首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dry bean along with rice is a staple food for the population of South America. In this tropical region beans are grown on Oxisols and phosphorus (P) is one of the most yield limiting factors for dry bean production on these soils. A greenhouse experiment was conducted to evaluate P use efficiency in 20 elite dry bean genotypes grown at deficient (25 mg P kg?1 soil) and sufficient (200 mg P kg?1) levels of soil P. Grain yields and yield components were significantly increased with P fertilization and, interspecific genotype differences were observed for yield and yield components. The grain yield efficiency index (GYEI) was having highly significant quadratic association with grain yield. Based on GYEI most P use efficient genotypes were CNFP 8000, CNFP 10035, CNFP10104, CNFC 10410, CNFC 9461, CNFC 10467, CNFP 10109 and CNFP 10076 and most inefficient genotypes were CNFC 10438, CNFP 10120, CNFP 10103, and CNFC 10444. Shoot dry weight, number of pods per plant, 100-grain weights and number of seeds per pod was having significant positive association with grain yield. Hence, grain yield of dry bean can be improved with the improvement of these plant traits by adopting appropriate management practices. Soil pH, extractable P and calcium (Ca) saturation were significantly influenced by P treatments. Based on regression equation, optimum pH value in water was 6.6, optimum P in Mehlich 1 extraction solution was 36 mg kg?1 and optimum Ca saturation value was 37% for dry maximum bean yield.  相似文献   

2.
Dry bean is an important legume for human consumption worldwide. Low soil fertility, including zinc (Zn) deficiency, is one of the main factors limiting yield of this legume in South America, including Brazil. The objective of this study was to evaluate 30 dry bean genotypes for zinc (Zn)–use efficiency. The Zn rates used were 0 mg Zn kg?1 (low) and 20 mg Zn kg?1 (high) of soil. Grain yield, straw yield, number of pods, hundred-seed weight, number of seeds per pod, maximum root length, and rood dry weight were significantly affected by Zn and genotype treatments. The Zn × genotype interactions were also significant for growth, yield, and yield components, indicating that some genotypes were highly responsive to the Zn application while others were not. Based on seed yield efficiency index (SYEI), genotypes were classified as efficient, moderately efficient, and inefficient in Zn-use efficiency. Most efficient genotypes were CNFP 10104, BRS Agreste, BRS 7762 Supreme, CNFC 10429, BRS Estilo, CNFC 10467, BRS Esplendor, and BRS Pitamaba. The most inefficient genotype was BRS Executive. Remaining genotypes were moderately efficient in Zn-use efficiency.  相似文献   

3.
Dry bean is an important legume for human consumption in South America. A greenhouse experiment was conducted to evaluate uptake and use efficiency of macro- and micronutrients by six dry bean genotypes at two P levels (25 and 200 mg kg?1 soil). Shoot dry weight and grain yield varied significantly among genotypes and significantly increased with increasing phosphorus (P) levels. Grain harvest index (GHI) and 100-grain weight also differ significantly among genotypes and significantly increased with the increasing P levels. Based on grain yield efficiency index (GYEI), genotypes were classified as efficient and inefficient. The most efficient genotype was CNFP 10104, and inefficient genotypes were CNFP 10103 and CNFP 10120. Number of pods per plant and number of seeds per pod increased significantly with the addition of 200 mg P kg?1 of soil compared to the low level of P (25 mg P kg?1). Similarly, nitrogen (N), P, calcium (Ca), magnesium (Mg), sulfur (S), zinc (Zn), copper (Cu), and manganese (Mn) concentrations and uptake in the shoot and grain also significantly varied among genotypes. Uptake of macro- and micronutrients was greater under the greater P rate compared to the low P rate. This may be related to greater shoot or grain yield at 200 mg P kg?1 soil compared to 25 mg P kg?1 of soil.  相似文献   

4.
Dry bean is an important legume and nitrogen (N) deficiency is one of the most yield-limiting factors in most of the bean-growing regions. A greenhouse experiment was conducted with the objective to determine influence of N on growth, yield, and yield components and N uptake and use efficiency of 23 dry bean genotypes. Straw yield, grain yield, yield components, maximum root length, and root dry weight were significantly increased with the addition of N but varied with genotypes. The N × genotype interactions were also significant for most of these traits, indicating variation in responses of genotypes with the variation in N levels. There was significant difference in N uptake and use efficiency among genotypes. Most of growth and yield components were significantly and positively associated with grain yield. Based on grain yield efficiency index (GYEI), genotypes were classified into efficient, moderately efficient, or inefficient group in N-use efficiency. Nitrogen concentration was greater in grain compared to straw, indicating greater N requirement of dry bean genotypes.  相似文献   

5.

Phosphorus (P) deficiency is one of the most yield limiting factors in crop production in Brazilian Oxisols. A greenhouse experiment was conducted to evaluate 20 upland rice genotypes at low (25 mg P kg?1) and high (200 mg P kg?1) P levels applied to a Brazilian Oxisol. Grain yield and yield components were significantly influenced by P level and genotype treatments. There was a significant interaction between P level and genotype treatments in relation to grain yield, indicating genotypes responded differently under two P levels. Based on grain yield efficiency index (GYEI), genotypes were classified into efficient, moderately efficient and inefficient groups. The efficient genotypes in utilizing P were ‘BRA052053’, ‘BRS Primavera’, ‘BRA052015’, ‘BRA052023’, ‘BRA01506’, ‘BRA052045’, ‘BRA032033’, ‘BRA01596’ and ‘BRA052034’. Remaining genotypes were classified as moderately efficient in P use efficiency. None of the genotypes were fall into inefficient group. Grain yield was significantly and positively related with shoot dry weight, panicle number, grain harvest index, 1000-grain weight and had a negative and significant correlation with spikelet sterility. Grain weight was having maximum contribution in total rice plant weight comparing to root and shoot, indicating improvement in harvest index of modern Brazilian upland rice cultivars by breeding.  相似文献   

6.
Rice is important crop for world population, including Brazil. Nitrogen (N) is one of the most yield limiting nutrients in rice production under all agro-ecological conditions. A greenhouse experiment was conducted to evaluate N responses to 12 lowland rice genotypes. Soil used in the experiment was a Gley humic according to Brazilian soil classification system and Inceptisol according to USA soil taxonomy classification. The N rates used were 0 mg kg?1 (low) and 300 mg kg?1 (high) of soil. Plant height, straw yield, grain yield, panicle density, 1000 grain weight, and root dry weight were significantly increased with the addition of N fertilization. These growth, yield, and yield components were also significantly influenced by genotype treatment. Grain yield had significant linear or quadratic association with shoot dry weight, panicle number and 1000 grain weight Based on grain efficiency index genotypes were classified as efficient, moderately efficient and inefficient in N use. The N efficient genotypes were ‘BRS Tropical’, ‘BRS Jaçanã’, ‘BRA 02654’, ‘BRA 051077’, ‘BRA 051083’, ‘BRA 051108’, ‘BRA 051130’ and ‘BRA 051250’. Remaining genotypes fall into moderately efficient group. None of the genotypes were grouped as inefficient in N use efficiency.  相似文献   

7.
Dry bean is an important legume for South American population, and phosphorus (P) deficiency is the most yield-limiting nutrient for crop production in South American soils. A greenhouse experiment was conducted with the objective of evaluating influence of P fertilization on grain yield and yield components of 30 dry bean genotypes. The P levels used were 0 mg P kg?1 (natural level of the soil) and 200 mg P kg?1 applied with triple superphosphate fertilizer. Yield and yield components were significantly influenced with P as well as genotype treatments. The P?×?genotype interactions were significant for yield as well as yield components, indicating different responses of genotypes at two P levels. Root dry weight and maximum root length were also significantly increased with the addition of P fertilization. There were also significant differences among the genotypes in the growth of root system. Based on grain yield efficiency index (GYEI), genotypes were classified as P efficient, moderately efficient, and inefficient. Among 30 genotypes, 17 were classified as efficient, 12 were classified as moderately efficient, and 1 was classified as inefficient. Yield components such as pods per plant and seeds per pod were having significant positive association with grain yield. In addition, grain harvest index (GHI) was also having significant linear association with grain yield. Hence, it is possible to improve grain yield of dry bean in Brazilian Oxisol with the addition of adequate rate of P fertilization as well as use of P-efficient genotypes.  相似文献   

8.
《Journal of plant nutrition》2013,36(12):1937-1945
Potassium (K) is one of the most important nutrients limiting yield of common bean in South America. Use of K-efficient crop genotypes along with K fertilizer may be a viable strategy to improve yield and reduce cost of production. A greenhouse experiment was conducted to evaluate K-use efficiency of 10 promising genotypes of common bean (Phaseolus vulgaris L.). The genotypes were grown on an Oxisol at 0 mg K kg?1 (low K) and 200 mg K kg?1 (high K) of soil. Shoot dry weight, grain yield, number of pods, number of grains, 100-grain weight, grain harvest index, and K harvest index were significantly (P < 0.01) affected by level of K as well as genotype, except for the number of pods by genotype. Significant genotypic differences in K-use efficiency were found. On the basis of K-use efficiency (mg grain weight/mg K accumulated in shoot and grain), genotypes were classified as efficient and responsive (ER), efficient and nonresponsive (ENR), nonefficient and responsive (NER), and non-efficient and non-responsive (NENR). Only genotype Diamante Negro was only classified as ER, and genotypes Carioca, Pérola, Rosinha G-2, and Xamego were classified as ENR. Genotypes LM93300166 and LM93300176 were in the group NER, and in the NENR group were genotypes Iraí, Jalo Precoce, and Novo Jalo. From a practical point of view, genotypes which produce high grain yield at a low level of K and respond well to added K are the most desirable because they are able to express their high yield potential in a wide range of K availability.  相似文献   

9.
Soybean [Glycine max (L.) Merril] is the leading food crop worldwide, and selection of soybean genotypes for different levels of soil acidity may raise crop yield without the need to increase in planted area. An experiment in greenhouse conditions was conducted to determine the effects of two lime rates on soil chemical properties, grain yield (GY), yield components, nutritional status and physiological components of 15 soybean genotypes adapted to tropical and subtropical conditions. Genotypes BMX Apolo RR, BMX Potência RR, BRS 295RR, BRS 359RR, FPS Solar IPRO and TMG 716 IRR were the least responsive to soil acidity reduction, and BMX Turbo RR and BRS 360RR were the most responsive. Number of pods per pot, shoot dry weight yield, GY, photosynthesis, stomatal conductance, transpiration and chlorophyll increased significantly with increase in lime rate. Cultivar FPS Solar IPRO showed the highest foliar P, K, Ca and Mg concentrations in soybean, which was not observed in the grain, indicating the presence of genetic factors and the dilution effect on nutrient uptake.  相似文献   

10.
Nitrogen (N) is one of the most yield-limiting nutrients for upland rice production in Brazilian Oxisol soils. A field experiment was conducted for two consecutive years at the National Rice and Bean Research Centers Experimental Station Capivara with the objective to evaluate 10 promising genotypes of upland rice for N-use efficiency. The N rates used were 0 kg ha?1 (low) and 100 kg ha?1 (high). Plant height, shoot dry weight, grain yield, panicle number, and 1000-grain weight were significantly influenced by N and genotype treatments. Nitrogen × genotype interactions were not significant for most of the growth, yield, and yield components, indicating that differences among genotypes were consistent across N rates. Based on grain yield efficiency index (GYEI), genotypes were classified as N efficient or inefficient. Among 10 genotypes, four genotypes were efficient and six were moderately efficient in N use in the first year. In the second year, three genotypes were efficient and seven were moderately efficient in N use. Genotype BRA 052015 was classified as efficient in N use in both the years. Grain harvest index and GYEI had significant linear relationships with grain yield.  相似文献   

11.
Lowland rice is a staple food for more than 50% of the world's population and phosphorus (P) deficiency is one of the main constraints in rice production in tropical lowlands. A field experiment was conducted for two years consecutive with the objective to evaluate 12 lowland rice genotypes for P use efficiency. The P rates used were 0, 22, 44, 66, and 88 kg P ha?1 (0, 50, 100, 150 and 200 kg P2O5 ha?1) applied to an Inceptisol. The genotypes used were BRS Jaçanã, CNAi 8860, BRS Fronteira, CNAi 8879, CNAi 8880, CNAi 8886, CNAi 8885, CNAi 8569, BRSGO Guará, BRS Alvorada, BRS Jaburu and BRS Biguá. There were significant and quadratic responses of genotypes to phosphorus fertilization. Adequate P rates for maximum grain yield varied from genotype to genotype. However, across 12 genotypes, maximum grain yield was obtained with the application of 54 kg P ha?1. Genotype BRS Jaçanã was most efficient and genotype CNAi 8569 was most inefficient in P use efficiency. Shoot dry weight and panicle number was also increased significantly and quadratically with increasing P rates in the range of 0 to 88 kg P ha?1. These two plant parameters were positively associated with grain yield. Agronomic efficiency (kg grain produced per kg P applied) was significantly decreased with increasing P rates in the range of 22 to 88 kg P ha?1.  相似文献   

12.
Rice is staple food for more than 50% of the world's population. Nitrogen (N) is one of the most yield-limiting nutrients for lowland rice production around the world. Two field experiments were conducted at two locations for two consecutive years to evaluate N-use efficiency of 12 lowland rice genotypes. Growth, grain yield, and yield components were significantly influenced by N as well as genotype treatments. Location?×?year?×?genotype and location?×?year?×?N interactions were significant for most of the growth, yield, and yield components, indicating influence of these factors on yield and yield components. Overall, the most N-efficient genotypes measured in terms of grain yield were BRA 031032, BRA 031044, and BRA 02654 and the most inefficient genotypes were BRS Jaçana, BRS Fronteira, and BRA 02674. Genotypes had linear and quadratic responses to added N in the range of 0 to 200 kg ha?1. Nitrogen significantly influenced plant height, shoot dry weight, panicle number, and 1000-grain weights. Nitrogen-use efficiency (kg grain per kg N applied) varied from 33 to 49 kg grain per kg N applied, with an average value of 40 kg grain per kg N applied. The genotype BRA 031044 produced the greatest N-use efficiency, and the lowest N-use efficient genotype was BRS Fronteira. There was a significant linear association between N-use efficiency and grain yield.  相似文献   

13.
Phosphorus (P) deficiency is one of the most yield limiting factors for crop production in South American soils. Upland rice (Oryza sativa L.) is an important crop in South American cropping systems, including Brazil. A field experiment was conducted with the objective to evaluate 20 upland rice genotypes for phosphorus (P) use efficiency. The P rate used was low (0 kg P ha?1) and high [87 kg P ha?1 or 200 kg phosphorus pentoxide (P2O5) ha?1]. Plant height, shoot dry weight, grain yield, panicle number, 1000 grain weight, spikelet sterility, and grain harvest index were significantly influenced by P and genotype treatments. The P X genotype interaction was significant for grain yield, indicating that genotypes responded differently under two P rates. Overall, grain yield increased by 12% with the addition of P fertilization. Based on grain yield efficiency index, genotypes were classified into efficient, moderately efficient, and inefficient group. The genotypes that were classified as efficient in P use were BRA032048, BRA042094, BRA02601, BRA032051, BRA032033, BRA052015, BRA042156, BRA01600, BRA01506, BRA052023 and BRA042160. The inefficient genotypes in P us efficiency were BRS Primavera, BRA052045, BRA01596, and BRS Sertaneja. Grain harvest index had a significant positive association with grain yield and spikelet sterility had a significant negative association with grain yield, as expected. Average, P-use efficiency of five genotypes was about 17 kg kg?1 (kg grain yield per kg P applied).  相似文献   

14.
Soil acidity is a major yield-limiting factors for bean production in the tropical regions. Using soil acidity–tolerant genotypes is an important strategy in improving bean yields and reducing cost of production. A greenhouse experiment was conducted with the objective of evaluating 20 dry bean genotypes for their tolerance to soil acidity constraints. An Inceptisol soil was amended with dolomitic lime (2 g dolomitic lime kg–1 soil) to achieve low acidity (pH = 5.9) and without lime (zero lime kg–1 soil,) to achieve high acidity (pH = 4.8) levels to evaluate bean genotypes. At both acidity levels, genotypes differed significantly in shoot dry weight and grain yield. Shoot dry weight and grain yield were significantly decreased at the high acidity level compared to the low acidity level. Grain yield was more sensitive to soil acidity than shoot dry weight. Hence, grain yield was used in determination of tolerance index (GTI) to differentiate the range of soil acidity tolerance among bean genotypes. Based on a GTI value, 55% of the genotypes were classified as tolerant, 40% classified as moderately tolerant, and the remaining were grouped as susceptible to soil acidity. The genotype CNFC 10410 was most tolerant and genotype CNFP 10120 was most susceptible to soil acidity. Number of pods and grain harvest index were significantly and positively associated with grain yield. The improvement in grain yield in low acidity may be related to reduction of toxic levels of soil aluminum (Al3+) and hydrogen (H+) ions by lime addition. At harvest, soil extractable phosphorus (P) and potassium (K) increased with the reduction of soil acidity, and this might have contributed to the better nutrition of beans and lead to higher growth.  相似文献   

15.
Dry bean is an important legume crop for Latin American people and nitrogen is one of the most yields limiting nutrients for bean crop. A greenhouse experiment was conducted to evaluate nitrogen (N) use efficiency of 20 dry bean genotypes. Genotypes were grown on an Oxisol and two N levels used were without N application (low level) and an application of 400 mg N kg?1 (high level). Shoot dry weight, grain yield and yield components, N concentration and uptake in shoot and grain were significantly affected by N and genotype treatments. Grain yield had a highly significant (P < 0.01) association with shoot dry weight, pod number, grains per pod and 100 grain weight. Among the 20 genotypes tested, Perola, CNFR 7847, CNFR 7865, CNFP 7777 and CNFM 6911 were found to produce reasonably good yield at low N rate as well as responded well to applied N. Whereas, some genotypes like BRS Radiante, CNFP 7624, CNFM 7875, CNFM 7886, CNFC 7813, CNFC 7827, CNFP 7677 and CNFP 7775 produced very good yields at higher N rate but very low yields at lower N rate. Hence, these genotypes are good for farmers using higher technology. Nitrogen concentration and uptake were higher in dry bean grains compared with shoot and 63% of N accumulated at zero N rate and 75% N accumulated at 400 mg N rate were translocated to grain across 20 genotypes. Nitrogen uptake efficiencies were having highly significant (P < 0.01) quadratic relationship with grain yield. This indicates that improving N uptake in dry bean plants can increase grain yield.  相似文献   

16.
Dry bean is an important legume worldwide, and potassium (K) deficiency is one of the important constraints for bean production in most of the bean growing regions. A greenhouse experiment was conducted with the objective to evaluate fifteen dry bean genotypes grown on a Brazilian lowland (Inceptisol) United States Soil Taxonomy classification and Gley humic Brazilian Soil Classification system), locally known as “Varzea” soil. The K rate used was 0 mg kg?1 (low, natural soil level) and 200 mg kg?1 (high, applied as fertilizer). Straw yield, seed yield, pods per plant, seeds per pod, 100 seed weight, and seed harvest index were significantly increased with the addition of K fertilizer. These traits were also significantly influenced by genotypic treatment. Similarly, root length and root dry weight were also influenced significantly by K and genotype treatments. The K X genotype interactions for most of these traits were also significant, indicating variation in these traits with the variation in K level. Based on seed yield efficiency index (SYEI), genotypes were classified as efficient, moderately efficient, and inefficient in K use efficiency. Maximum grain yield was obtained with 74 mg K kg?1 extracted by Mehlich 1 extracting solution. Similarly, K saturation required for maximum grain yield was 1.1%.  相似文献   

17.
Lowland rice significantly contributes to world as well as Brazilian rice production and information on genotypes potassium-use efficiency is limited. A greenhouse experiment was conducted with the objective to evaluate lowland rice genotypes for potassium (K)–use efficiency. Ten genotypes were evaluated at 0 mg K kg?1 (low) and 200 mg K kg?1 (high) of soil. Grain yield and shoot dry weight were significantly affected by K as well as genotype treatments. Genotypes CNAi 8860, CNAi 8859, BRS Fronteira, and BRS Alvorada were the best in relation to K-use efficiency because they produced best grain yield at low as well as at higher K levels. Shoot dry weight, number of panicles per pot, and 1000-grain weight had highly significant (P < 0.01) association with grain yield. Spikelet sterility, however, had significant negative association with grain yield. These plant parameters were mainly influenced by genotypes, indicating importance of selecting appropriate genetic material for improving grain yield. Soil K depletion was significant at harvest, suggesting large amount of K uptake by lowland rice genotypes.  相似文献   

18.
A greenhouse experiment was conducted to evaluate phosphorus (P)‐use efficiency of 10 promising genotypes of common bean (Phaseoius vulgaris L.) with short and normal growth duration. The genotypes were grown on an Oxisol at 25 mg P kg‐1 (low P) and 150 mg P kg‐1 (high P) of soil. Shoot and root dry weight, root length, P concentration in the shoot, and P uptake in the shoot were significantly (P<0.01) affected by soil P concentration and genotype. However, P level did not effect root length and genotype had no effect on root dry weight. On the basis of P‐use efficiency (mg dry weight of shoot/mg P accumulated in the shoot) genotypes were classified as efficient and responsive (ER), efficient and nonresponsive (ENR), nonefficient and responsive (NER), and nonefficient and nonresponsive (NENR). From a practical point of view, genotypes which produce a lot of dry matter in a soil with a low P level, and respond well to added P are the most desirable because they are able to express their high yield potential in a wide range of P environments. Novo Jalo and Pérola genotypes fall into this group. Genotypes Irai, Jalo Precoce and L93300166 fall into the ENR group. Genotypes Carioca, Rosinha G‐2, and Xamengo were classified NER, whereas, genotypes L93300176 and Diamante Negro were classified as NENR. There were no differences between short and normal growth duration genotypes in P‐use efficiency.  相似文献   

19.
Dry bean (Phaseolus vulgaris L.) is an important legume worldwide and nitrogen (N) is most yield limiting nutrients. A field experiment was conducted for two consecutive years to evaluate response of 15 dry bean genotypes to nitrogen and rhizobial inoculation. The N and rhizobia treatments were (i) control (0 kg N ha?1), (ii) seed inoculation with rhizobia strains, (iii) seed inoculation with rhizobia strains + 50 kg N ha?1, and (iv) 120 kg N ha?1. Straw yield, grain yield, and yield components were significantly influenced by N and rhizobial treatments. Grain yield, straw yield, number of pods m?2, and grain harvest index were significantly influenced by year, nitrogen + rhizobium, and genotype treatments. Year × Nitrogen + rhizobium × genotype interactions were also significant for these traits. Hence, these traits varied among genotypes with the variation in year and nitrogen + rhizobium treatments. Inoculation with rhizobium alone did not produce maximum yield and fertilizer N is required in combination with inoculation. Based on grain yield efficiency index, genotypes were classified as efficient, moderately efficient, and inefficient in nitrogen use efficiency (NUE). NUE defined as grain produced per unit N applied decreased with increasing N rate. Overall, NUE was 23.17 kg grain yield kg?1 N applied at 50 kg N ha?1 and 13.33 kg grain per kg N applied at 120 kg N ha?1.  相似文献   

20.
Copper (Cu) is an essential micronutrients and its deficiency has been reported in many crops including dry bean. A greenhouse experiment was conducted to evaluate thirty dry bean genotypes (G) for Cu-use efficiency. The Cu levels used were low (natural soil level) and adequate [10 mg Cu kg?1 soil, applied with copper sulfate (24 percent Cu)]. Straw yield, seed yield, number of pods per plant, seed per pod, seed harvest index (SHI), maximum root length (MRL), and root dry weight (RDW) were significantly affected by Cu and genotype treatments. The Cu × G interactions were also significant for these traits, indicating variation in genotype responses with the variation in Cu levels. Based on seed yield efficiency index (SYEI), genotypes were grouped in three classes: Cu efficient, moderately Cu efficient, and Cu inefficient. Fifty-three percent of the genotypes were classified as efficient, 40 percent were classified as moderately efficient, and 7 percent were classified as inefficient in Cu-use efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号