol·kg-1,平均为17.26 mmol·kg-1,黄棕壤的酸碱缓冲量(11.35~43.29 mmol·kg-1)显著高于黄壤(11.79~20.70 mmol·kg-1)。有78.57%的样本对酸碱敏感,黄壤土是否对酸敏感由有机质含量决定,黄棕壤土是否对酸敏感与pH和有机质含量密切相关。对于同一土壤类型,有机质和黏粒含量与酸碱缓冲容量显著正相关;对于黄棕壤,酸碱缓冲容量还与pH和阳离子交换量呈显著正相关,与交换性酸和交换性铝呈显著负相关。主要土壤类型之间缓冲性能存在较大差异,黄壤土酸碱缓冲性能主要受土壤有机质、阳离子交换量和黏粒含量的影响;黄棕壤土酸碱缓冲性能主要受pH、阳离子交换量和有机质的影响。在生产中应采用合理施用化肥、增施有机肥、调节土壤酸性等措施提高植烟土壤酸碱缓冲性能,为优质烟叶生产创造良好的生态环境。  相似文献   

16.
以江西省红壤所长期施肥红壤水稻土双季稻农田生态系统为研究对象,利用不同施肥年限作物的产量及土壤有机质含量等测定数据,结合调查获得的生态系统物质和管理投入资料,估算了不同施肥处理双季稻生态系统的碳汇效应和经济效益,并比较了不同施肥年限农田生态系统碳汇效应的变化特征。结果表明:有机肥与无机肥配施处理的净碳汇效应最强为-8.78 tC.hm-2.a-1,不施肥处理的净碳汇效应最弱为-4.86 tC.hm-2.a-1,加倍施加化肥虽提高了系统的净碳汇效应,但是作用不显著;不同施肥年限,相同施肥条件农田的作物固碳量和净碳汇效应没有显著性差异,但是土壤固碳量变化显著,施加有机肥可以维持和提高土壤的固碳能力平均达到0.41 tC.hm-.2a-1,在追求更高作物固碳量同时,提高和维持土壤的固碳能力也是提高农田碳汇效应的有效途径。有机肥与无机肥配施处理的平均经济效益为17 568 CNY.hm-.2a-1,也高于其他施肥处理。因此,适当施加有机肥不仅可以大幅提高农田生态系统的碳汇效应,还可以显著提高农业生产的经济效益,是实现低碳、高值农业的最有效措施之一。  相似文献   

17.
磷是限制草地生态系统生产力的关键性养分元素,阐明青藏高原草地土壤磷素分布特征及其影响因素对于维持该区域草地生态系统的可持续发展具有重要意义。沿青藏高原从西北至东南的水平样带采集不同类型草地(即草甸草原、典型草原和荒漠草原)的土壤样品,研究土壤全磷、有效磷、无机磷组分和有机磷组分的分布特征及其影响因素。结果表明:土壤全磷和有效磷含量以草甸草原最高,其次为荒漠草原和典型草原。各类型草地土壤的无机磷组成均以酸溶态无机磷为主;草甸草原土壤的有机磷组成以氢氧化钠态有机磷为主,而典型和荒漠草原土壤则以酸溶态有机磷为主。不同类型草地相比,草甸草原土壤的水溶态、碳酸氢钠态和氢氧化钠态无机磷以及各形态有机磷含量均显著高于典型和荒漠草原,而荒漠草原土壤的酸溶态无机磷含量显著高于草甸和典型草原。冗余分析指出,土壤有机碳、年均降雨量是影响全磷和有效磷的主要因子,年均降雨量和游离氧化铁是影响无机磷组分的主要因子,而pH、年均气温、地上生物量和年均降雨量是影响有机磷组分的主要因子;结构方程模型指出,草地类型对无机磷组分和有机磷组分都有直接的影响,年均温度和容重对无机磷组分也有直接的影响,而海拔、年均降水量和年均气温通过草地类型对无机磷组分和有机磷组分产生间接的影响。研究结果对于青藏高寒草地生态系统磷素养分的有效管理,进而实现该区域草地资源的可持续利用具有重要意义。  相似文献   

18.
Microbial activities in Arctic and Antarctic soils are of particular interest due to uncertainty surrounding the fate of the enormous polar soil organic matter (SOM) pools and the potential to lose unique and vulnerable micro-organisms from these ecosystems. We quantified richness, evenness and taxonomic composition of both fungi and bacteria in 223 Arctic and Antarctic soil samples across 8 locations to test the global applicability of hypotheses concerning edaphic drivers of soil microbial communities that have been primarily developed from studies of bacteria in temperate and tropical systems. We externally validated our model's conclusions with an independent dataset comprising 33 Arctic heath samples. We also explored if our system was responding to large scale climatic or biogeographical processes that we had not measured by evaluating model stability for one location, Mitchell Pennisula, that had been extensively sampled. Soil Fertility (defined as organic matter, nitrogen and chloride content) was the most important edaphic property associated with measures of α-diversity such as microbial richness and evenness (especially for fungi), whereas pH was primarily associated with measures of β-diversity such as phylogenetic structure and diversity (especially for bacteria). Surprisingly, phosphorus emerged as consistently the second most important driver of all facets of microbial community structure for both fungi and bacteria. Despite the clear importance of edaphic factors in controlling microbial communities, our analyses also indicated that fungal/bacterial interactions play a major, but causally unclear, role in structuring the soil microbial communities of which they are a part.  相似文献   

19.
不同物料蚓粪对土壤酸度和Cu、Pb化学形态的影响   总被引:1,自引:1,他引:0  
以两种常见的有机废弃物牛粪和稻秆为原料,利用Eisenia foetida生产蚓粪,采用室内培养试验,研究了蚓粪在重金属污染的酸性土壤中对有机碳含量和形态、土壤酸度及Cu、Pb形态的影响。结果表明:在2.5%~10%的蚓粪用量下,土壤总有机碳含量增加了25%~83%,除牛粪蚓粪组的可溶性有机碳显著高于稻秆蚓粪外(P0.05),其余形态两种蚓粪间土壤有机碳含量无显著差异。蚓粪使土壤pH(H2O)值提升0.38~1.13个单位,同时交换性氢和铝的含量分别降低41%~77%和57%~94%,显著降低了土壤酸度,且较对照高出0.35~4倍;牛粪蚓粪仅在10%用量下降低土壤酸度的效果高出稻秆蚓粪22%。蚓粪使土壤中水溶-交换态Cu和Pb含量分别降低22%~70%和29%~70%,使有机结合态Cu和Pb含量分别提高19%~56%和10%~40%,表明蚓粪可以显著降低土壤中Cu和Pb的活性。蚓粪降低土壤Cu、Pb活性的效果分别较对照物料高出0.58~9.6倍和0.16~3.4倍。稻秆蚓粪降低土壤Cu、Pb活性的效果分别比牛粪蚓粪高出11%~61%和1%~32%。综上所述,蚓粪降低土壤酸度和Cu、Pb活性的效果优于对照,牛粪蚓粪降低土壤酸度的效果较好,稻秆蚓粪降低土壤Cu、Pb活性的效果更佳。在降低土壤酸度和Cu、Pb活性方面,蚓粪中的总有机碳、微生物量碳、胡敏酸碳和富里酸碳均具有重要作用,并且蚓粪中有机碳的作用效率高于对照中等量的有机碳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号