首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探讨饲料淀粉水平对团头鲂成鱼生长、消化酶活性和肌肉成分的影响,选用初始均重为(161±2.7)g的团头鲂成鱼360尾,随机分成6组(每组3个重复),分别投喂含淀粉17.1%、21.8%、26.4%、32.0%、36.3%和41.9%的等氮等脂饲料9周。结果发现,团头鲂成鱼成活率和特定生长率不受饲料淀粉水平影响,但饲料添加适量淀粉能提高饲料和蛋白利用率,淀粉水平对肝脏和肠道中的总蛋白酶和纤维素酶活性不产生影响,却显著影响淀粉酶活性。肝体比、肝糖原和肌肉粗脂肪含量随饲料淀粉含量的增加而显著增加,血清血糖、胆固醇和甘油三酯含量不受饲料淀粉水平的显著影响,饲料中添加过量淀粉显著降低了血清补体3和补体4含量。以蛋白质效率和饲料效率为评价指标,经折线模型回归分析,得到团头鲂成鱼饲料中淀粉的适宜添加量分别为饲料干重的34.1%和31.4%,但考虑到血清补体的活性,团头鲂成鱼日粮淀粉水平不应超过36.3%。  相似文献   

2.
The effect of dietary starch source and level on growth performance, feed utilization, apparent digestibility coefficients and liver enzyme activities involved in intermediary metabolism of gilthead sea bream juveniles was studied. Five isonitrogenous (47% crude protein) and isolipidic (15% crude lipids) diets were formulated to contain 10% native (diet NS10) or waxy (diet WS10) maize starch; 20% native (diet NS20) or waxy (diet WS20) maize starch or no starch (control). Diets were adjusted with α-cellulose. Another diet was formulated without carbohydrates, and contained 70% crude protein and 15% crude lipids (diet HP). Each diet was fed to triplicate groups of 30 fish (initial weight: 20 g) for 12 weeks. The HP group was fed to near satiation and the other 5 groups were fed on a pair-feeding scheme according to the group that ingested less feed (control diet group). The reduction of dietary protein level from 70% to 47% by the incorporation of 20% starch did not significantly affect gilthead sea bream growth performance or feed efficiency. Compared to the control diet, neither the level nor the nature of starch had any measurable effect on growth performance and feed efficiency. Digestibility of starch was unaffected by source or dietary inclusion level. Diet had no effect on plasma glucose levels, but liver glycogen was higher in diet groups NS20, WS20 and HP. Dietary carbohydrates increased GK and G6PD enzyme activities and decreased ALAT and GDH enzyme activities while had only a minor effect on FBPase activity. The nature of dietary starch tested (native or waxy) had little influence on performance criteria.  相似文献   

3.
A 10‐week growth trial was conducted to evaluate the effect of raw corn starch levels on the growth, feed utilization, plasma chemical indices and metabolic enzyme activities of juvenile yellowfin seabream Sparus latus. Four semi‐purified experimental diets with different raw corn starch levels (5%, 10%, 20% and 26%) and a high‐protein control diet were prepared before the experiment and hand‐fed to triplicate groups of juvenile yellowfin seabream Sparus latus. Weight gain and specific growth rate for fish fed the diet containing 26% raw corn starch were significantly lower than those for fish fed 10% or 20% corn starch diets or the high‐protein control diet. Fish fed 10% or 20% corn starch diets had a slightly better growth performance than those fed the 5% corn starch diet. Feed efficiency ratio and protein efficiency ratio (PER) for 20% raw corn starch fed fish were the highest among all groups, although no statistically significant differences were found among the experimental groups. The high‐protein control group had a significantly lower PER value than other groups. Protein productive values for fish fed the 5% raw corn starch diet and the high‐protein control diet were significantly lower than those of fish fed the 20% raw corn starch diet, but not significantly different from the values of any other group. The values of intraperitoneal fat ratio, viscerosomatic index and condition factor, as well as body and muscle compositions, were unaffected by corn starch levels. The hepatosomatic index and liver glycogen level for fish fed 5%, 10%, 20% raw corn starch and the high‐protein control diets were equal but significantly lower compared with that of fish fed the 26% raw corn starch diet. Plasma values of the fish were not affected by various dietary treatments, except that a significantly higher plasma glucose concentration was measured in the high‐protein control group compared with the values in the other groups. There were variations in the activities of hepatic hexokinase and pyruvate kinase of the yellowfin seabream after they had been fed different dietary raw corn starch levels for 10 weeks. The overall results showed that a 20% inclusion level of raw corn starch in the diet was better utilized by juvenile yellowfin seabream than 5%, 10% or 26% levels and had a protein‐sparing effect.  相似文献   

4.
Juvenile gilthead sea bream with a mean initial body weight of 5 g were fed for 12 weeks with experimental diets containing 10% and 20% fishmeal protein (sole protein source in the control diet) replaced by processed pea seed meals. The processed pea seed meals were dehulled, defibred, extruded and microground pea seed meal (PSM1) or whole pea treated by infrared radiation and ground (PSM2). Apparent digestibility coefficients of the experimental diets were determined in a separate trial. At the end of the growth trial there were no significant differences in growth performance, feed utilization or whole-body composition among experimental groups. There were no differences in apparent protein digestibility among experimental groups (except for fish fed PSM1 at the lowest inclusion level). Both dry matter and energy digestibility of the diets, including PSM2 and with the highest inclusion level of PSM1, were significantly lower than those of the control diet. The results of this study suggest that pea seed meal may replace up to 20% fishmeal protein in diets for gilthead sea bream juveniles without affecting fish performance. Further studies should focus on technological treatments to increase utilization of pea seed meal carbohydrate, as both apparent dry matter and energy digestibility were affected by dietary inclusion level and by pea seed meal processing method.  相似文献   

5.
Raw corn starch (RCS), raw tapioca starch (RTS), raw potato starch (RPS), pre‐gelatinized corn starch (PCS), pre‐gelatinized tapioca starch (PTS) and pre‐gelatinized potato starch (PPS) were evaluated as starch sources in diets for yellowfin seabream Sparus latus in a 56‐day growth trial. Seven isonitrogenous semi‐purified diets comprising a non‐starch cellulose control diet and the six different starch sources holding 200 g kg−1 starch each were prepared and fed to triplicate groups of juvenile yellowfin seabream S. latus. Fish were fed for 8 weeks. Weight gain (WG) and specific growth rate (SGR) for fish fed RCS, RTS and RPS diets were equal, as well as for fish fed PCS, PTS and PPS diets, but values in groups fed the raw starch sources were significantly higher compared with fish fed the pre‐gelatinized starches. Feed efficiency and protein efficiency ratio in fish fed different starch source diets showed no significant differences but were significantly higher than those fed a non‐starch control diet. Protein productive value was improved by starch incorporation to diets. PCS, PTS or PPS groups showed lower feed intake compared with RCS, RTS or RPS groups, and the differences were significant between PCS, PPS and RCS, RPS groups. Whole‐body protein and ash contents and muscle compositions were not affected by different starch sources. Whole‐body and liver lipid contents, liver moisture and glycogen contents were significantly affected by starch source. Values of hepatosomatic index, intraperitoneal fat ratio, viscerosomatic index and condition factor did not vary between experimental treatments. Plasma total protein concentration for RCS, RTS or RPS fed fish was significantly higher than that for PCS, PTS or PPS fed fish, but significantly lower than that for non‐starch fed fish. Plasma cholesterol and triacylglycerol concentrations were unaffected by starch source, but were significantly higher in fish fed the non‐starch control diets. Plasma glucose concentrations in all dietary groups were relatively stable. In conclusion, raw corn, tapioca and potato starches at a 200 g kg−1 inclusion level were well utilized as energy sources by yellowfin seabream, which was evidenced by better WG and SGR. Pre‐gelatinization of the starches had no positive effect on starch utilization.  相似文献   

6.
Optimum dietary protein and lipid levels for juvenile rockfish were determined. Eight hundred and ten juvenile fish averaging 3.22 g were randomly chosen and distributed into 27 flow‐through tanks of 50 L (30 fish per tank). Nine experimental diets were prepared according to a 3 × 3 factorial experimental design: three crude protein levels (45%, 50% and 55%) × three crude lipid levels (11%, 15% and 19%). Crude protein and crude lipid levels increased at the expense of dextrin and cellulose in the experimental diets. Survival of fish was not affected by either dietary protein or lipid level. Weight gain of fish was affected by dietary protein level, but not by dietary lipid level. Weight gain of fish fed the 50P‐15L (50% protein and 15% lipid) diet was higher than that of fish fed the 45% protein diets regardless of lipid level, but not different from that of fish fed the 50P‐11L (50% protein and 11% lipid), 50P‐19L (50% protein and 19% lipid), 55P‐11L (55% protein and 11% lipid), 55P‐15L (55% protein and 15% lipid) and 55P‐19L (55% protein and 19% lipid) diets. Feed consumption of fish was affected by dietary protein level, but not by dietary lipid levels. Feed efficiency ratio (FER) of fish was affected by dietary protein level, but not by dietary lipid level. Protein efficiency ratio (PER) of fish was affected by dietary protein level, but not by dietary lipid level. Nitrogen retention efficiency (NRE) of fish fed the 45P‐19L diet was higher than that of fish fed the 45P‐11L, 50P‐11L, 50P‐15L, 50P‐19L, 55P‐11L, 55P‐15L and 55P‐19L diets, but not different from that of fish fed the 45P‐15L diet. Moisture, crude protein and crude lipid contents of fish was affected by dietary protein and/or lipid level. Plasma triglyceride of fish was affected by dietary lipid level, but not by dietary protein level. In conclusion, optimum protein and lipid levels for growth and feed utilization (PER and NRE) for juvenile rockfish were 50% and 15%, and 45% and 19%, respectively, and the optimum dietary protein‐to‐energy ratio of 27.4 and 23.9 mg protein kJ?1.  相似文献   

7.
The effect of dietary carbohydrate complexity on growth, feed utilization and activity of selected key liver enzymes of intermediary metabolism were studied in gilthead sea bream juveniles. Four isonitrogenous (50% crude protein) and isolipidic (16% crude lipids) diets were formulated to contain 20% of pregelatinized maize starch, dextrin, maltose or glucose. Triplicate groups of fish (117 g initial weight) were fed each diet to near satiation during 6 weeks. No effect of dietary carbohydrate on growth was noticed. Feed efficiency was lower in fish fed the glucose diet than the maltose and dextrin diets. The lowest protein efficiency ratio was observed in fish fed the glucose diet. Six hours after feeding, glycemia was higher in fish fed the glucose diet than the maltose and starch diets. Liver glycogen content was unaffected by dietary carbohydrate complexity. Hepatic glucokinase (GK) activity was higher in fish fed the glucose and the maltose diets, while higher pyruvate kinase (PK) activity was recorded in fish fed the glucose diet than in fish fed the starch diet. Fructose-1,6-bisphosphatase (FBPase) and glucose-6-phosphate dehydrogenase (G6PD) activities were higher in fish fed the starch diet compared to dextrin and glucose diets. Data suggest that dietary glucose and maltose are more effective than complex carbohydrates in enhancing liver glycolytic activity. Dietary glucose also seems to be more effective than starch in depressing liver gluconeogenic and lipogenic activities. Overall, dietary maltose, dextrin or starch was better utilized than glucose as energy source by gilthead sea bream juveniles.  相似文献   

8.
黄岩  李建  王学习  王琨  叶继丹 《水产学报》2017,41(5):746-756
为了探讨饲料蛋白质和碳水化合物对斜带石斑鱼的互作效应,实验采用3×3因子设计,配制蛋白质水平(P)为38%、45%和52%,淀粉水平(S)为10%、20%和30%的9种实验饲料,分别饲喂斜带石斑鱼56 d。结果显示,38%粗蛋白与10%淀粉饲料组(38P/10S饲料组)增重率显著低于其他各组,52P/10S组增重率最高,但与45P/20S、45P/30S、52P/20S组差异不显著。增加饲料蛋白质或淀粉水平显著增加饲料效率、鱼体蛋白质与脂肪含量及肝糖原肝脂含量,而降低摄食率和鱼体水分含量。增加饲料蛋白质水平降低蛋白质效率,但增加淀粉水平却增加蛋白质效率及肝体比与脏体比。饲料蛋白质水平和淀粉水平对鱼体灰分含量无明显影响。肝中肝酯酶、脂蛋白酯酶、脂肪酸合成酶、谷丙转氨酶和谷草转氨酶活性均随蛋白质或淀粉水平的升高呈显著上升趋势。增加饲料蛋白质水平显著降低肝中葡萄糖-6-磷酸酶活性,而增加肝中苹果酸酶活性,但对肝中葡萄糖激酶、丙酮酸激酶、磷酸果糖激酶、磷酸烯醇式丙酮酸羧激酶和葡萄糖-6-磷酸脱氢酶活性没有明显影响。增加饲料淀粉水平显著增加肝中葡萄糖激酶、丙酮酸激酶、磷酸果糖激酶、葡萄糖-6-磷酸脱氢酶和苹果酸酶活性,但显著降低磷酸烯醇式丙酮酸羧激酶和葡萄糖-6-磷酸酶活性。上述结果显示,斜带石斑鱼的生长和肝脏代谢明显受饲料蛋白质和淀粉水平的影响,其中,糖代谢酶活性受淀粉水平的影响较大,而受饲料蛋白质水平的影响较小,斜带石斑鱼生长适宜的饲料蛋白质和淀粉水平分别为45%和20%。  相似文献   

9.
Dietary protein requirement of white sea bream (Diplodus sargus) juveniles   总被引:1,自引:0,他引:1  
A trial was undertaken to estimate the protein requirement of white sea bream (Diplodus sargus). Five fish meal‐based diets were formulated to contain graded levels of protein (from 60 to 490 g kg?1). Each diet was assigned to triplicate groups of 25 fish with a mean individual body weight of 22 g. Fish fed the 60 g kg?1 protein diet lost weight during the trial, while growth improved in the other groups as dietary protein level increased up to 270–370 g kg?1. Feed efficiency improved as dietary protein level increased. Maximum protein efficiency ratio (PER) was observed with the 17% protein diet. N retention (NR) (% N intake) was not different among groups fed diets with 17% protein and above. Ammonia excretion (g kg?1ABW day?1) increased as dietary protein level increased, while no differences in urea excretion were noted. An exponential model was used to adjust specific growth rate and NR (g kg?1 day?1) to dietary protein level. Based on that model, dietary protein required for maximum retention was 330 g kg?1, while for maximum growth it was 270 g kg?1. On a wet weight basis, there were no differences in whole body composition of fish‐fed diets with 170 g kg?1 protein and above, except for the protein content, which was lower in group fed the 170 g kg?1 protein diet than the 490 g kg?1 protein diet. Specific activities of hepatic amino acid catabolism enzymes (glutamate dehydrogenase, alanine aminotransferase and aspartate aminotransferase) increased as dietary protein levels increased. There were no differences among groups in fatty acid synthetase and malyc enzyme but 6‐phosphate dehydrogenase (G6PDH) was significantly lower in fish fed the 60 g kg?1 protein diet than the 170 and 490 g kg?1 protein diets.  相似文献   

10.
A 12‐week growth trial was conducted to evaluate corn gluten meal as an alternative protein source to fish meal in diets for gilthead sea bream juveniles. The experimental diets were formulated to be isonitrogenous and isoenergetic and to have 20%, 40%, 60% and 80% of fish meal protein, the only protein source in the control diet, replaced by corn gluten meal. At the end of the growth trial only the group fed the diet with 80% corn gluten protein exhibited significantly reduced growth and feed efficiency compared with the fish meal‐based diet. This was most likely due to a dietary amino acid deficiency in that diet. A trend was noticed for feed efficiency to improve with the replacement of fish meal protein in the diets up to 60%. There were no significant differences among groups in protein and energy retention (as percentage of intake). At the end of the trial whole body water content of the experimental groups was significantly lower and the lipid content of groups including 60% and 80% corn gluten protein was significantly higher than that in the control. No other differences were observed in whole body composition among groups. Apparent digestibility coefficients (ADC) of the diets were evaluated in a separate trial. The ADC of dry matter of the experimental diets was significantly higher than in the control diet; there were no significant differences among diets in the ADC of energy and protein, except for the ADC of protein of diet with 80% corn gluten protein, which was significantly lower than the control. The results of this study indicate that corn gluten meal can replace up to 60% fish meal protein in diets for gilthead sea bream juveniles with no negative effects on fish performance.  相似文献   

11.
In this study, two growth trials were conducted to evaluate the effect of dietary protein and lipid levels on growth and feed utilization of white sea bream (Diplodus sargus) juveniles. For the first trial, five diets were formulated to contain 120 g kg?1 lipid and increasing levels of protein, ranging from 400 to 600 g kg?1. Two additional diets were formulated with 400 and 600 g kg?1 protein and 180 g kg?1 lipids. The diets were fed to apparent visual satiety to duplicate groups of fish with a mean weight of 1.5 g for 10 weeks. For the second growth trial, four diets were formulated to contain 120 g kg?1 lipid and 380–520 g kg?1 protein. Two additional diets were formulated with 380 and 520 g kg?1 protein and 180 g kg?1 lipids. The diets were fed to apparent visual satiety to triplicate groups of fish with a mean weight of 41 g for 12 weeks. At the end of both trials, there were no growth differences among groups independent of the dietary protein content. In the first trial, growth was negatively correlated to dietary lipid levels. No significant differences of feed intake were detected among groups in both trials, but a direct correlation between feed efficiency and dietary protein level was observed. Protein efficiency ratio and nitrogen (N) retention (% N intake) significantly decreased with the increase of dietary protein levels. In both trials, energy retention (% energy intake) was highest in groups fed on diets with the highest protein‐to‐energy (P/E) ratio. At the end of both trials, no significant differences in whole‐body composition were observed among groups. Specific activity of enzymes involved in amino acid catabolism [aspartate aminotransferase (AST), alanine aminotransferase (ALT) and glutamate dehydrogenase (GDH)] showed no significant differences with dietary protein level in both trials. Nevertheless, in the first trial, a significantly lower GDH activity was observed in fish fed with higher dietary lipid levels. No differences were found for specific activity of the lipogenic enzymes, fatty aid synthetase and glucose‐6‐phosphate dehydrogenase, in the second trial. Results of this study indicate that a diet with a protein level of 380–420 g kg?1 and a P/E ratio of 20 g protein MJ?1 satisfies the growth requirements of D. sargus juveniles. Also, within the range tested, no evidence of protein sparing by dietary lipids seems to occur.  相似文献   

12.
The effect of fish meal (FM) substitution with fermented soybean meal (FSBM) in the diets of the carnivorous marine fish, black sea bream, Acanthopagrus schlegelii, was investigated. An 8‐wk feeding trial was conducted with black sea bream (11.82 ± 0.32 g; mean initial weight) in indoor flow‐through fiberglass tanks (25 fish per tank). Six isonitrogenous and isoenergetic diets were formulated, in which FM was replaced by FSBM at 0% (control diet), 10% (FSBM10), 20% (FSBM20), 30% (FSBM30), 40% (FSBM40), or 50% (FSBM50), respectively. Each diet was fed to triplicate groups of fish twice daily to apparent satiation. The results showed that there was no difference in survival of black sea bream during the feeding trial. Fish fed the FSBM10 or FSBM20 diet showed comparable growth performance compared with fish fed the control diet (P > 0.05), whereas more than 30% replacement of FM adversely affected weight gain and specific growth rate (P < 0.05). Feed intake was significantly lower for fish fed the FSBM50 diet compared with fish fed the control diet. Feed conversion ratio (FCR) tended to increase with increasing dietary FSBM with the poorest FCR observed for fish fed the FSBM50 diet. Protein efficiency ratio and protein productive values showed similar patterns. Apparent digestibility of nutrients significantly decreased with increasing dietary FSBM level. With the exception of protein content, no significant differences in whole body and dorsal muscle composition were observed in fish fed the various diets. Fish fed the FSBM50 diet had significantly lower intraperitoneal ratio than fish fed the control or FSBM10 diet. Hepatosomatic index and condition factor were unaffected by dietary treatments. This study showed that up to 20% of dietary FM protein could be replaced by FSBM protein in the diets of juvenile black sea bream.  相似文献   

13.
A feeding trial was conducted to evaluate the effect of replacing fish meal protein with fermented soybean meal (FSM) on the growth performance, feed utilization, amino acid profile, body composition, morphological parameters, activity of antioxidant and digestive enzymes of black sea bream (Acanthopagrus schlegeli) juvenile. Five isonitrogenic and isolipidic diets were prepared with levels of 0 (control), 80, 160, 240 and 320 g kg?1 FSM. Triplicate groups (40 fish per tank) of juvenile black sea bream with initial weight of 1.17 ± 0.04 g were hand‐fed to visual satiation at three meals per day for 8 weeks. The fish fed diets containing different levels of FSM had no significant differences regarding survival and specific growth rate compared with control group. Feed and protein efficiency ratios of fish fed diet containing 320 g kg?1 FSM were significantly lower than those of control group. Daily feed intake and daily protein intake of fish fed diet containing 240–320 g kg?1 were significantly higher than those of control group. Hepatosomatic index and condition factor of fish were not affected by different dietary FSM level. Fish fed diets containing 240–320 g kg?1 FSM had significantly higher visceral somatic index than control group. Whole body proximate and amino acid compositions of fish were not affected by dietary FSM level. The activity of digestive enzymes in the intestine was not affected by dietary FSM level. The activity of glutathione peroxidase in liver was significantly higher for fish fed the diet containing 160 g kg?1 FSM compared with control group. This study showed that up to 40% fish meal in the diets of juvenile black sea bream could be replaced by fermented soybean meal with supplementation of methionine, lysine and taurine.  相似文献   

14.
This experiment was conducted to determine the optimum dietary protein level for juvenile olive flounder Paralichthys olivaceus (Temminck et Schlegel) fed a white fish meal and casein‐based diets for 8 weeks. Olive flounder with an initial body weight of 4.1 ± 0.02 g (mean ± SD) were fed one of the six isocaloric diets containing 35%, 45%, 50%, 55% and 65% crude protein (CP) at a feeding rate of 4–5% of wet body weight on a dry‐matter basis to triplicate groups of 20 fish per aquarium. After 8 weeks of feeding, per cent weight gain (WG) and feed efficiency ratios of fish fed the 55% CP diet were not significantly higher than those from fish fed the 50% and 65% CP diets, but significantly higher than those from fish fed the 35% and 45% CP diets. Fish fed the 50%, 55% and 65% CP diets had significant higher specific growth rates than did fish fed the 35% and 45% CP diets; however, there was no significant difference among fish fed the 50%, 55% and 65% CP diets. The protein efficiency ratio was inversely related to the dietary protein level; that is, maximum efficiency occurred at the lowest dietary protein level. Broken‐line model analysis indicated that the optimum dietary protein level was 51.2 ± 1.8% for maximum weight gain in juvenile olive flounder. The second‐order polynomial regression analysis showed that the maximum WG occurred at 57.7% and it revealed that the minimum range of protein requirement was between 44.2% and 46.4%. These findings suggest that the optimum dietary protein level for maximum growth could be greater than 46.4%, but less than 51.2% CP in fish meal and casein‐based diets containing 17.0 kJ g?1 energy for juvenile olive flounder.  相似文献   

15.
A 12‐week growth trial was performed to evaluate the effect of lupin seed meal as a protein source in diets for gilthead sea bream (Sparus aurata) juveniles. Six experimental diets were formulated to be isonitrogenous and isoenergetic and to contain 10%, 20% and 30% of raw lupin (Lupinus angustifolius) seed meal protein or 20% and 30% lupin (L. angustifolius) seed meal processed by infrared radiation (micronized) in place of fish meal protein, the only protein source of the control diet. Fish accepted all diets well and no significant differences in feed utilization among groups were noticed during the trial. Final weight of fish fed the experimental diets was identical or higher than the control group. Final weight of fish fed diets including 20% micronized lupin protein was even significantly higher than that of fish fed the fish meal‐based control diet. Moreover, at the same dietary lupin seed meal protein inclusion levels, final weight of fish fed diets including micronized lupin was significantly higher than with raw lupin. A trend was also noticed for a decrease of final weight with the increase in lupin seed meal in the diets. At the end of the trial no significant differences in proximate whole‐body composition, hepatosomatic and visceral indices were observed among groups. It is concluded that lupin seed meal can replace up to 30% fish meal protein in diets for gilthead sea bream juveniles with no negative effects on growth performance. Furthermore, micronization of lupin seeds improves its dietary value for gilthead sea bream juveniles. At the same dietary lupin inclusion levels, diets including micronized lupin seeds promote significantly higher growth rates than raw lupin seeds.  相似文献   

16.
The potential of three different protein resources (pea protein isolate, PPI; pea protein concentrate, PPC; enzyme treated poultry protein, ETPP) as fish meal (FM) alternative protein in diets for juvenile black sea bream, Acanthopagrus schlegelii. (initial average weight 7.90 ± 0.13 g) was evaluated. Seven isonitrogenous and isoenergetic diets were formulated to replace FM at 0% (T0, control diet), 8% (designated as T1‐T3) and 16% (designated as T4‐T6) using PPI, PPC and ETPP respectively. Each diet was randomly assigned to triplicate groups of 25 juvenile fish for 8 weeks. At the end of the feeding period, survival rate was not significantly affected by dietary treatments. Growth performance in T6 (16% ETPP) group was significantly inferior to T0 group, however, weight gain and specific growth rate in other treatments showed no significant differences (> 0.05). Mean feed intake, feed efficiency ratio and protein efficiency ratio were also poorer in fish fed in T6 than those of fish fed with the control diet respectively. Apparent digestibility coefficients (ADCs) of dry matter and crude protein for fish fed ETPP diets were significant lower than those of fish fed with the control diet, whereas ADCs of lipid were unaffected by dietary treatments. ADC's of dietary Leu, Ile, His and Lys was also significantly influenced. There were no marked variations in proximate compositions of dorsal muscle. With regard to plasma characteristics, significant difference was observed in triacylglycerol content. Ammonia concentration in plasma tended to increase in alternative protein diets as substitution level increased. There were significant differences in aspartate aminotransferase activities among groups, but alanine aminotransferase levels were unaffected by treatments. In conclusion, the present study demonstrated that PPI and PPC were potential protein sources for using in juvenile black sea bream diet. However, the substitution level of FM by ETPP should be limited within 16%.  相似文献   

17.
Six diets were formulated to contain corn starch, tapioca starch, or dextrin at 10% and 20% inclusion levels and fed to humpback grouper fingerlings to apparent satiation for 10 weeks. Growth and feed utilization efficiency of humpback grouper were not affected by dietary carbohydrate source and level. Only slightly higher growth was observed in fish fed 20% dietary carbohydrate compared to the fish fed 10% carbohydrate irrespective of carbohydrate source. Body indices and whole body proximate composition of fish in the present study were generally independent of diet, except that muscle lipid of fish fed diets with 7.6% lipid and 20% carbohydrate was significantly lower than the other groups. In view of the lower price and local availability of tapioca starch compared to corn starch and dextrin, tapioca starch is the preferred source of starch in practical diets for humpback grouper.  相似文献   

18.
Dietary mannanoligosaccharide (MOS) from commercial product, Bio‐Mos supplementation, has been examined for its effects on weight gain and feed conversion of domestic mammals and birds, but very few studies have evaluated the responses of aquacultural species to MOS. A feeding and digestibility trial was performed to asses the potential beneficial effect of two levels of Bio‐Mos on growth, feed utilization, survival rate and nutrients’ digestion of gilthead sea bream (Sparus aurata) with an initial average weight of 170 g. Bio‐Mos was added at 2 or 4 g kg?1 to a fish meal–based control diet, and each diet was fed to triplicate groups of 1‐year‐old gilthead sea bream. After 12 weeks, there were no differences in survival rate among fish fed experimental diets (P > 0.05). It was observed that a significant improvability existed for both growth and feed utilization in fish fed diets supplemented with Bio‐Mos (P < 0.05). Body proximate composition remained unaffected by Bio‐Mos supplementation in fish fed experimental diets (P > 0.05). Apparent digestibility values for protein, carbohydrate and energy were appreciably affected by the inclusion of two different levels of Bio‐Mos, only lipid digestibility was the exception. In conclusion, the results of this trial indicate that 2 g kg?1 dietary supplementation with BIO‐MOS seem to be most positive for gilthead sea bream production.  相似文献   

19.
A growth experiment was conducted to determine the effect of supplementing dietary calcium in fish meal‐based diets on the growth of cultured soft‐shelled turtle Pelodiscus sinensis. Juvenile soft‐shelled turtles of 4.1 g mean body weight were fed nine diets containing two levels of phosphorus (2.7% or 3.0%) and analysed calcium levels ranging from 4.7% to 6.6% for 10 weeks. The growth of the turtles was enhanced when inorganic calcium was added to the diets. The weight gain of the turtles fed the control diet containing calcium solely from fish meal was the lowest among the test groups, and was significantly lower than those fed the diet containing 5.7% calcium at the 3.0% phosphorus level (P<0.05). Feed conversion and protein efficiency ratios were not affected by different dietary treatments. Whole‐body moisture and crude protein contents of turtles were not affected by different dietary treatments. The body ash of turtles fed 3.0% phosphorus diets tended to be higher than turtles fed 2.7% phosphorus diets. The body calcium to phosphorus ratio of turtles fed 3.0% phosphorus diets was greater than that of turtles fed diets containing 2.7% phosphorus. Supplementation of Ca in a fish meal‐based practical diet is required for the optimum growth of soft‐shelled turtles.  相似文献   

20.
An 8-week feeding trial was conducted to evaluate the effect of dietary carbohydrate sources on the growth performance and hepatic carbohydrate metabolic enzyme activities of juvenile cobia. Six experimental diets were formulated to contain 20% glucose, sucrose, maltose, dextrin, corn starch and wheat starch respectively. The results indicated that fish fed the wheat starch and dextrin diets showed significantly better weight gain, specific growth rate and protein efficiency ratio compared with those fed the other diets. However, fish fed the glucose diet had a significantly lower survival and condition factor than those fed the other diets. There were significant differences in the total plasma glucose and triglyceride concentration in fish fed diets with different dietary carbohydrate sources. Haematocrit, haemoglobin, red blood cell and leucocytes were significantly affected by the dietary carbohydrate sources. The activities of glucose-6-phosphate dehydrogenase (G6PD), 6-phosphofructokinase (PFK) and fructose-1,6-bisphosphatase (FBPase) were significantly affected by the dietary carbohydrate sources, while fish fed the glucose diet showed higher G6PD, PFK and FBPase activities than those fed the other diets. These data indicated that dextrin and wheat starch were the most optimal carbohydrate sources for juvenile cobia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号