首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cochliobolus miyabeanus forms a specialized infection structure, an appressorium, to infect rice. Contacting a hard surface induces appressorium formation in C. miyabeanus, while the hydrophobicity of the substratum does not affect this morphogenic infection event. To determine whether the calcium/calmodulin-dependent signaling system is involved in prepenetration morphogenesis in C. miyabeanus, the effects of a calcium chelator (ethylene glycol tetraacetic acid; EGTA), phospholipase C inhibitor (neomycin), intracellular calcium channel blocker (TMB-8), calmodulin antagonists (chlorpromazine, phenoxybenzamine, and W-7), and calcineurin inhibitor (cyclosporin A) on morphogenesis and infection were examined. Addition of Ca2+ and the calcium ionophore A23187 did not affect conidial germination, while the number of appressoria decreased with higher concentrations. EGTA inhibited conidial germination and appressorium formation. The calcium channel blocker did not affect appressorium formation at any concentration; however, calmodulin antagonists and the calcineurin inhibitor specifically reduced appressorium formation at the micromolar level. One of the calmodulin antagonists, W-7, also inhibited accumulation of mRNA of the calmodulin gene within germinating conidia and/or appressorium-forming germ tubes. Thus, biochemical processes controlled by the calcium/calmodulin signaling system seem to be involved in the induction of prepenetration morphogenesis on rice.  相似文献   

2.
Uhm KH  Ahn IP  Kim S  Lee YH 《Phytopathology》2003,93(1):82-87
ABSTRACT Colletotrichum gloeosporioides forms a specialized infection structure, an appressorium, for host infection. Contacting hard surface induces appressorium formation in C. gloeosporioides, whereas hydrophobicity of the contact surface does not affect this infection-related differentiation. To determine if the calcium/calmodulin-dependent signaling system is involved in prepenetration morphogenesis in C. gloeosporioides pathogenic on red pepper, effects of calcium chelator (EGTA), phospholipase C inhibitor (neomycin), intracellular calcium modulators (TMB-8 and methoxy verampamil), and calmodulin antagonists (chloroproma-zine, phenoxy benzamine, and W-7) were tested on conidial germination and appressorium formation. Exogenous addition of Ca(2+), regardless of concentration, augmented conidial germination, while appressorial differentiation decreased at higher concentrations. Inhibition of appressorium formation by EGTA was partly restored by the addition of calcium ionophore A23187 or CaCl(2). Calcium channel blockers and calmodulin antagonists specifically reduced appressorium formation at micromolar levels. These results suggest that biochemical processes controlled by the calcium/calmodulin signaling system are involved in the induction of prepenetration morphogenesis in C. gloeosporioides pathogenic on red pepper.  相似文献   

3.
Choi WB  Kang SH  Lee YW  Lee YH 《Phytopathology》1998,88(1):58-62
ABSTRACT Magnaporthe grisea, the causal agent of rice blast, forms a dome-shaped melanized infection structure, an appressorium, to infect its host. Environmental cues that induce appressorium formation in this fungus include the hydrophobicity and hardness of the contact surface and chemicals produced by the host. An elevated concentration of intracellular cyclic AMP (cAMP) has been implicated in appressorium differentiation in M. grisea. Polyamines (putrescine, spermidine, and sper-mine) are involved in cell growth and differentiation in a wide range of organisms. To understand the role of polyamines in appressorium differentiation in M. grisea, intracellular polyamines were quantified, and the effects of polyamines and polyamine biosynthesis inhibitors on conidial germination and appressorium formation were tested. High levels of polyamines were detected in freshly collected spores, but the levels decreased during conidial germination. Spermidine was found to be the major component. Polyamines and polyamine biosynthesis inhibitors did not affect conidial germination, but polyamines specifically impaired appressorium formation. Furthermore, exogenous addition of cAMP restored appressorium formation inhibited by poly-amines. These results suggest that polyamines may reduce intracellular cAMP levels in M. grisea, leading to the inhibition of appressorium formation.  相似文献   

4.
 本研究采用不同的染色方法和显微技术观察橡胶树白粉病菌(Oidium heveae)分生孢子的超微结构,分生孢子在不同介质表面及不同介质溶液中的萌发情况,以及孢子萌发过程中孢内主要物质的变化,以明确O. heveae分生孢子在不同介质萌发的形态变化及萌发所需能量来源。结果表明:O. heveae 分生孢子表面具有较浅的花纹结构,呈椭圆形或者卵圆形,大小为26.1~45.1μm×13.5~21.9μm。O. heveae 分生孢子在亲水和疏水介质上均能萌发产生芽管和附着胞,在葡萄糖水中的萌发率略高于清水中,但萌发率无显著性差异 (P>0.05),芽管和附着胞形成与形态无明显差别。分生孢子萌发过程中,几个液泡会融合形成一个,最终消散而呈不明显可见的泡囊结构。孢子内的糖原、脂质及分裂后的核仁等可通过芽管向附着胞输送,表明O. heveae 分生孢子萌发所需能量物质主要来源于自身能量贮备。  相似文献   

5.
Lee MH  Bostock RM 《Phytopathology》2006,96(10):1072-1080
ABSTRACT Monilinia fructicola, which causes brown rot in stone fruit, forms appressoria on plant and artificial surfaces. On nectarine, the frequency of appressoria produced by conidial germlings depends to a large degree on the stage of fruit development, with numerous appressoria formed on immature (stage II) nectarine fruit, and no appressoria observed on fully mature fruit (late stage III). On polystyrene surfaces, appressorium formation was increased from <10% of germinated conidia to >95% of germinated conidia when the conidia were washed to remove residual nutrients and self-inhibitors. M. fructicola appressorium formation also appears to be regulated by the topography of the plant surface. On fruit, appressoria formed on stomatal guard cell lips, on the grooves of lateral cells adjacent to stomata or between two epidermal cells, and on the convex surfaces of epidermal cells. Pharmacological effectors indicate that cyclic AMP-, MAP kinase-, and calcium/calmodulin-dependent signaling pathways are involved in the induction and development of appressoria. KN-93, an inhibitor of calmodulin-dependent protein kinase II, did not inhibit conidial germination but did inhibit appressorium formation and brown rot development on flower petals, suggesting that appressoria are required for full symptom development on Prunus spp. petals.  相似文献   

6.
为了解橡胶树2种炭疽病菌的侵染结构发育分化过程,采用平板菌落生长速率法测定了3株胶孢炭疽菌Colletotrichum gloeosporioides和3株尖孢炭疽菌C.acutatum的菌丝生长速率,测量其分生孢子大小,显微观察2种炭疽菌在疏水表面诱导下侵染结构的发育分化过程。结果表明,胶孢炭疽菌菌丝生长速率为0.96~1.36 cm/d,显著高于尖孢炭疽菌的菌丝生长速率0.72~0.89 cm/d,但二者分生孢子大小无显著差异。在疏水表面诱导下,2种炭疽菌分生孢子在接种2~6 h后开始萌发,12 h孢子萌发率为71.70%~88.05%,13~16 h开始分化附着胞,24 h附着胞形成率为48.99%~70.74%,36 h菌丝诱发形成大量附着枝,48 h后分生孢子产生的次生菌丝也可诱发形成附着枝,附着枝呈圆形、姜瓣形、梨形或不规则形。分生孢子极易产生,可在菌丝顶端成簇或菌丝侧面排列产生,也可由分生孢子形成的芽管产生,或在芽管分化附着胞过程分枝形成分生孢子;附着胞多着生于芽管顶端,少数附着胞顶端可继续萌发类似短芽管结构,再次分化形成可黑色化的次级附着胞。表明橡胶树2种炭疽菌不同菌株间分生孢子萌发时间、孢子萌发率、附着胞形成时间和形成率有一定差异,但种间无明显差异;橡胶树炭疽菌分生孢子极易形成,在疏水表面容易分化形成附着胞和附着枝,说明具有极强的适生性。  相似文献   

7.
Oh HS  Lee YH 《Phytopathology》2000,90(10):1162-1168
ABSTRACT Chemical fungicides are a major method of control for plant diseases in spite of potential negative effects on the environment and the appearance of resistant strains. Development of new chemical fungicides has been largely dependent upon in vivo efficacy tests in the greenhouse or in fields, which is in contrast to target-oriented in vitro screening systems widely used in the pharmaceutical field. To establish a target-site-specific screening system for antifungal compounds, specific inhibition on appressorium formation of the rice blast fungus Magnaporthe grisea was employed. For many plant-pathogenic fungi, including M. grisea, appressorium formation is an essential step to infect host plants. Among 1,000 culture filtrates of members of the class Actinomycetes and fungi, five (A5005, A5008, A5314, A5387, and A5397) from the class Actinomycetes showed differential inhibitory effects on appressorium formation of M. grisea in a dosage-dependent manner. Three (A5005, A5314, and A5387) of these were further fractionated into ethyl acetate and water fractions. The ethyl acetate fraction of A5005 and both the ethyl acetate and water fractions from A5314 and A5387 inhibited appressorium formation, while conidial germination remained little affected. Inhibition of appressorium formation by the ethyl acetate or water fraction was reversed by the exogenous addition of cyclic AMP. Significantly reduced numbers of conidia with appressoria were observed on rice leaves in the presence of culture filtrates. Furthermore, these culture filtrates also exhibited significant disease control of rice blast in the greenhouse. This rapid and target-oriented screening system could be adopted to screen candidate compounds for rice blast control and could be applicable for other appressorium-forming, plant-pathogenic fungi.  相似文献   

8.
Ahn IP  Kim S  Kang S  Suh SC  Lee YH 《Phytopathology》2005,95(11):1248-1255
ABSTRACT Responses of rice to Magnaporthe grisea and Cochliobolus miyabeanus were compared. In Tetep, a rice cultivar resistant to both fungi, pathogen inoculation rapidly triggered the hypersensitive reaction (HR), resulting in microscopic cell death. In rice cv. Nakdong, susceptible to both pathogens, M. grisea did not cause HR, whereas C. miyabeanus caused rapid cell death similar to that associated with HR, which appeared similar to that observed in cv. Tetep, yet failed to block fungal ramification. Treatment with conidial germination fluid (CGF) from C. miyabeanus induced rapid cell death in both cultivars, suggesting the presence of phytotoxins in CGF. Pretreatment of cv. Nakdong with CGF significantly increased resistance to M. grisea, while the same treatment was ineffective against C. miyabeanus. Similarly, in cv. Nakdong, benzothiadiazole (BTH) significantly increased resistance to M. grisea, but was ineffective against C. miyabeanus. Methyl jasmonate (MeJA) treatment appeared to be ineffective against either fungus. Increased resistance of cv. Nakdong to M. grisea by BTH or CCF treatment was correlated with more rapid induction of three monitored PR genes. Application of MeJA resulted in the expression of JAmyb in cv. Nakdong being induced faster than in untreated plants in response to M. grisea infection. In contrast, the expression pattern of the PR and JAmyb genes in response to C. miyabeanus was nearly identical between cvs. Nakdong and Tetep, and neither BTH nor MeJA treatment significantly modified their expression patterns in response to C. miyabeanus infection. Our results suggest that rice employs distinct mechanisms for its defense against M. grisea versus C. miyabeanus.  相似文献   

9.
An examination was made of the effects of three polyamine biosynthesis inhibitors on germination and appressorium formation by uredospores of the bean rust fungusUromyces viciae-fabea on artificial membranes. The ornithine decarboxylase inhibitor -difluoromethylornithine had no effect on uredospore germination, even when used at 2mM, whereas appressorium formation was reduced by 63% at 0.5 mM and by 99% at 2mM. Methylglyoxal bis(guanylhydrazone), an inhibitor of S-andenosylmethionine decarboxylase, reduced germination when used at 0.025 mM, and at this concentration, appressorium formation was completed prevented. Uredospore germination was unaffected by as much as 3 mM cyclohexylamine, an inhibitor of spermidine esynthase, while appressorium formation was reduced at 1 mM and completely prevented at 3.3 mM. These results support previous suggestions that inhibitors of polyamine biosynthesis exert their main effect on the early stages of fungal development on the leaf surface.Abbreviantions CHA cyclohyxylamine - DFMO -difluoromethylornithine - MGBG methylglyoxal bis(guanylhydrazone)  相似文献   

10.
玉米大斑病菌孢子萌发和附着胞形成的影响因素研究   总被引:3,自引:0,他引:3  
 Factors of influence on conidium germination and appressorium formation of Setosphaeria turcica,such as light condition,conidial concentration,nutrient resources and pH value of conidial suspension were studied.There was no significant difference among light treatments.The optimal pH for conidium germination and appressorium formation was 5.0 to 7.0.The exogenous nutrient sources were not the indispensable factors for conidium germination,but 5% sugar solution were more favorable for appressorium formation than the others.Low conidial concentration in suspension (conidia ≤ 104/mL) was propitious to conidium germination and appressorium formation,which were inhibited significantly in higher concentration.It was suggested that the phenomenon was due to the self-inhibitor,a kind of lipophilic substance,existing in the site of conidium germination.  相似文献   

11.
The antifungal activities of hyoscyamine and scopolamine, major alkaloids extracted from the desert plant Hyoscyamus muticus, against two rice pathogens, Magnaporthe oryzae and Rhizoctonia solani, were studied. The minimum inhibitory concentration of hyoscyamine that resulted in distinctive inhibition (MIC50) was 1 μg/ml for both fungi. Exposure to hyoscyamine caused the leakage of electrolytes from the mycelia of both fungi. Hyoscyamine (>1 μg/ml) irreversibly delayed or inhibited conidial germination and appressorium formation in M. oryzae grown on polystyrene plates. Hyoscyamine effectively inhibited the attachment of conidia to the surface of rice (Oryza sativa) leaves and inhibited appressorium formation on the leaves. A high concentration of scopolamine (1000 μg/ml) also delayed or inhibited conidial germination in M. oryzae, but conidial germination was restored after washing the conidia with water. Antifungal activity of hyoscyamine was reduced by scopolamine. Magnaporthe oryzae infection was significantly suppressed (by >95%) in leaves of intact rice plants treated with hyoscyamine (10 μg/ml). Moreover, 10 μg hyoscyamine/ml significantly reduced the disease severity index for sheath blight to ≤0.2, when compared with the disease index of control plants (>7.0). Hyoscyamine (>20 μg/ml) completely inhibited sclerotial germination and development of R. solani by delaying the initiation, maturation, and melanization of the sclerotia. These results suggest that tropane alkaloids may be useful for controlling blast and sheath blight diseases of rice and for studying the mechanisms that regulate conidial germination in M. oryzae and sclerotial germination and development in R. solani.  相似文献   

12.
稻瘟病菌Magnaporthe oryzae严重威胁水稻的产量与质量,明确稻瘟病菌与水稻互作过程及机理,对防治稻瘟病具有重要意义。本研究利用稻瘟病菌常用致病菌株GUY11和ZB25,构建了绿色荧光蛋白GFP的过量表达菌株,并通过荧光显微观察菌株侵染寄主水稻过程中侵染结构的形成与发育,包括孢子萌发、附着胞形成、侵染钉形成、侵染菌丝增殖、坏死斑形成及产孢。另外,通过比较过量表达菌株对稻瘟病高抗水稻和易感水稻的侵染过程,发现侵染过程的差异主要集中于侵染钉的穿透和侵染菌丝的定殖。本研究为分析稻瘟病菌对寄主水稻的定殖规律提供了一种有效工具。  相似文献   

13.
14.
对西双版纳海巴戟炭疽病进行调查和病原菌鉴定。结果表明,海巴戟炭疽病周年发生,8月的发病率和病情指数最高,分别为40.76%和8.9。根据病原菌形态特征,将其鉴定为瓜类炭疽菌[Colletotrichum orbiculare (Berk. &; Mont)]。有关温度、pH、光照和碳源对病原菌孢子萌发和附着胞形成影响的研究显示,20~35 ℃,海巴戟炭疽病菌分生孢子萌发率高,20 ℃是形成附着胞的最适温度;最适合海巴戟炭疽病菌分生孢子萌发和形成附着胞的pH为4~8;在日光灯连续光照、12 h光暗交替和自然光照射条件下分生孢子萌发率在90%以上,光照对此病原菌附着胞形成的影响差异不大;1%葡萄糖、麦芽糖、蔗糖、D果糖和α 乳糖溶液中孢子萌发率都不高。  相似文献   

15.
ZJUF0986活性代谢产物对稻瘟病菌致病性的影响   总被引:2,自引:1,他引:1  
通过菌丝生长速率法和悬滴法测定ZJUF0986活性代谢产物对稻瘟病菌菌丝生长、孢子萌发和附着胞形成的影响。结果表明,ZJUF0986活性代谢产物对稻瘟病菌菌丝生长的有效中浓度EC50为18.55mg/L,与对照药剂三环唑的EC50(17.30mg/L)相比无显著性差异。活性代谢产物不仅影响孢子萌发,也显著降低附着胞的形成。浓度为10mg/L的活性代谢物可完全抑制孢子萌发及附着胞的形成;浓度为1.25mg/L时则明显延缓孢子萌发及附着胞的形成,处理48h后的孢子萌发率和附着胞形成率分别为62.17%和38.46%。以浓度为1.25mg/L活性代谢产物处理的稻瘟病菌孢子悬浮液接种离体大麦叶片,病原菌孢子在大麦叶片表面能部分萌发形成附着胞,但侵染栓形成延迟,致病性明显降低。  相似文献   

16.
A comparison of rates of germination and appressorium formation by an isolate of Colletotrichum gloeosporioides on mango leaves, fruit surfaces and cellophane membranes showed that behaviour was broadly similar on all three substrates. Frequency of appressorium formation was slightly higher on cellophane membranes, and both hyaline and melanized appressoria were formed. Only melanized appressoria were formed on mango surfaces. In vitro experiments on membranes showed comparative differences in physiological behaviour with temperature for two Philippine isolates of C. gloeosporioides . The most stimulatory temperature for production of appressoria differed in isolates I-2 and I-4 (25 and 20°C, respectively). At 30°C more appressoria became melanized than at lower temperatures, but the frequency of formation of penetration pegs was highest at 25°C. Conidia of C. gloeosporioides germinated on cellophane membranes at relative humidities as low as 95%, but the percentage of conidia germinating and forming appressoria increased as the RH approached 100%. Approximately 18% of conidia of C. gloeosporioides I-2 held at 62 and 86% RH for 4 weeks retained viability, and some were capable of forming appressoria when placed at 100% RH. These results have implications for epidemiological models for disease control.  相似文献   

17.
Fungi were screened for the production of inhibitors of appressorium formation in germinating conidiospores of Magnaporthe grisea on inductive and non-inductive surfaces. Bioactivity-guided isolation yielded glisoprenins A, C, D and E from Gliocladium roseum and oleic acid from three fungi. The glisoprenins were active only on a hydrophobic surface, whereas oleic acid inhibited appressorium formation on a hydrophilic surface when 1,16-hexadecanediol, but not 8-(4-chlorophenylthio)adenosine-3′,5′-monophosphate, was used as inducer. The inhibition by glisoprenins could be reversed competitively by 1,2-dioctanoylglycerol but not by 1-oleoyl-2-acetyl-glycerol, both effective activators of protein kinase C in mammalian cells. Other mono-unsaturated fatty acids also inhibited appressorium formation. The corresponding methyl esters were inactive. The results agree with previous findings that at least two signal-transducing pathways are involved in appressorium formation. In addition, the differences observed between fungal signalling via PKC and the pathway used in mammalian cells could be used for the search for new and selective fungicides for rice blast disease. © 1998 Society of Chemical Industry  相似文献   

18.
ABSTRACT Powdery mildew disease on poinsettias (Euphorbia pulcherrima) growing in commercial greenhouses was first observed in the United States in 1990 and has become an economically significant problem for poinsettia growers in the Midwest and northern United States since 1992. The temporal development of infection structures produced by conidial germ tubes of the pathogen (Oidium sp.) and the effect of high temperature on their development were investigated using poinsettia leaf disks placed in humidity chambers. Observations were made using light microscopy and scanning electron microscopy. At 20 degrees C (85% relative humidity), conidia germinated and formed an appressorium within 6 h of inoculation. Germination over time followed a monomolecular curve (r(2) = 0.77, P 相似文献   

19.
稻瘟病菌附着胞差异表达基因文库的构建方法   总被引:1,自引:0,他引:1  
 利用抑制性差减杂交方法构建了稻瘟病菌分生孢子接种24h所形成的附着胞差异表达基因文库。采用复印胶片诱导稻瘟病菌附着胞形成,在孢子浓度为1.0×106个/mL时,附着胞的形成率达到96.5%。分别提取附着胞、菌丝和分生孢子RNA,反转录成cDNA并经Alu Ⅰ酶切、接头连接后,以附着胞cDNA片段为tester,菌丝及分生孢子cDNA为driver进行抑制性差减杂交,构建成差减文库。从文库中分离获得142个基因片段,通过RT-PCR方法鉴定其中的71个为差异表达基因,证实文库高效可靠。构建优质的稻瘟病菌附着胞差异表达基因差减文库,为深入了解附着胞形成过程中基因的表达及功能奠定了基础。  相似文献   

20.
Conidial germination and differentiation, the so‐called prepenetration processes, of the barley powdery mildew fungus (Blumeria graminis f.sp. hordei) are triggered in vitro by very‐long‐chain aldehydes, minor constituents of barley leaf wax. However, until now it has not been demonstrated that these cuticle‐derived molecules also play a significant role in the initiation and promotion of the fungal prepenetration processes in vivo, on the surface of a living plant leaf. In the maize (Zea mays) wax mutant glossy11, which is completely devoid of cuticular very‐long‐chain aldehydes, germination and appressorial differentiation of B. graminis were strongly impeded. Spraying the mutant leaf surface with aldehyde‐containing wild‐type wax or pure n‐hexacosanal (C26‐aldehyde) fully restored fungal prepenetration, whereas maize wild‐type leaf surfaces coated with n‐docosanoic acid exhibited reduced conidial germination rates of 23%, and only 5% of the conidia differentiated infection structures. In vitro studies were performed to further corroborate the extensive prevention of fungal germination and differentiation in response to artificial surfaces coated with aldehyde‐deficient maize wax. Because of its phenotype affecting the B. graminis prepenetration processes, the glossy11 mutation of maize may become a valuable molecular target and genetic tool that could provide a means of developing basal powdery mildew resistance in the globally important crops wheat and barley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号