首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 553 毫秒
1.
Drought and heat are among the main abiotic stresses causing severe damage to the cereal productivity when occur at reproductive stages. In this study, ten wheat cultivars were screened for combined heat and drought tolerance imposed at booting, heading, anthesis and post‐anthesis stages, and role of the foliage applied plant extracts was evaluated in improving the performance of differentially responding wheat cultivars under terminal heat and drought stresses. During both years, wheat crop was raised under ambient temperature and 70% water holding capacity (WHC) till leaf boot stage. The plant extracts (3% each) of sorghum, brassica, sunflower and moringa were foliage applied at booting, anthesis and post‐anthesis stage; and after one week of application of these plant extracts, combined heat and drought was imposed at each respective stage. Heat and drought stresses were imposed at each respective stage by placing pots in glass canopies with temperature of 4 ± 2°C above than the ambient temperature in combination with drought stress (35% WHC) until maturity. Combination of drought and heat stresses significantly reduced the performance of tested wheat cultivars; however, stress at the booting and heading stages was more damaging than the anthesis and post‐anthesis stages. Cultivars Mairaj‐2008 and Chakwal‐50 remained green with extended duration for grain filling, resulting in the maintenance of number of grains per spike and 100‐grain weight under stress conditions and thus had better grain yield and water‐use efficiency. However, in cultivars Fsd‐2008, and Shafaq‐2006, the combined imposition of drought and heat accelerated the grain filling rate with decrease in grain filling duration, grain weight and grain yield. Foliar application of all the plant extracts improved the wheat performance under terminal heat and drought stress; however, brassica extract was the most effective. This improvement in grain yield, water‐use efficiency and transpiration efficiency due to foliage applied plant extracts, under terminal heat and drought stress, was owing to better stay‐green character and accumulation of more soluble phenolics, which imparted stress tolerance as indicated by relatively stable grain weight and grain number. In crux, growing of stay‐green wheat cultivars with better grain filling and foliage application of plant extracts may help improving the performance of bread wheat under combined heat and drought stresses.  相似文献   

2.
高产冬小麦叶水势的变化特点与节水调控   总被引:5,自引:0,他引:5  
1986-1990四个年度研究结果显示,叶水势是变化困供水及生育时期而不同。黎明前叶水势随生育进程而变化,开花期出现明显低谷,与土壤水分动态变化不一致;午后叶水势具有规律的阶段性变化,且因不同水文年型出现间差异。叶水势与土壤含水量呈曲线关系,随生育进程,叶水势与深层土壤水分的相关性增强。开花期叶水势与产量关系最为密切。前控式节水栽培可通过渗透调节维持较高膨压而高产。提出了不同水文年型高产节水主要生  相似文献   

3.
高产冬小麦节水栽培的叶水势特征   总被引:7,自引:1,他引:7  
马瑞昆  蹇家利 《作物学报》1995,21(4):451-457
田间和盆栽试验研究表明叶水势日变化曲线因供水和生育时期而不同,黎明前叶水势(ψ^pre)开花期低谷十分明显,与土壤水分动态变化不一致,午后叶水势表现为前期低中期高后期渐降的变化特点,不同水文年型间存在差异,生育中后期叶水势与深层土壤水分含量的相关程度增强,开花期叶水势与产量关系最为密切。前期控水式的节水栽培在一定程度上降低生育期叶水势,可通过渗透调节功能和较高膨压的维持稳定高产。  相似文献   

4.
To study the effects of early drought priming at 5th‐leaf stage on grain yield and nitrogen‐use efficiency in wheat (Triticum aestivum L.) under post‐anthesis drought and heat stress, wheat plants were first exposed to moderate drought stress (drought priming; that is, the leaf water potential reached ca. ?0.9 MP a) at the 5th‐leaf stage for 11 days, and leaf water relations and gas exchange rates, grain yield and yield components, and agronomic nitrogen‐use efficiency (ANUE ) of the primed and non‐primed plants under post‐anthesis drought and heat stress were investigated. Compared with the non‐primed plants, the drought‐primed plants possessed higher leaf water potential and chlorophyll content, and consequently a higher photosynthetic rate during post‐anthesis drought and heat stress. Drought priming also resulted in higher grain yield and ANUE in wheat under post‐anthesis drought and heat stress. Drought priming at vegetative stage improves carbon assimilation and ANUE under post‐anthesis drought and heat stress and their combination in wheat, which might be used as a field management tool to enhance stress tolerance of wheat crops to multiple abiotic stresses in a future drier and warmer climate.  相似文献   

5.
With increasingly erratic rainfall patterns particularly in drought‐prone production systems, the capacity of plants to recover productively from drought spells becomes an important feature for yield stability in rainfed agriculture. Consequently, effects of water management at the stem elongation stage on partitioning and remobilization of dry matter, alteration in photosynthesis and water‐use efficiency (WUE), and yield components of wheat plants were studied in a glasshouse pot experiment. The plants were subjected to three soil moisture regimes: well watered during all phenological stages (WW), drought affected during stem elongation and post‐anthesis stages (DD) and drought affected during stem elongation and rewatered at post‐anthesis stage (DW). Total dry weight substantially decreased by both drought treatments. However, DD plants allocated relatively higher assimilates to roots whereas DW plants remobilized them to the grains. Drought applications resulted in a decrease of grain yield and thousand grain weight while reduction was more pronounced in DD treatment. Relative contribution of post‐anthesis photosynthesis to dry matter formation in grain was higher in WW treatment (72.6 %) than DD (68.5 %) and DW (68.2 %) treatments. Photosynthetic rate, gas exchange and transpiration decreased whereas leaf (photosynthetic) and plant level WUE increased with drought applications. However, all these parameters were rapidly and completely reversed by rewatering. Our findings showed that partitioning of dry weight to grain increases with rewatering of wheat plants subjected to drought during stem elongation phase, but the relative contributions of remobilization of stem reserves and post‐anthesis photosynthesis to grain did not change. Moreover, rewatering of plants at booting stage after a drought period lead to full recovery in photosynthesis and WUE, and a significant although partial recovery of yield components, such as grain yield, TGW and harvest index.  相似文献   

6.
Terminal drought is threatening the wheat productivity worldwide, which is consumed as a staple food by millions across the globe. This study was conducted to examine the influence of foliage‐applied stress signalling molecules hydrogen peroxide (H2O2; 50, 100, 150 μm ) and nitric oxide donor sodium nitroprusside (SNP; 50, 100, 150 μm ) on resistance against terminal drought in two bread wheat cultivars Mairaj‐2008 and BARS‐2009. These stress signalling molecules were applied at anthesis stage (BBCH 61); drought was then imposed by maintaining pots at 35% water holding capacity. Terminal drought caused significant reduction in grain yield of both tested bread wheat cultivars; however, foliage application of both stress signalling molecules at either concentration improved the performance of both bread wheat cultivars. Maximum improvement in 100‐grain weight (12.2%), grains per spike (19.7%), water‐use efficiency (WUE; 19.8%), chlorophyll content index (10.7%), total soluble phenolics (21.6%) and free leaf proline (34.3%), and highest reduction in leaf malondialdehyde contents (20.4%) was recorded when H2O2 was foliage‐applied at 100 μm . Foliage application of SNP enhanced the grains per spike, 100‐grain weight and grain yield by 14.9%, 11.3% and 20.1%, respectively, than control. The foliage‐applied stress signalling molecules improved the accumulation of soluble phenolics, proline and glycine betaine with simultaneous reduction in malondialdehyde contents, which enabled wheat plants to sustain the biological membranes under stress resulting in better stay green (high chlorophyll contents) under drought. This helped improving the grain number, grain weight, grain yield, WUE and transpiration efficiency. In crux, foliage‐applied H2O2 and SNP, at pre‐optimized rate, may be opted to lessen the drought‐induced yield losses in bread wheat in climate change conditions.  相似文献   

7.
土壤水分胁迫下小麦叶片的渗透调节与膨压维持   总被引:7,自引:0,他引:7  
李德全  邹琦 《华北农学报》1991,6(4):100-105
两年的试验结果表明,在土壤缓慢脱水和长期水分胁迫下,四个小麦品种叶片均产生渗透调节,孕穗期和灌浆期渗透调节能力较强,渗透调节的幅度为0.40~0.64MPa,抗旱性强的品种大于抗旱性弱的品种.由于渗透调节在土壤含水量60%左右或轻度胁迫下,叶片膨压基本不变.五个生育期四个处理水平叶水势与膨压回归分析,从水势每下降一个单位,膨压降低的单位数看,昌乐5号(0.146)<山农587(0.151)<烟农15(0.162)<济南13(0.240),抗旱性强的品种由于渗透调节能力强,膨压降低的单位数小,维持膨压的程度高.  相似文献   

8.
The allelopathic water extracts (AWEs) may help improve the tolerance of crop plants against abiotic stresses owing to the presence of the secondary metabolites (i.e., allelochemicals). We conducted four independent experiments to evaluate the influence of exogenous application of AWEs (applied through seed priming or foliage spray) in improving the terminal heat and drought tolerance in bread wheat. In all the experiments, two wheat cultivars, viz. Mairaj‐2008 (drought and heat tolerant) and Faisalabad‐2008 (drought and heat sensitive), were raised in pots. Both wheat cultivars were raised under ambient conditions in the wire house till leaf boot stage (booting) by maintaining the pots at 75% water‐holding capacity (WHC). Then, managed drought and heat stresses were imposed by maintaining the pots at 35% WHC, or shifting the pots inside the glass canopies (at 75% WHC), at booting, anthesis and the grain filling stages. Drought stress reduced the grain yield of wheat by 39%–49%. Foliar application of AWEs improved the grain yield of wheat by 26%–31%, while seed priming with AWEs improved the grain yield by 18%–26%, respectively, than drought stress. Terminal heat stress reduced the grain yield of wheat by 38%. Seed priming with AWEs improved the grain yield by 21%–27%; while foliar application of AWEs improved the grain yield by 25%–29% than the heat stress treatment. In conclusion, the exogenous application of AWEs improved the stay green, accumulation of proline, soluble phenolics and glycine betaine, which helped to stabilize the biological membranes and improved the tolerance against terminal drought and heat stresses.  相似文献   

9.
To investigate the interactive effects of drought, heat and elevated atmospheric CO2 concentration ([CO2]) on plant water relations and grain yield in wheat, two wheat cultivars with different drought tolerance (Gladius and Paragon) were grown under ambient and elevated [CO2], and were exposed to post‐anthesis drought and heat stress. The stomatal conductance, plant water relation parameters, abscisic acid concentration in leaf and spike, and grain yield components were examined. Both stress treatments and elevated [CO2] reduced the stomatal conductance, which resulted in lower leaf relative water content and leaf water potential. Drought induced a significant increase in leaf and spike abscisic acid concentrations, while elevated [CO2] showed no effect. At maturity, post‐anthesis drought and heat stress significantly decreased the grain yield by 21.3%–65.2%, while elevated [CO2] increased the grain yield by 20.8% in wheat, which was due to the changes of grain number per spike and thousand grain weight. This study suggested that the responses of plant water status and grain yield to extreme climatic events (heat and drought) can be influenced by the atmospheric CO2 concentration.  相似文献   

10.
Besides assimilation, plant water relations are important aspects of physiological basis of productivity of crops in water limited environment. The relationships of photosynthesis rate, transpiration rate, leaf water potential and stomatal conductance with photosynthetically active radiation (PAR) and vapour pressure deficit (VPD) during pre-flowering (panicle initiation to ear emergence) and grain filling (from anthesis to maturity) stages of a sorghum hybrid (cv. CSH-6 ) grown under rainfed conditions were studied. Photosynthesis rate declined when PAR was above 1300 μmol m−2 s−1. during both the growth stages. Higher transpiration rate during grain filling stage at higher PAR caused the transpiration efficiency to be lower than during pre-flowering stage when PAR was above 1200 μmol m−2s−1.Leaf water potential and stomatal conductance decreased with increase in PAR. Leaf water potential was higher during pre-flowering than during grain filling stage but maximum photosynthesis rate was similar during both the growth stages. Changes in VPD did not qualitatively alter the relationships of the physiological variables with PAR.
Decreasing photosynthesis rate and LWP at high PAR suggest that photosynthesis rate was limited by low leaf water potential when PAR was optimal, and by low PAR even when leaf water potential was high in rainfed sorghum during rainy season.  相似文献   

11.
Scarcity of water is a severe constraint, which hinders the wheat productivity worldwide. However, foliage application of osmoprotectants may be useful in reducing the drought‐induced yield losses in wheat (Triticum aestivum L.). In this study, potential of foliage applied osmoprotectants (proline, gamma‐aminobutyric acid) in improving the performance of bread wheat against terminal drought was evaluated. Both proline and gamma‐aminobutyric acid (GABA) were foliage applied at 50, 100 and 150 mg/L at anthesis stage (BBCH‐identification code‐ 61), in two bread wheat cultivars viz. Mairaj‐2008 and BARS‐2009. After 1 week of foliage application of these osmoprotectants, drought was imposed by maintaining the pots at 35% water holding capacity. Imposition of drought caused significant reduction in the grain yield of both tested bread wheat cultivars; nonetheless, foliage applied osmoprotectants at either concentration improved the chlorophyll contents, accumulation of proline, glycinebetaine and total soluble phenolics and reduced the malondialdehyde contents, which resulted in better stay green, maintenance of grain weight and grain number under drought stress, thus resulting in better grain yield, water‐use efficiency and transpiration efficiency in both wheat cultivars. However, foliage applied proline at 150 mg/L, and GABA at 100 mg/L was most effective than other concentrations of these osmoprotectants. Performance of cultivar Mairaj‐2008 was quite better than cultivar BARS‐2009. In crux, foliar application of proline and GABA at pre‐optimized rate can be opted as a shotgun approach to improve the performance of wheat under terminal drought.  相似文献   

12.
There is a lack of studies that have investigated grain yield, its components and photosynthesis in late stages of wheat growth, giving us insufficient understanding of how these factors interact to contribute to yield during this period. As a result, three field experiments were carried out examining 20 winter wheat genotypes of diverse origins under irrigated, terminal drought and dryland conditions in the southern Idaho. Our objective was to evaluate the interaction between post‐anthesis physiological traits, especially leaf‐level photosynthetic capacity, senescence and yield components on grain yield in different moisture regimes. Genotype differences were found in leaf‐level photosynthesis and senescence, canopy temperature depression, grain yield and yield components in each water regime. Grain yield was closely associated with traits related to grain numbers. In all three moisture regimes, positive correlations were observed between grain yield and photosynthesis that were dependent on the timing or physiological growth stage of the photosynthetic measurement: highly significant correlations were found in the mid‐ and late grain filling stages, but no correlations at anthesis. Consistent with these findings, flag leaf senescence at the late grain filling stage was negatively correlated with grain yield and photosynthetic rate (under terminal drought and dryland conditions). These findings provided evidence that grain yield was sink‐limited until the final stages of growth, at which time sustained photosynthesis and delayed senescence were critical in filling grain. Because the trends were consistent in moisture sufficient and deficient conditions, the results suggest that late‐season photosynthesis and delayed leaf senescence are driven by the size of the reproductive carbon sink, which was largely governed by factors affecting grain numbers.  相似文献   

13.
Activities of nitrate reductase, glutamine synthetase along with rate of photosynthesis, chlorophyll content, soluble protein, relative water content, transpiration and diffusion resistance were estimated in wheat cv. C306 at anthesis stage under irrigated and moisture-stress condition and two levels (0.1 and 1.0 ppm) of homobrassinolide application. Yield and yield attributing parameters were recorded at harvest. Moisturestress adversely affected relative water content, transpiration, net photosynthesis, nitrate reductase and glutamine synthetase activity, chlorophyll and soluble protein content.
Homobrassinolide application increased leaf relative water content and transpiration and decreased diffusion resistance in water-stressed and recovered plants. Homobrassinolide application also had positive effect on nitrate reductase and glutamine synthetase activities, photosynthesis, chlorophyll and total soluble protein content in stressed, irrigated and revived plants. The beneficial effect was also observed on grain yield and yield attributing parameters such as grain number per ear, 1000 grain weight, ear number per plant and harvest index. It was concluded that homobrassinolide induced promotion in metabolic activity was mediated through increased enzyme protein synthesis as well as uptake of water resulting in enhanced relative water content under moisture-stress.  相似文献   

14.
王维  张建华  杨建昌  朱庆森 《作物学报》2004,30(10):1019-1025
选用春性小麦品种扬麦158和扬麦11为材料,设置出穗后高氮和正常氮两个水平及土壤水分胁迫处理(WS),以正常浇水为对照(WW),研究适度土壤干旱对贪青迟熟小麦籽粒灌浆和茎鞘贮藏性碳水化合物分配的影响。结果表明,在始穗期施用过量氮肥(HN)导致小麦贪青迟熟,主要表现为灌浆速率和产量降低,茎鞘中滞留大量贮藏性糖。在灌浆  相似文献   

15.
Drought tolerant and susceptible cultivars of wheat, C-306 and Kalyan sona, growing under non-stressed and water-stressed conditions, were sprayed with benzyladenine (BA) at 70 days after sowing (DAS). Observations recorded at 5, 10, 15, 20 and 25 days after spraying revealed that BA increased the rate of transpiration (TR) in C-306 under non-stressed conditions. However, under water stress, the increase was significant only after 5 days of BA spraying. In Kalyan sona BA treatment either decreased TR or did not exhibit significant increase under non-stressed conditions, but caused significant increase in TR under water stress. The increase in TR was elicited through enhanced stomatal opening. Water potential, osmotic potential and pressure potential of both genotypes decreased on account of water stress. The effect of BA was not perceptible on restoration of leaf water potential (LWP) or its components. The effect of BA was possibly confined to stomatal behaviour and transpiration.  相似文献   

16.
In a field trial involving four tepary lines (Phaseolus acutifolius A. Gray), NE#8A and NE#19 produced higher grain yield than NE#5 and NE#7 under both well watered and drought conditions. However, NE#8A is considered more resistant than NE#19 in terms of drought sensitivity index. Greenhouse investigations on intact plants indicated no differences among the four lines in leaf and stem dry mass, and leaf area. Root depth did not strictly differentiate lower‐yielding from higher‐yielding lines. In contrast to lower‐yielding lines, however, plants of higher‐yielding ones allocated greater dry matter (DM) in roots in response to imposed water stress. Distinctly, NE#19 had the greatest root : shoot (R : S) while NE#8A characterized by high net photosynthesis. Both NE#8A and NE#19 showed reduced leaf area : root dry mass ratio, stomata conductance and transpiration rate. Consequently, these two lines showed no significant changes in leaf relative water content while photosynthetic water‐use‐efficiency increased in response to water stress. Calli derived from leaf and root tissues of higher‐yielding lines exhibited low initial osmotic potential (ψs). These calli did not show alterations in ψs, DM% and relative growth rate (RGR) when subjected to water stress. Although leaf‐ and root‐derived calli of lower‐yielding lines exhibited osmotic adjustment, they suffered water stress in terms of elevated DM and reduced RGR. Overall, results suggest that dehydration‐avoidance mechanisms conditioned by increased root mass and stomata resistance accompanied with low initial cellular ψs sustained high grain yield of tepary under limited water supply.  相似文献   

17.
Unpredictable drought affects growth and yield of dryland cowpea ( Vigna unguiculata [L.] Walp.) during rainy season. With the objective of identifying compensatory growth responses after relief of water stress, pot-grown plants (cv. C-752) were water-stressed at flowering, and physiological responses, short term dry matter partitioning upon relief of water stress, and productivity at maturity were studied. Water stress decreased, to varying degrees, leaf water potential, stomatal conductance, photosynthesis rate and transpiration rate. Recovery in assimilation lagged behind that in water relations. Assimilate supply seemed to be limiting early pod growth upon relief of water stress due to low photosynthesis rate, reduced leaf area per pod, and increased partitioning to leaf expansion. However, later pod growth was not limited by assimilate supply and final dry matter per pod was similar in both non-stressed and stress-affected plant. Cowpea exhibited the following growth responses during pod-fill stage upon relief of water stress: 1. increase in leaf area, 2. shift in dry matter partitioning in favour of leaf expansion, 3. extended green leaf duration, and 4. increase in pod number. These partially compensating physiological responses probably ensure reasonable productivity of dryland cowpea during rainy season.  相似文献   

18.
Limited water availability hampers the sustainability of crop production. Exogenous application of glycinebetaine (GB) and salicylic acid (SA) has been found very effective in reducing the adverse effects of water scarcity. This study was conducted to examine the possible role of exogenous GB and SA application in improving the growth and water relations of hybrid sunflower ( Helianthus annuus L.) under different irrigation regimes. There were three levels of irrigation, viz. control (normal irrigations), water stress at budding stage (irrigation missing at budding stage) and water stress at flowering stage (FS) (irrigation missing at FS). GB and SA were applied exogenously at 100 and 0.724 m m respectively, each at the budding and FS. Control plants did not receive application of GB and SA. Water stress reduced the leaf area index (LAI), leaf area duration (LAD), crop growth rate (CGR), leaf relative water contents, water potential, osmotic potential, turgor pressure, achene yield and water use efficiency. Nevertheless, exogenous GB and SA application appreciably improved these attributes under water stress. However, exogenous GB application at the FS was more effective than other treatments. Net assimilation rate was not affected by water stress as well as application of GB and SA. The protein contents were considerably increased by water stress at different growth stages, but were reduced by exogenous GB and SA application. The effects of water stress and foliar application of GB were more pronounced when applied at FS than at the budding stage. Moreover, exogenous GB application was only advantageous under stress conditions.  相似文献   

19.
Carbon isotope discrimination (Δ) and ash content (ma) have been proposed as indirect selection criteria for grain yield in wheat. The associations between Δ, ma and grain yield were found, however, to depend highly on the environmental conditions, the organ sampled and the time of sampling. In this study, carried out in the warm conditions of the Peninsular Zone of India, the relationship between Δ, ma and yield was studied in 30 bread and durum wheat cultivars under residual soil moisture stress (RSMS), post‐anthesis water stress (PAWS) and well‐watered (WW) conditions. Both Δ and ma were analysed in young seedlings (four‐leaf stage), leaves at anthesis and grain at maturity. Ash content was also evaluated in leaves at booting stage and maturity. Grain Δ was lower under PAWS and RSMS than under WW, while seedling and leaf Δ did not significantly differ among water regimes. Grain yield was positively correlated to grain Δ under PAWS and negatively correlated to grain ma under RSMS. A significant positive correlation was noted under RSMS and WW treatments between maLm and grain yield. Ash content in leaf at maturity consequently appears to be a useful indirect selection criterion in environments where Δ does not show any correlation with yield. The results highlight the potential of Δ and ma as indirect selection criteria for wheat yield in the conditions of the Peninsular Zone of India.  相似文献   

20.
Carbon isotope discrimination (Δ) has been proposed as an indirect selection criterion for transpiration efficiency and grain yield in wheat. However, because of high cost for Δ analysis, attempts have been made to identify alternative screening criteria. Ash content (ma) has been proposed as an alternative criterion for Δ in wheat and barley. A pot experiment was conducted to analyse the relationship between Δ, mineral content and gas exchange parameters in seedlings and leaves of bread wheat (Triticum aestivum L.). Plants of 10 genotypes were cultivated under three different water regimes corresponding to moderate (T3), intermediate (T2) and severe drought (T1) stress obtained by maintaining soil humidity at 75 %, 55 % and 45 % of the humidity at field capacity respectively. Δ and ma in seedlings and leaves showed significant differences among the three water treatments. Significant positive correlations were found between Δ and ma in seedlings and leaves at elongation and anthesis stages in severe drought stress (T1). Δ was negatively associated with potassium (K) content in intermediate drought stress (T2) and positively with magnesium (Mg) content in T2 and T3 (moderate drought stress) in flag leaf at anthesis. There were negative correlations between Δ and single‐leaf intrinsic water‐use efficiency (WT) in T2 and T3 at anthesis stage. Stronger positive associations were noted between Δ and stomatal conductance (gs) in T1 and T2 than in T3 at anthesis. These results suggested that Δ is a good trait as an indirect selection criterion for genotypic improvement in transpiration efficiency, while ma is a possible alternative criterion of Δ in wheat vegetative organs, especially in stressed environments. Significant association was found between Δ and K, Mg and Ca contents that would merit being better investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号