首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Variation in the distribution and abundance of nearshore fishes is critical to understand food web processes and fishery management issues in Lake Michigan. This study characterised patterns in abundance of three common nearshore species, yellow perch Perca flavescens (Mitchell), round goby Neogobius melanostomus (Pallas) and alewife Alosa pseudoharengus (Wilson), in relation to spatio‐temporal, abiotic and biotic factors using gillnet sampling conducted across 5 years at multiple locations representing different substrates. Significant variations were observed in alewife and round goby catches between locations. A negative relationship between round goby and age‐0 yellow perch catch was observed, indicating potential competition between the two species. This study demonstrates that variability in nearshore fish communities can be driven by factors including substrate and interspecific interactions. Given the prominent role these species play in Lake Michigan's food web and thus their importance to fishery production, a thorough understanding of these factors is warranted.  相似文献   

2.
Processes influencing fish recruitment are often highly complex and inherently difficult to understand. Invasive species may complicate recruitment through habitat and food web modifications resulting in competitive bottlenecks. Common carp Cyprinus carpio have been distributed worldwide, and their introductions have resulted in destructive effects on aquatic ecosystems and food web dynamics. Common carp are highly fecund, and high densities of age‐0 carp may occur in some years that may reduce invertebrate prey resources and adversely affect native age‐0 fishes. We used enclosures and field observations to examine potential effects of age‐0 common carp on growth and survival of age‐0 yellow perch Perca flavescens and bluegill Lepomis macrochirus. Yellow perch and bluegill were stocked into enclosures with and without common carp (31 fish/m3) using a substitution experimental design, and fish growth and survival and invertebrate prey resources were assessed. Common carp reduced growth of yellow perch but not bluegill and did not affect survival of either species in mesocosms. Next, we used patterns of common carp, bluegill, and yellow perch abundance and total length across 38 lake‐years to evaluate potential interspecific interactions in natural systems. Age‐0 common carp abundance was not negatively related to size or abundance of bluegill or yellow perch. However, adult common carp and age‐0 yellow perch abundance were inversely related, suggesting a potential competitive bottleneck. Thus, age‐0 common carp may suppress growth of yellow perch when prey is limited, but adult common carp may have larger effects than early life stages on native juvenile fishes.  相似文献   

3.
Dietary niches of fishes have traditionally been evaluated at the population level, with diet pattern central tendencies compared spatio‐temporally among habitats and populations. More recently, however, studies have emphasised the importance of within‐population diet variation and niche partitioning. Several studies have examined diets of young yellow perch (Perca flavescens) at the population level and have described an ontogenetic transition from zooplankton to benthic prey during the first year of life. However, independent of ontogenetic diet shifts, intrapopulation variation of young yellow perch diets remains largely unexplored. We quantified patterns of diet composition in age‐0 yellow perch collected from Saginaw Bay, Lake Huron, USA during July–October, 2009 and 2010. We observed substantial variation in diet composition among individuals across and within sites, but found relatively weak evidence indicating an ontogenetic diet shift. Zooplankton were the dominant prey for age‐0 yellow perch on most occasions, and individual diets were composed primarily of either zooplankton (e.g. Daphnia spp., Calanoida) or benthic (i.e. Chironomidae larvae, Chydoridae) prey. These patterns were not simply attributable to differences in prey availability and ontogenetic diet shifts, because a) not only diet composition, but also prey selectivity (Chesson's α) varied among sites and b) individual and spatial diet differences were evident independent of ontogeny. Within‐cohort differences in diet composition may be an important, but often overlooked, phenomenon with implications for cumulative trophic interactions and intracohort growth and survival among young fish.  相似文献   

4.
Abstract – Lake Michigan has experienced many ecological changes as a result of introductions of non‐native species. Arguably the most significant was that of alewife (Alosa pseudoharengus), yet studies on diet overlap with native species are lacking. We analysed diet trends of alewife, spottail shiner (Notropis hudsonius) and yellow perch (Perca flavescens) collected in summer and fall 2000–2007 near Waukegan, IL, in 3–10 m depths. Mean percentage composition by dry weight for 23 prey taxa was used in multivariate analysis to test whether diet differed across species and size classes. We also tested whether zooplankton and benthic invertebrate community composition changed over time. Fish diets were similar over all years but differed seasonally. In summer, diets of large alewife were similar to both small alewife and small yellow perch, with Bosminidae, chironomid larvae and copepods as primary common prey. During fall, alewife and yellow perch size classes exhibited strong intraspecific diet overlap, while there was low diet overlap between species. Primary distinctions between species’ diets in fall were higher consumption of amphipods by yellow perch and dreissenids by spottail shiners compared to alewife, which consumed higher proportions of zooplankton. Overall, high yellow perch diet overlap with alewife during summer and with their larger conspecifics during fall could lead to negative implications for yellow perch growth before the critical overwintering period. Detailed insights into diet overlap and prey availability are critical first steps in understanding competitive interactions between native and non‐native fish that dominate the nearshore community in southwestern Lake Michigan.  相似文献   

5.
Abstract Seven abiotic and biotic variables were tested to determine whether they influence the recruitment to age two of yellow perch, Perca flavescens (Mitchill), in waters of southern Lake Michigan, USA. Recruitment was analysed using a Ricker stock‐recruitment relationship that accounts for density dependency. Significant model variables tested individually and ranked by total variance explained included the abundance of sexually mature yellow perch, alewife, Alosa pseudoharengus (Wilson) and spottail shiner, Notropis hudsonius (Clinton). Variables found unrelated to recruitment or generally less explanatory included the abundance of round goby, Neogobius melanostomus (Pallus), mean water temperature, variation in water temperature and water clarity. The best‐fitting multivariable model explained 69% of the recruitment variability and included abundances of sexually mature yellow perch, alewife and spottail shiner. These results suggest that yellow perch recruitment in southern Lake Michigan is regulated in part by biotic interactions with other species of the near‐shore community, including alewife and spottail shiners, in addition to the abundance of reproductively mature yellow perch.  相似文献   

6.
Fish communities may increase in biomass and productivity due to energy subsidies from the littoral invertebrate community. In lakes recovering from acidification and metal contamination, such as those in Sudbury, Ontario, Canada, impaired benthic invertebrate communities (i.e., low diversity with higher abundance of small‐bodied taxa) allowed a critical test of the role of these littoral pathways on fish diet. We compared fish abundance, diversity, diet and biomass in eight recovering and eight reference lakes and related availability of the main littoral and pelagic invertebrate groups to fish diet regime using stable isotope analysis. A Bayesian mixing model (MixSIR) was used to estimate diet likelihood, and convex hull analysis was used to estimate trophic niche space of fish communities. Fish biomass did not differ between impaired and reference lakes despite substantial differences in potential diet. Fish depended strongly on littoral benthos in the reference lakes but consumed more pelagic food in the impaired lakes. The trophic niche of the focal, most common fish species (i.e., yellow perch, smallmouth bass, pumpkinseed and brown bullhead) was larger in the impaired lakes. We attributed these differences to low diversity at the highest trophic levels of fish communities in the impaired lakes as well as to depauperate benthic invertebrate communities. In contrast to the food webs of most temperate lakes, fish in impaired lakes preyed less on littoral invertebrates yet still managed to maintain a reference lake level of biomass standing crop by relying more on pelagic resources – macro zooplankton such as Chaoborus.  相似文献   

7.
Non‐native piscivores can alter food web dynamics; therefore, evaluating interspecific relationships is vital for conservation and management of ecosystems with introduced fishes. Priest Lake, Idaho, supports a number of introduced species, including lake trout Salvelinus namaycush, brook trout S. fontinalis and opossum shrimp Mysis diluviana. In this study, we used stable isotopes (δ13C and δ15N) to describe the food web structure of Priest Lake and to test hypotheses about apparent patterns in lake trout growth. We found that isotopic niches of species using pelagic‐origin carbon did not overlap with those using more littoral‐origin carbon. Species using more littoral‐origin carbon, such as brook trout and westslope cutthroat trout Oncorhynchus clarki lewisi, exhibited a high degree of isotopic niche overlap and high intrapopulation variability in resource use. Although we hypothesised that lake trout would experience an ontogenetic diet shift, no such patterns were apparent in isotopic signatures. Lake trout growth rates were not associated with patterns in δ15N, indicating that variation in adult body composition may not be related to adult diet. Understanding trophic relationships at both the individual and species levels provides a more complete understanding of food webs altered by non‐native species.  相似文献   

8.
Carey MP, Maloney KO, Chipps SR, Wahl DH. Effects of littoral habitat complexity and sunfish composition on fish production. Ecology of Freshwater Fish 2010: 19: 466–476. © 2010 John Wiley & Sons A/S Abstract – Habitat complexity is a key driver of food web dynamics because physical structure dictates resource availability to a community. Changes in fish diversity can also alter trophic interactions and energy pathways in food webs. Few studies have examined the direct, indirect, and interactive effects of biodiversity and habitat complexity on fish production. We explored the effects of habitat complexity (simulated vegetation), sunfish diversity (intra‐ vs. inter‐specific sunfish), and their interaction using a mesocosm experiment. Total fish production was examined across two levels of habitat complexity (low: 161 strands m?2 and high: 714 strands m?2) and two sunfish diversity treatments: bluegill only (Lepomis macrochirus) and bluegill, redear sunfish (Lepomis microlophus), and green sunfish (Lepomis cyanellus) combination. We also measured changes in total phosphorus, phytoplankton, periphyton, and invertebrates to explain patterns in fish production. Bluegill and total fish production were unaffected by the sunfish treatments. Habitat complexity had a large influence on food web structure by shifting primary productivity from pelagic to a more littoral pathway in the high habitat treatments. Periphyton was higher with dense vegetation, leading to reductions in total phosphorus, phytoplankton, cladoceran abundance and fish biomass. In tanks with low vegetation, bluegill exhibited increased growth. Habitat complexity can alter energy flow through food webs ultimately influencing higher trophic levels. The lack of an effect of sunfish diversity on fish production does not imply that conserving biodiversity is unimportant; rather, we suggest that understanding the context in which biodiversity is important to food web dynamics is critical to conservation planning.  相似文献   

9.
Abstract –  Life-long diet ontogeny and size-dependent intra- and interspecific diet partitioning of the native ruffe and perch and the introduced pumpkinseed, were studied in Lake Balaton. Estimated intraspecific diet overlap was high in ruffe, whereas in perch and pumpkinseed only the neighbouring size groups exhibited a high diet similarity. Interspecific diet overlap among size groups of the three species was moderate and ≥60% diet overlap occurred only in 13 size group pair variations out of the 429 analysed. The earliest developmental stages of the three species were planktivorous, whereas larger ruffe and some size groups of perch and pumpkinseed fed dominantly on chironomids. Adult perch and pumpkinseed consumed different littoral macroinvertebrates, while the largest perch were piscivorous. Although productivities of the two studied areas differ significantly, this had only little effect on the diet ontogeny and diet partitioning of the three species. Present results suggest that in Lake Balaton these three species effectively partition food resources throughout their life span.  相似文献   

10.
Abstract –  Stable isotope analysis (SIA) and gut contents analysis (GCA) are commonly used in food web studies, but few studies analyse these data in concert. We used SIA (δ15N) and GCA (% composition) to identify diets and trophic position (TP) of six stream fishes and to compare TP estimates between methods. Ordination analysis of gut contents identified two primary trophic groups, omnivores and predators. Significant differences in TPGCA and TPSIA were similar in direction among-species and among-trophic groups; neither method detected seasonal changes in omnivore diets. Within-species TPGCA and TPSIA were similar except for one omnivore. TPGCA was less variable than TPSIA for predators, but variation between methods was similar for omnivores. While both methods were equally robust at discriminating trophic groups of fishes, TPSIA is less laborious to estimate and may facilitate cross-stream comparisons of food web structure and energy flow.  相似文献   

11.
Total lipid content, lipid classes and fatty acid composition were analysed in tissues from two eelpout species fed on the same diet, the Antarctic Pachycara brachycephalum and the temperate Zoarces viviparus, with the aim of determining the role of lipids in fishes from different thermal habitats. The lipid content increased with decreasing temperature in the liver of both species, suggesting enhanced lipid storage under cold conditions. In P. brachycephalum, lipid composition in the liver and muscle was strongly dominated by triacylglycerols between 0 and 6°C. In contrast, in the temperate species, lipid class composition changed with changes in the temperature. When acclimatized to 4 and 6°C Z. viviparus not only displayed a shift to lipid anabolism and pronounced lipid storage, as indicated by high triacylglycerol levels, but also a shift to patterns of cold adaptation, as reflected by an increased content of polyunsaturated fatty acids in the lipid extract. Unsaturated fatty acids were also abundant in the Antarctic eelpout, but when compared to Z. viviparus at the same temperatures, the latter had significantly higher ratios of polyunsaturated to saturated fatty acid levels, whereas the Antarctic eelpout showed significantly higher ratios of monounsaturated to saturated fatty acid levels. High δ-15N values of the Antarctic eelpout reflect the high trophic level of this scavenger in the Weddell Sea food web. Stable carbon values suggest that lipid-enriched prey forms a major part of its diet. The strategy to accumulate storage lipids in the cold is interpreted to be adaptive behaviour at colder temperatures and during periods of irregular, pulsed food supply.  相似文献   

12.
Generalist fish species can feed on a wide resource spectrum and across trophic levels depending on resource availability and trophic interactions. Crucian carp (Carassius carassius) represents a good candidate species to investigate variation in the trophic ecology of generalist fish as it can be found in highly variable fish communities and its resource use is well documented. In this study, we explored the trophic ecology of crucian carp at the individual and population levels using stable isotope and gut content analysis. We tested if trophic resource use varied according to lake productivity, predation risk, intra- and interspecific competition, or individual fish size. We found that crucian carp resource preference was highly variable among and within lakes. In predator-free lakes, small crucian carp occurred in high densities, showed increased interindividual specialisation, and relied mainly on pelagic zooplankton. In presence of predators, large crucian carp occurred in low densities and included greater proportions of benthic macroinvertebrates in their diet. This shift in resource use was further favoured in productive, shallow lakes where littoral prey were probably abundant. Resource partitioning was an important factor determining crucian carp niche use, as fish had higher trophic position in absence of other cyprinids. Crucian carp showed highly dynamic resource use and food preferences in response to variable environmental conditions. Overlooking complex diet preferences of generalist fish may lead to an oversimplification of freshwater community dynamics.  相似文献   

13.
Abstract –  Variation in fish abundance across systems presents a challenge to our understanding of fish populations because it limits our ability to predict and transfer basic ecological principles to applied problems. Yellow perch ( Perca flavescens ) is an ideal species for exploring environmental and biotic correlates across system because it is widely distributed and physiologically tolerant. In 16 small, adjacent systems that span a wide range of environmental and biotic conditions, yellow perch were sampled with a standard suite of gear. Water quality, morphometry, vegetation, invertebrates and fish communities were concurrently measured. Multimodel inference was used to prioritise regressors for the entire yellow perch sample and three size groups (35–80, 81–180, ≥181 mm TL). Across systems, pH and fish richness were identified as the key drivers of yellow perch abundance. At very low pH (<4.0), few fish species and few yellow perch individuals were found. At ponds with moderately low pH (4.0–4.8), numbers of yellow perch increased. Ponds with high pH (>4.8) had many other species and few yellow perch. Similar patterns for pH and fish community were observed for the two largest-size classes. Negative interactions were observed between the medium- and large-sized yellow perch and between the largest and smallest yellow perch, although interspecific interactions were weaker than expected. This examination of variability for an indicator species and its component-size classes provides ecological understanding that can help frame the larger-scale sampling programs needed for the conservation of freshwater fish.  相似文献   

14.
Understanding the flow of fatty acids between trophic levels can provide important clues on prey–predator dynamics and nutritional requirements of the species. This study investigates the fatty acid flow between enrichment emulsions, Artemia nauplii and Hippocampus guttulatus juveniles, and evaluates the nutritional value of enriched and unenriched Artemia for newborn seahorses. The fatty acid profile of Artemia and seahorses generally reflected the dietary composition, but fatty acids were not linearly transferred between trophic levels. The incorporation of dietary fatty acids showed to be a more complex process involving dietary composition, predator metabolism and nutritional requirements. Artemia composition resulted from a dynamic balance between what was assimilated and metabolized by the nauplii during enrichment. Prey fatty acids were incorporated in seahorses, but HUFA, particularly DHA, were selectively retained to fulfil their high requirements. H. guttulatus newborns were not successfully reared on Artemia nauplii, not even on enriched Artemia, with low survival rates (15.0–26.7%) being observed in all feeding treatments. The high MUFA content and low DHA level of Artemia did not fulfil the high SFA and PUFA requirements of newborn juveniles, particularly their great DHA demands. Higher survivorship was obtained with enriched Artemia, but no differences were detected in juvenile growth.  相似文献   

15.
Diet interactions between native and non‐native fishes may influence the establishment of native species within their historical range (i.e., reintroduction). Therefore, we illustrated the food web structure of and followed the transition of the federally endangered humpback chub Gila cypha into a novel food web following translocation and determined the potential for a non‐native species, rainbow trout Oncorhynchus mykiss, to influence translocation success. Humpback chub and rainbow trout used resources high in the food web and assimilated similar proportions of native fishes, suggesting non‐native rainbow trout may occupy an ecological role similar to humpback chub. Subsequently, humpback chub may be well suited to colonise tributaries because of their ability to consume resources high in the food web. Additionally, diet partitioning may occur between all members of the fish community as indicated by separation in trophic niche space and little trophic overlap; although all species, particularly bluehead sucker Catostomus discobolus, used a broad range of food resources. Rainbow trout stomach content analysis corroborated stable isotope analysis and suggested rainbow trout diet consisted of aquatic and terrestrial macroinvertebrates, while larger rainbow trout (>120 mm total length) consumed a greater proportion of fish (incidence of piscivory = 5.3%). Trophic interactions may reveal an underutilized niche space or biotic resistance to the establishment of translocated native fishes. Continued translocation of humpback chub into tributaries appears to be one option for conservation. However, successful establishment of humpback chub may depend on continued removal of non‐native trout, increasing availability of diet sources at higher trophic levels.  相似文献   

16.
The long-chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are produced by phytoplankton in the marine food web. Zooplankton acts as an important link between phytoplankton and fish at higher trophic levels and may therefore be a potential source for these fatty acids. The copepod Calanus finmarchicus is a lipid-rich zooplankton present in large amounts in the North Atlantic Ocean. The astaxanthin-rich oil contains 80–90 % wax esters consisting of mainly long-chain monounsaturated fatty alcohols esterified to saturated or unsaturated fatty acids. The long-chain n-3 fatty acids may account for 20–30% of the fatty acids in the wax esters. The wax ester rich oil is well utilized by fish, and the history of utilization, safety, and tolerability of wax esters for humans are being addressed. Recent reports indicate that oil from C. finmarchicus may have beneficial health effects beyond those which may be ascribed to intake of EPA and DHA alone.  相似文献   

17.
Coastal aquaculture installations concentrate large numbers of wild fish species of both ecological and economic importance, including schools of bogue, Boops boops (L.), in high abundance and biomass. The aggregated species consume large quantities of the easily available pellets lost from cages. As a consequence, the physical condition of farm‐associated wild fish is increased and their physiology is altered. These changes may influence local fisheries as many of these aggregating species are targeted by fishers. We assess whether local fishers catch wild fish that have previously aggregated at fish farms by comparing the body condition, trophic indexes, diet overlap and the fatty acid (FA) composition of B. boops obtained from local fish markets and around fish farms. Bogue captured by trammel‐nets and around fish farms facilities presented a similar biological condition, as well as high quantities of pellets in the gut, and their FA profile was affected by vegetal‐derived FAs. In contrast, bogue captured by trawlers were not influenced by fish farms, as they consumed natural trophic resources. We conclude that artisanal fishers exploit these aggregated fish populations once they have dispersed away from farms, and benefit from a ‘biomass export’ from fish farms at a local scale.  相似文献   

18.
The efficiency of the rotifer Brachionus calyciflorus Pallas as a nutritional source for rearing larvae was studied in a coldwater cyprinid, the gudgeon Gobio gobio (L.), and in a percid, the perch Perca fluviatilis L., through their composition in fatty acids. Rotifer intake affected the fatty acid profiles of the larvae significantly, with an especially remarkable presence of the linoleic family. In gudgeon fed with rotifers, the polyunsaturated fatty acids (PUFA) reached 10.98% of the dry weight of the sample. This rate was highly influenced by the presence of the acids C18:2n-6 and C22:6n-3 which represented 66% of the total PUFA. In perch fed exclusively with rotifers, the PUFA represented 7.27% of the dry weight. In both cases, the ratio n-3/n–6 decreased by 75% and 73% after 10 days of feeding with B. calyciflorus. This variation was probably due to the exogenous supply in acids of the linoleic family through the rotifers and to the fact that these two species of fish seem to favour the mobilization of the n-3 PUFA such as C22:6n-3 for growth and survival. Moreover, with the utilization of rotifers. the reactions of elongation and desaturation from the C18:2n-6 and C18:1n-9 seemed to be much more important in the larvae. Lastly, the transition from a diet based on rotifers to one made up exclusively of frozen Artemia nauplii led to a significant reduction of fatty acids in fish. It reached 60.2% and 26.5% of the total fatty acids in the gudgeon and perch, respectively, and was observed especially at the level of the PUFA. On the other hand, a slight increase of the ratio n-3/n-6 was pointed out in the perch fed a mixed diet (co-feeding with rotifers and dry food), a phenomenon probably due to the reduction of C18:2n-6 in the larvae.  相似文献   

19.
Exploitation can have a pronounced effect on fish populations. Yellow perch, Perca flavescens (Mitchill), populations in Nebraska Sandhill lakes were sampled in 1998 and 1999. Three of the 29 lakes containing yellow perch have been closed to fishing for at least 10 years. Unexploited yellow perch populations had fast growth rates, but age structure was similar to exploited populations. For unexploited lakes combined, mortality and condition were not different from exploited lakes. However, one unexploited lake, Marsh Lake, had the fastest growth, highest proportion of older fish and highest condition of all populations sampled. This lake had low interspecific competition and high invertebrate abundance, which likely resulted in fast growth and high condition. However, size structure and growth were also related to lake productivity. Although exploitation may affect yellow perch populations, other factors (food availability, predators and lake productivity) also play an important role in structuring these populations. Regardless, these results indicate the potential of yellow perch in Nebraska Sandhill lakes given no exploitation.  相似文献   

20.
Spatial and seasonal variation in the abundance and composition of phytoplankton and other basal resources (bacteria, terrestrial detritus) influence the availability of essential polyunsaturated fatty acids (PUFA) for upper trophic levels in lake food webs. We studied accumulation, composition and content of fatty acids in planktivorous vendace (Coregonus albula) muscle tissue during the summer feeding period (May to late September) in six boreal lakes. Vendace muscle fatty acid content increased from ~17.7 mg/g DW to ~28.1 mg/g DW from spring to summer, corresponding to a ~59% increase in total fatty acids. PUFA accounted for 45%–65% of all fatty acids, and the most abundant fatty acid was docosahexaenoic acid (DHA, 22:6n‐3). The DHA content remained relatively constant throughout the sampling period (~7–8 mg/g DW), but the proportion of DHA decreased from ~40% in spring to ~30% in summer and autumn. The decrease in DHA proportion was due to accumulation of other fatty acids, primarily C18 PUFA (predominantly synthetised by algae) and monounsaturated fatty acids. A similar fatty acid accumulation pattern was observed in lipid storing copepods, an important prey for planktivorous vendace. The abundance of bacterial and terrestrial biomarker fatty acids in vendace muscle and prey items was low (<5% and <0.1% respectively). The increase in weight and the deposition of internal energy stores in vendace were achieved predominantly by algae‐based food chain. This has ecological implications, as vendace requires sufficient lipid stores for reproduction in autumn and survival over winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号