首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The intensive winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) cropping systems in the North China Plain (NCP) rely on the heavy use of mineral nitrogen (N) fertilizers. As the fertigated area of wheat and maize in the NCP has grown rapidly during recent years, developing N management strategies is required for sustainable wheat and maize production. Field experiments were conducted in Hebei Province during three consecutive growth seasons in 2012–2015 to assess the influence of different N fertigation rates on N uptake, yield, and nitrogen use efficiency [NUE: recovery efficiency (REN) and agronomic efficiency (AEN)]. Five levels of N application, 0 (FN0), 40 (FN40%), 70 (FN70%), 100 (FN100%), and 130% (FN130%) of the farmer practice rate (FP: 250 kg N ha?1 and 205.5 kg N ha?1 for wheat and maize, respectively), corresponding to 0, 182.2, 318.9, 455.5, and 592.2 kg N ha?1 y?1, respectively, were tested. Nitrogen in the form of urea was dissolved in irrigation water and split into six and four applications for wheat and maize, respectively. In addition, the treatment “drip irrigation + 100% N conventional broadcasting” (DN100%) was also conducted. All treatments were arranged in a randomized complete block design with three replications. The results revealed the significant influence of both N fertigation rate and N application method on grain yield and NUE. Compared to DN100%, FN100% significantly increased the 3‐year averaged N recovery efficiency (REN) by 0.09 kg kg?1 and 0.04 kg kg?1, and the 3‐year averaged N agronomic efficiency (AEN) by 2.43 kg kg?1 and 1.62 kg kg?1 for wheat and maize, respectively. Among N fertigation rates, there was no significant increase in grain yield in response to N applied at a greater rate than 70% of FP due to excess N accumulation in vegetative tissues. Compared to FN70%, FN100%, and FN130%, FN40% increased the REN by 0.17–0.57 kg kg?1 and 0.03–0.34 kg kg?1and the AEN by 4.60–27.56 kg kg?1 and 2.40–10.62 kg kg?1 for wheat and maize, respectively. Based on a linear‐response relationship between the N fertigation rate and grain yield over three rotational periods it can be concluded that recommended N rates under drip fertigation with optimum split applications can be reduced to 46% (114.6 kg N ha?1) and 58% (116.6 kg N ha?1) of FP for wheat and maize, respectively, without negatively affecting grain yield, thereby increasing NUE.  相似文献   

2.
Abstract

The logistic model has been used extensively to describe crop response to applied nutrients and water availability. It contains three parameters that can be estimated from data by regression analysis. One of the parameters refers to the reference state of the system, either at zero applied nitrogen (N) or applied N to reach 50% of maximum yield (N 1/2). A negative value of N 1/2 indicates that the soil already contains more than enough N to reach 50% of maximum yield. In the present analysis, data from a field study at Watkinsville, Georgia, which measured response of corn [Zea mays (L.) Pers.] to applied N following plowunder of grass sod is used to verify this point. It was found that N 1/2 shifted from –50 kg ha?1 in the first year to +25 kg ha?1 after several years. Availability of N from decaying vegetation declined exponentially with time. The time constant for decomposition and nitrification was 2 years. Total amount of N released from the vegetation was estimated as 190 kg ha?1.  相似文献   

3.
More than 80% of broiler (chicken, Gallus gallus domesticus) litter produced annually is applied as a plant nutrient source, particularly for nitrogen (N) and phosphorus (P), to pastures. However, N losses during the process of litter N mineralization limit availability of N to crops. This study determined broiler litter N and P availability and apparent use efficiency (ANUE, APUE) to bermudagrass [Cynodon dactylon] during the first year after litter application. Treatments consisted of three litter rates (3.3, 6.6, and 13.2 Mg ha?1), a commercial N fertilizer rate that provided 358 kg N ha?1 as ammonium nitrate (NH4NO3), and an untreated control. Results showed bermudagrass dry-matter (DM) yield increased significantly with increase in litter rate. Commercial N fertilizer produced significantly greater DM yield than 3.3 and 6.6 Mg ha?1 of litter but produced less DM yield than 13.2 Mg ha?1 of litter. The overall average of ANUE from litter was 39% compared to the 59% from fertilizer. The mean litter N availabilities to bermudagrass during the first year after litter application were 48.5, 112.5, and 222 kg ha?1, corresponding to the 3.3, 6.6, and 13.2 Mg ha?1 litter rates, respectively. The overall mean of litter N mineralization, which was surface broadcast to bermudagrass plots during the first year, was 59.5% of the total litter N applied. The APUE, averaged across the rate and locations, was 13.6%, which was quite smaller than the ANUE of 39%. This finding of small APUE also validates the potential for P accumulation in soil after long-term animal manure application.  相似文献   

4.
Nitrogen (N) deposition has been increasing in alpine ecosystems, but its fate in soils and plants remains unclear. We assumed that the increased N load will be efficiently retained in alpine ecosystems but that the degree of N use efficiency changes with elevation. Thus, we performed a 3‐year 15N tracer experiment, in which we added 1 g m?2 of either NH415NO3 or 15NH4NO3 fertilizer to a plot of 1 m2 in size at three elevations. Composite soil samples and aboveground plant material from lichens, dwarf shrubs, and graminoids were collected annually for three years and analyzed for their 15N accrual. We found a cumulative and plateauing rise in 15N concentration in soils and plants at all sites. However, overall recovery of the tracer decreased with time, amounting to 71% of fertilizer recovered in the soils in the first year, 69% recovered in soils and plants in the second year, and 37% in soils and plants in the third year. Moreover, the fertilizer use efficiency varied among fertilizer types and plant functional types. This utilization pattern appears to be modulated by elevation.  相似文献   

5.
ABSTRACT

Grain protein content is one of the most important quality constraints for bread wheat (Triticum aestivum L.) production in eastern Canada. A field experiment was conducted for two years (1999 and 2000) on the Central Experimental Farm, Ottawa, Canada, to study whether split application of nitrogen (N) fertilizer improved grain protein content and nitrogen-use efficiency (NUE). Two cultivars (‘Celtic,’ as N-responsive and ‘Grandin’, as N-non-responsive) were grown using three different N doses and application methods: (1) 100 kg N ha?1 as NH4NO3, soil-applied at seeding with 15N2-labeled NH4NO3 to microplots, (2) 60 kg N ha?1 soil-applied at seeding plus 40 kg N ha?1 foliar-applied at the boot stage with 15N2-labeled urea to microplots, and (3) 90 kg N ha?1 as soil-applied at seeding plus 10 kg N ha?1 foliar-applied at the boot stage with 15N2-labeled urea to microplots. Plants were sampled at heading and maturity. While dry-matter production and grain yields were not affected by the treatments in either year, N application methods influenced tissue N concentration and NUE. In 1999, extended drought stress led to significant yield reduction; in 2000, foliar application of 10 kg N ha?1 at the boot stage significantly increased grain N concentration when grain protein was under the limit for bread quality, suggesting that later-applied N can contribute to grain protein content. At maturity, the average NUE was 22.3% in 1999 and 34.5% in 2000, but was always greater when all N was applied at seeding (42.5%) than when N was foliar-applied at the boot stage (18.5% to 24.5%). We conclude that application of a small amount of fertilizer N at the boot stage can improve the bread-making quality of spring wheat by increasing grain protein concentration.  相似文献   

6.
Two field experiments were conducted to optimize the days for decomposition of dhaincha (Sesbania aculeata) with different nitrogen (N) levels and scheduling in transplanted rice in calcareous soil in a split-plot design with three replications. Incorporation of dhaincha one day before transplanting (1-DBT) obviated the need for allowing N gap. Nitrogen scheduling as 50% at active tillering + 40% at panicle initiation + 10% at flowering recorded the maximum grain yield (59.05 q ha?1) and N–?phosphorus (P)–?potassium (K) uptake. The different N fractions in post-harvest soil were in the order of total N> total hydrolyzable N> non-hydrolyzable N> exchangeable ammonium (NH4+)–?N and nitrate (NO3?)–?N. Thus, in calcareous soil, rice may be transplanted immediately after burying the dhaincha without any time gap along with 80 kg N ha?1. Also, application of nitrogenous fertilizer in three splits, delaying N application until active tillering stage, is beneficial for improving rice productivity.  相似文献   

7.
Abstract. Large nitrogen (N) inputs to outdoor pig farms in the UK can lead to high nitrate leaching losses and accumulation of surplus N in soil. We investigated the residual effects of three contrasting outdoor pig systems as compared to an arable control on nitrate leaching and soil N supply for subsequent spring cereal crops grown on a sandy loam soil during 1997/98 and 1998/99 harvest seasons. Previously, the pig systems had been stocked for 2 years from October 1995 and were designated current commercial practice (CCP, 25 sows ha?1 on stubble), improved management practice (IMP, 18 sows ha?1 on undersown stubble) and best management practice (BMP, 12 sows ha?1 on established grass). Estimated soil N surpluses by the end of stocking in September 1997 were 576, 398, 265 and 27 kg ha?1 N for the CCP, IMP, BMP and continuous arable control, respectively. Nitrate leaching losses in the first winter were 235, 198, 137 and 38 kg ha?1 N from the former CCP, IMP and BMP systems and the arable control, respectively. These losses from the former pig systems were equivalent to 41–52% of the estimated soil N surpluses. Leaching losses were much smaller in the second winter at 21, 14, 23 and 19 kg ha?1 N, respectively. Cultivation timing had no effect (P>0.05) on leaching losses in year 1, but cultivation in October compared with December increased nitrate leaching by a mean of 14 kg ha?1 N across all treatments in year 2. Leaching losses over the two winters were correlated (P<0.001) with autumn soil mineral N (SMN) contents. In both seasons, spring SMN, grain yields and N offtakes at harvest were similar (P>0.05) for the three previous pig systems and the arable control, and cultivation timing had no effect (P>0.05) on grain yields and crop N offtake. This systems study has shown that nitrate leaching losses during the first winter after outdoor pig farming can be large, with no residual available N benefits to following cereal crops unless that first winter is much drier than average.  相似文献   

8.
Abstract

In three field trials in southern Norway, Italian ryegrass (Lolium multiflorum Lam.), white clover (Trifolium repens L.) or subterranean clover (T. subterraneuni L.) was undersown in spring grain at three N fertilizer rates and ploughed under in late October as a green manure for a succeeding spring grain crop. The content of topsoil (0-20 cm) mineral nitrogen was determined during the growth of the grain crop, after grain harvest and after ploughing. In addition, mineralization of nitrogen and carbon was measured in green-manured soil incubated at 15°C and controlled moisture conditions. During grain crop growth, ryegrass tended to reduce soil mineral N compared with the other treatments. After grain harvest, in a small-plot experiment where extra nitrate was added, ryegrass reduced soil nitrate N (0-18 cm) from 4.2 to 0.4 g m?2 within 13 days, while the clovers had negligible effect compared with bare soil. Up to 9.4 g N m?2 was present in above-plus below-ground ryegrass biomass at ploughing. In incubated ryegrass soil, there was a temporary net N immobilization of up to 0.9 g N m?2 as compared with unamended soil. In clover-amended soil, mineral N exceeded that in unamended soil by up to 5 g N m?2.  相似文献   

9.
Abstract

The rate and timing of manure application when used as nitrogen (N) fertilizer depend on N‐releasing capacity (mineralization) of manures. A soil incubation study was undertaken to establish relative potential rates of mineralization of three organic manures to estimate the value of manure as N fertilizer. Surface soil samples of 0–15 cm were collected and amended with cattle manure (CM), sheep manure (SM), and poultry manure (PM) at a rate equivalent to 200 mg N kg?1 soil. Soil without any amendment was used as a check (control). Nitrogen‐release potential of organic manures was determined by measuring changes in total mineral N [ammonium‐N+nitrate‐N (NH4 +–N+NO3 ?–N)], NH4 +–N, and accumulation of NO3 ?–N periodically over 120 days. Results indicated that the control soil (without any amendment) released a maximum of 33 mg N kg?1soil at day 90, a fourfold increase (significant) over initial concentration, indicating that soil had substantial potential for mineralization. Soil with CM, SM, and PM released a maximum of 50, 40, and 52 mg N kg?1 soil, respectively. Addition of organic manures (i.e., CM, SM, and PM) increased net N released by 42, 25, and 43% over the control (average). No significant differences were observed among manures. Net mineralization of organic N was observed for all manures, and the net rates varied between 0.01 and 0.74 mg N kg?1 soil day?1. Net N released, as percent of organic N added, was 9, 10, and 8% for CM, SM, and PM. Four phases of mineralization were observed; initial rapid release phase in 10–20 days followed by slow phase in 30–40 days, a maximum mineralization in 55–90 days, and finally a declined phase in 120 days. Accumulation of NO3 ?–N was 13.2, 10.6, and 14.6 mg kg?1 soil relative to 7.4 mg NO3 ?–N kg?1 in the control soil, indicating that manures accumulated NO3 ?–N almost double than the control. The proportion of total mineral N to NO3 ?–N revealed that a total of 44–61% of mineral N is converted into NO3 ?–N, indicating that nitrifiers were unable to completely oxidize the available NH4 +. The net rates of mineralization were highest during the initial 10–20 days, showing that application of manures 1–2 months before sowing generally practiced in the field may cause a substantial loss of mineralized N. The rates of mineralization and nitrification in the present study indicated that release of inorganic N from the organic pool of manures was very low; therefore, manures have a low N fertilizer effect in our conditions.  相似文献   

10.
Nitrogen balances and total N and C accumulation in soil were studied in reseeded grazed grassland swards receiving different fertilizer N inputs (100–500 kg N ha?1 year?1) from March 1989 to February 1999, at an experimental site in Northern Ireland. Soil N and C accumulated linearly at rates of 102–152 kg N ha?1 year?1 and 1125–1454 kg C ha?1 year?1, respectively, in the top 15 cm soil during the 10 year period. Fertilizer N had a highly significant effect on the rate of N and C accumulation. In the sward receiving 500 kg fertilizer N ha?1 year?1 the input (wet deposition + fertilizer N applied) minus output (drainflow + animal product) averaged 417 kg N ha?1 year?1. Total N accumulation in the top 15 cm of soil was 152 kg N ha?1 year?1. The predicted range in NH3 emission from this sward was 36–95 kg N ha?1 year?1. Evidence suggested that the remaining large imbalance was either caused by denitrification and/or other unknown loss processes. In the sward receiving 100 kg fertilizer N ha?1 year?1, it was apparent that N accumulation in the top 15 cm soil was greater than the input minus output balance, even before allowing for gaseous emissions. This suggested that there was an additional input source, possibly resulting from a redistribution of N from lower down the soil profile. This is an important factor to take into account in constructing N balances, as not all the N accumulating in the top 15 cm soil may be directly caused by N input. N redistribution within the soil profile would exacerbate the N deficit in budget studies.  相似文献   

11.
Abstract

The annual nitrogen (N) budget was measured in a soybean-cultivated upland field during the first year after conversion from a paddy field on gray lowland soil, which is typically found on the Sea of Japan side of northern Japan. Forage rice was cultivated on lysimeter fields for 4 consecutive years with applications of chemical fertilizer, immature compost, or mature compost (the control, immature compost, and mature compost plots, respectively), and then the fields were converted to upland fields for soybean (Glycine max [L.] Merrill cultivar Ryuho) cultivation. Input (seed, bulk N deposition, and symbiotic dinitrogen [N2] fixation) and output (harvested grain, leached N via drainage water, and nitrous oxide emission) N flows were measured, and the field N budget was estimated from the difference between the input and output. The soybean plants in the immature and mature compost plots grew well and had higher yields (498–511 g m)?2) compared to the control plot (410 g m)?2). Total N accumulation in the soybean plants derived from N2 fixation (g N m)?2) in the mature compost plot (27.7) was higher than those in the control (18.1) and immature compost plots (19.9). Percentages of soybean N accumulation derived from N2 fixation ranged from 53% to 74%. N derived from symbiotic N2 fixation accounted for more than 90% of the total N input, whereas harvested grain accounted for approximately 85% of the total N output. N leaching mainly occurred during the fallow period, accounting for 13–15% of the total N output. The annual N budgets were negative (?10.0,?14.2, and ?6.4 g N m)?2 year)?1 for the control, immature compost, andmature compost plots, respectively). The Nloss from the immature compost plot was higher than that of the control plot, because the N output in harvested grain was higher, and the N input by N2 fixation was similar between plots. While the N loss from the mature compost plot was lower than that of the control plot because the N output in harvested grain was higher, as was the case in the immature compost plot, the N input by N2 fixation was also higher. Preceding compost application—whether immature or mature compost—to paddy fields increased the subsequent soybean yield during the first year after conversion. This result suggests that N loss and the following decrease in soil N availability in the field could be mitigated by increased N2 fixation resulting from mature compost application with an appropriate application practice.  相似文献   

12.
The purpose of this study was to investigate the response of δ15N in herbage and cattle tail switch hair to long-term grazing pressure on a rough fescue grassland (Festuca campestris Rydb.) near Stavely, Alberta, Canada. Cattle have grazed the paddocks from 15 May to 15 November annually since 1949. Stocking rates were 0, 2.4 and 4.8 animal unit months ha?1 for non-grazing (Control), moderate grazing (MG) and heavy grazing (HG), respectively. Green standing crop (GSC) was sampled monthly throughout the grazing season in 2007. The GSC was fractioned into neutral detergent fiber (NDF), acid detergent fiber (ADF), and their total nitrogen (TN) concentration and δ15N values in NDF, ADF and GSC were determined. Tail switch hair samples from cows (>2 years old) and calves (<1 year) were collected at the end of the grazing season in 2007 and 2008 and analysed for δ15N values. The TN concentrations in NDF and δ15N values in herbage NDF and ADF fractions were higher (P?15N values in tail hair also decreased (P?15N values in tail hair increased with herbage δ15N values. The δ15N values in tail hair were enriched by +5.2‰ compared to herbage δ15N values in 2007. Changes in δ15N value in GSC and cattle hair reflect the influence of grazing practices on N cycles through the animal/plant/soil system on this rough fescue grassland.  相似文献   

13.
The study was conducted at three sites during 2008 and 2009 in the North-East China Plain (NECP). Field experiments consisted of five or six nitrogen (N) fertilization rates (0–350 kg N ha?1). Shoot biomass and N concentration (Nc) of spring maize (Zea mays L.) were determined on six sampling dates during the growing season. Nitrogen application rate had a significant effect on aerial biomass accumulation and Nc. As expected, shoot Nc declined during the growing period. A critical N dilution curve (Nc = 36.5 W ?0.48) was determined in China, which was a little different from those reported for maize in France and Germany. Besides, the N nutrition index (NNI) calculated from this critical N dilution curve was significantly related to relative grain yield, which can be expressed by a linear with plateau model (R2 = 0.66; P < 0.001). NNI can be used as a reliable indicator of the level of N deficiency during the growing season of maize.  相似文献   

14.
ABSTRACT

Black walnut (Juglans nigra L.) half-sib 1+0 seedlings were exponentially fertilized with ammonium (NH4 +) as ammonium sulfate [(NH4)2SO4], nitrate (NO3 ?) as sodium nitrate (NaNO3), or a mixed nitrogen (N) source as ammonium nitrate (NH4NO3) at the rate of 0, 800, or 1600 mg N plant?1 and grown for three months. One month following the final fertilization, N concentration, growth, and photosynthetic characteristics were assessed. Compared with unfertilized seedlings, N addition increased plant component N content, chlorophyll content, and photosynthetic gas exchange. Net photosynthesis ranged from 2.45 to 4.84 μmol m?2 s?1 for lower leaves but varied from 5.95 to 9.06 μmol m?2 s?1 for upper leaves. Plants responded more favorably to NH4NO3 than sole NH4 + or NO3 ? fertilizers. These results suggest that N fertilization can be used to promote net photosynthesis as well as increase N storage in black walnut seedlings. The NH4NO3 appears to be the preferred N source to promote black walnut growth and physiology.  相似文献   

15.
The relationship was assessed between the period of K15 NO3 application and the level of 15N in the blossoms of ‘Royal’ apricot (Prunus armen iaca L.). Late summer applications of K15NO, resulted in a 34 fold greater 15N enrichment of apricot blossoms the following year than K15NO3 applied during the dormant period. In contrast, 15N enrichment was 60% higher in vegetative shoots 30 days after anthesis when K15NO3 was applied during the dormant period as occurred following summer applications. Thus, fertilizer nitrogen applied in summer may support the early development of fruit to a greater extent than nitrogen applied during the dormant period. When K15NO3 was applied in Jan, 15N accumulation in reproductive organs occurred after anthesis and corresponded with the period of shoot elongation and leaf expansion. It appears that fertilizer N must be absorbed prior to leaf fall to reach reproductive organs during anthesis.  相似文献   

16.
ABSTRACT

Understanding how plants use of various nitrogen (N) sources is important for improving plant N use efficiency in organic farming systems. This study investigated the effects of farming management practices (organic and conventional) on pakchoi short-term uptake of glycine (Gly), nitrate (NO3 ?) and ammonium (NH4 +) under two N level conditions. Results showed that plant N uptake rates and N contributions from the three N forms in the low N (0.15 μg N g?1 dry soil) treatment did not significantly differ between the organic and conventional soils, except the significantly greater Gly contribution in organic soil at 24 h after tracer addition. Under high N (15 μg N g?1 dry soil) conditions, the N uptake rates, uptake efficiencies, and N contributions of Gly and NH4 +-N were significantly greater in pakchoi cultivated in the organic soil compared to conventional soil, whereas the N uptake rates and N contributions from NO3 -N decreased in pakchoi cultivated in the organic soil. The greater Gly-N uptake in plants grown in high-N treated organic soil may be related to the greater gross N transformation, Gly turnover rate and the increased expression of an amino acid transporter gene BcLHT1. Intact Gly contributed at most 6% to Gly-derived N at 24 h after tracer additions, which accounting for about 1.24% of the total N uptake in organic soil. Our study suggested that Gly-N and other organic source N might serve as a more important compensatory N source for plants in organic farming.  相似文献   

17.
When fertilizing with compost, the fate of the nitrogen applied via compost (mineralization, plant uptake, leaching, soil accumulation) is relevant both from a plant‐production and an environmental point of view. In a 10‐year crop‐rotation field experiment with biowaste‐compost application rates of 9, 16, and 23 t ha–1 y–1 (f. m.), the N recovery by crops was 7%, 4%, and 3% of the total N applied via compost. Due to the high inherent fertility of the site, N recovery from mineral fertilizer was also low. In the minerally fertilized treatments, which received 25, 40, and 56 kg N ha–1 y–1 on average, N recovery from mineral fertilizer was 15%, 13%, and 11%, respectively. Although total N loads in the compost treatments were much higher than the N loads applied with mineral fertilizer (89–225 kg Ntot ha–1 y–1 vs. 25–56 kg Ntot ha–1 y–1; both on a 10‐year mean) and the N recovery was lower than in the treatments receiving mineral N fertilizer, soil NO ‐N contents measured three times a year (spring, post‐harvest, autumn) showed no higher increase through compost fertilization than through mineral fertilization at the rates applied in the experiment. Soil contents of Norg and Corg in the plowed layer (0–30 cm depth) increased significantly with compost fertilization, while with mineral fertilization, Norg contents were not significantly higher. Taking into account the decrease in soil Norg contents in the unfertilized control during the 10 years of the experiment, 16 t compost (f. m.) ha–1 y–1 just sufficed to keep the Norg content of the soil at the initial level.  相似文献   

18.
A field investigation was conducted at the Indian Agricultural Research Institute's Research Farm during the kharif (wet) seasons of 2002 and 2003 in a split plot design with three replications, consisting of 27 treatments, namely, main plots: three varieties (PRH-10, Pusa Sugandh-3 and Pusa Basmati-1) and three plant spacings (20 × 10, 20 × 15 and 20 × 20 cm2) and sub-plots: three levels of nitrogen (0, 80 and 160 kg N ha?1). The research results indicated that aromatic rice hybrid PRH-10 produced 33 and 6%, respectively, more grain yield than that of Pusa Sugandh-3 and Pusa Basmati-1. The appreciable higher grain yield of PRH-10 over Pusa Sugandh-3 and Pusa Basmati-1 was due to considerable improvement in most of the yield attributing characters. Application of 160 kg N ha?1 recorded 23.7 and 26.1% more grain yield over no nitrogen application whereas it was 6.4 and 6.1% more over 80 kg N ha?1, respectively, during first and second year of the experimentation. Wider plant spacing of 20 × 20 cm2 and application of 160 kg N/ha recorded significantly higher hulling, milling and head rice recovery compared to closer spacing and zero nitrogen application.  相似文献   

19.
Abstract

Dairy farming regions are important contributors of nitrogen (N) to surface waters. We evaluated the N budget and relationships to riverine N exports within the Shibetsu River catchment (SRC) of a dairy farming area in eastern Hokkaido, Japan. Five drainage basins with variable land-cover proportions within the SRC were also evaluated individually. We quantified the net N input (NNI) to the catchment from the difference between the input (atmospheric deposition, chemical fertilizers, N fixation by crops and imported food and feed) and the output (exported food and feed, ΔS liv and ΔS hu, which are the differences between input and output in livestock and human biomass, respectively) using statistical and measured data. Volatilized ammonia (NH3) was assumed to be recycled within the catchment. The riverine export of N was quantified. Agricultural N was a dominant source of N to the SRC. Imported feed was the largest input (38.1?kg?N?ha?1?year?1), accounting for 44% of the total inputs, followed by chemical fertilizers (32.4?kg?N?ha?1?year?1) and N fixation by crops (13.4?kg?N?ha?1?year?1). The exported food and feed was 24.7?kg?N?ha?1?year?1 and the ΔS liv and ΔS hu values were 7.6 and 0.0?kg?N?ha?1?year?1, respectively. As a result, the NNI amounted to 54.6?kg?N?ha?1?year?1. The riverine export of total N from the five drainage basins correlated well with the NNI, accounting for 27% of the NNI. The fate of the missing NNI that was not measured as riverine export could possibly have been denitrified and/or retained within the SRC. A change in the estimate of the deposition rate of volatilized NH3 from 100 to 0% redeposited would have decreased the NNI by 37%, although we believe that most NH3 was likely to have been redeposited. The present study demonstrated that our focus should be on controlling agricultural N to reduce the impact of environmental pollution as well as on evaluating denitrification, N stocks in soil and the fate of NH3 volatilization in the SRC.  相似文献   

20.
Abstract

Most measurements of dairy manure nitrogen (N) availability depend on net changes in soil inorganic N concentration over time, which overlooks the cycling of manure N in the soil. Gross transformations of manure N, including mineralization (m), immobilization (i), and nitrification (n), can be quantified using 15N pool dilution methods. This research measures gross m, n, and i resulting from application of four freeze‐dried dairy manures that had distinctly different patterns of N availability. A sandy loam soil (coarse‐loamy, mixed, frigid Typic Haplorthod) was amended with four different freeze‐dried dairy manures and incubated at 25°C with optimal soil water content. The dilution of 15ammonium (NH4+) during a 48‐h interval (7–9 d and 56–58 d after manure application) was used to estimate m, whereas the dilution of 15nitrate (NO3 ?) was used to estimate n. Gross immobilization was calculated as gross minus net mineralization. Gross mineralization in the unamended soil was similar at 7‐ to 9‐d and 56‐ to 58‐d intervals and was significantly increased by the application of manures. For both amended and unamended soil, m was much greater (i.e., three‐ to nine‐fold) than estimated net mineralization, illustrating the degree to which manure N can be cycled in soil. At the early interval, both m and i were directly related to the manure C input, demonstrating the linkage between substrate C availability and N utilization by soil microbes. This research clearly shows that the application of dairy manures stimulates gross N transformation rates in the soil, improving our understanding of the impact of manure application on soil N cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号