首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 656 毫秒
1.
基于无线传感器网络的农田信息采集节点设计与试验(简报)   总被引:18,自引:6,他引:12  
研究基于ZigBee协议的无线传感器网络技术,结合嵌入式处理器开发了无线传感器网络节点和汇聚节点。网络节点规则分布在被监测区域,负责采集土壤水分信息,并自组成网,将信息发送给汇聚节点,实现对信息的动态显示和大容量存储;节点天线分别在0.5、1.0、1.5和2.0 m 4个高度下,对小麦苗期、拔节期和抽穗期3个典型的生长时期进行试验,得出无线电信号在小麦不同生长时期,最佳天线高度下的有效传输距离,为无线传感器网络在农业中的应用提供技术支持。  相似文献   

2.
农业环境信息无线传感器网络监测技术研究进展   总被引:9,自引:6,他引:3  
无线传感器网络是实现农业环境变量信息多方位、网络化远程监测的主要技术手段。无线地上传感器网络应用研究集中在作物不同生长期内节点布设距离和高度以及作物高度等对无线电信号传输损失的影响,从而合理选择节点布设参数。无线地下传感器网络应用研究集中在气象环境、土壤类型、土壤含水率、土壤结构与成分、节点埋藏深度、节点距离、频率与功率范围、网络拓扑结构、路由算法、组网方式等对电磁波多路径传输的路径损失、误码率、最大传输距离、含水量测试误差等方面的影响。研究指出,300~500 MHz的频率更适合土壤无线地下传感器网络,其最大传输距离为5 m,传输距离将是系统大面积推广应用的主要限制因素。今后重点应研究433 MHz电磁波在不同土壤和空气多层介质中的传输特性、信道模型及路径损失,优化节点和网络技术参数,确定不同农业应用环境条件下传感器网络节点合理位置和最优的网络拓扑结构方案。  相似文献   

3.
稻田水分监测无线传感器网络优化设计与试验   总被引:4,自引:4,他引:0  
传感器网络技术为大范围稻田水分信息采集提供了一种新技术手段。利用测量稻田水分含量和水层深度测量的无线传感器WFDMS,探讨了构建稻田水分传感器网络PMSN的关键技术:设计了大面积、大范围应用体系结构模型;提出了一种满足稻田水分采样频率和数据业务需求的低功耗传输控制协议LPTP-PMSN;开发了水分信息监测信息管理系统,实现了完整运行的稻田水分传感器网络整套系统。试验表明,PMSN网络在稻田中的可靠通信距离达60 m,在 3.6 V/2 100 mAh电池供电下,4 h周期采样试验中,在传输协议LPTP-PMSN控制下,传感器、簇首、基站、短信网关、计算机间能够协同工作,整个稻田水分传感器网络可以较可靠运行,节点生命期超过190 d。该研究可为农用信息监控无线传输网络的其他应用提供参考。  相似文献   

4.
该文基于ZigBee无线传感器网络技术,设计了一种节能型水产养殖环境监测系统,用于实时监测水的温度、pH值、溶解氧浓度和浊度等参数。系统采用CC2530为核心处理器设计无线传感器节点;运用开源的Z-stack协议栈开发了节点应用程序,提高了系统的稳定性和可靠性;使用9 V锂电池为无线传感器节点供电,实现了系统的无线化;采用C/S和B/S混合编程模式开发了简单直观的本地用户监测界面和远程监测网站,实现了系统的本地监测和远程监测;采用分时、分区供电的方式和数据融合技术延长了节点的生存时间。该文介绍了系统软硬件设计方法,并重点阐述了软件和硬件的节能策略。实验室测试表明,采用方案4(传感器不一直工作,数据全部发送),节点数据采集周期为10 min,节点能正常工作94 d,实际系统上线时,节点数据采集周期为30 min,节点预计能正常工作280 d左右;运用节能策略后,节点寿命延长了1倍。在甘肃省某虹鳟鱼养殖基地进行了实地测试,路由节点剩余能量约占总能量的47%,终端节点剩余能量约占总能量的33%,路由节点能量消耗较快,距离汇聚节点最近的16号路由节点的寿命预估只有134 d。结果表明该系统具有功耗低、运行稳定、网络寿命长等优点,能实现水产养殖环境的实时监测,具有很好的市场前景和推广价值。  相似文献   

5.
集成GPRS、GPS、ZigBee的土壤水分移动监测系统   总被引:7,自引:5,他引:2  
为了实现土壤水分数据的实时采集、处理、可视化与上传,开发了移动式土壤水分监测系统。系统由集成ZigBee协调器、GPS模块、GPRS模块的PDA和基于ZigBee的土壤水分传感器移动节点组成。ZigBee模块主要用于PDA和移动传感器节点间的无线通信,使PDA能无线获取土壤水分传感器信息,并能控制传感器供电电源的通断。GPS模块用来实时获取传感器的位置信息,为绘制土壤水分时间和空间分布图以及为精细灌溉决策系统提供支持。GPRS模块用来将绑定的节点号、经纬度信息、土壤水分信息通过TCP/IP协议上传至互联网远程上位机,以实现土壤水分时空变异的远程监测。系统既能在PDA内存储信息又能上传互联网,具有良好的便携性和可视性。性能试验结果表明,系统可实时准确远程传输测量数据,内嵌软件根据测量结果绘制的土壤水分空间变异分布图可有效指导精细灌溉。  相似文献   

6.
基于ZigBee技术的粮库监测系统设计   总被引:11,自引:4,他引:7  
针对大型粮库设施粮食存储环境相关参数监测点分散的现状,设计出了一种层次型网络拓扑结构的无线传感器网络中央监测系统。以承载ZigBee技术的CC2430芯片为无线节点的检测与信息处理核心,结合温度、湿度传感器模块,构成无线传感器网络终端检测子节点,对现场环境实时检测,并通过路由节点将数据上传;路由节点模块设计,采用无线或RS-485标准的方式与中心节点进行信息通讯,使现场循环检测数据能实时传送给中央监控计算机,实现深入粮仓内部的多点检测、实时监测。结果表明,系统功能扩展方便、布网灵活、施工成本低,为大型粮库设施现代化管理奠定了基础。  相似文献   

7.
基于ZigBee和PDA的农田信息无线传感器网络   总被引:7,自引:4,他引:3  
为了实现农田信息的实时采集、处理与可视化,缩短数据采集和处理间的时差,开发了基于ZigBee和PDA的农田信息无线传感器网络。系统由集成ZigBee协调器的PDA和带传感器的路由节点组成。通过无线传感器网络,用户手持PDA可实时动态访问田间信息,并控制传感器的供电电源开关,以节省功耗。采集的田间信息包括土壤水分、土壤温度、土壤电导率、空气温湿度。其中土壤温度、空气温湿度传感器为数字式传感器,土壤水分、土壤电导率传感器为模拟传感器。节点通信距离试验表明,正常工作条件下,40 m距离的丢包率只有0.092,满  相似文献   

8.
基于3S技术联合的农田墒情远程监测系统开发   总被引:14,自引:8,他引:6  
农田墒情信息是现代农业实施精准施肥、精确灌溉的重要科学依据。为了实现快速准确地采集墒情信息,研究开发了基于3S(GPS/GIS/GPRS)技术联合的农田墒情远程监测系统。该系统主要由农田信息监测网络节点和远程服务器组成,在小范围内由传感器节点基于ZigBee通讯协议组成无线传感器网络,在大尺度上通过网关节点集成GPS网络,利用GSM/GPRS网络实现与Internet的信息交互,完成了墒情数据的自动采集、无线传输和准确定位。设计了太阳能自供电的长寿命无线传感器节点和网关节点,开发了服务器端农田墒情信息管理系统软件,实现了Web方式下的参数远程设置和信息实时监测。该系统的设计开发为农田墒情信息监测和分析决策提供了有效的工具。  相似文献   

9.
山地橘园无线环境监测系统优化设计及提高监测有效性   总被引:2,自引:1,他引:1  
针对山地橘园生长环境时空变异大,气候复杂多变的情况,对山地橘园无线监测系统进行了优化设计及试验,以实现橘园生长环境信息的有效监测。设计了适合山地橘园环境工作的信息帧结构,引入了双向指令控制机制,节点拓扑发现,路由监测以及节点信息多样化采集优化机制,以增强山地环境下橘园信息采集的鲁棒性和可控性。对橘园无线信道衰减情况进行了测试,引入阻挡和雨衰因子建立无线信道衰减模型,并用于指导橘园无线监测网络部署试验。无线信道衰减分析与网络部署试验结果表明,在复杂气候条件下,系统天线部署高度在1.5 m,单跳通信距离在30 m内,可较好地完成山地橘园环境信息采集和传输任务。744 h的连续监测运行试验数据表明,优化设计后的无线监测系统信息传输成功率得到了提高,30 m距离内的传输成功率在99.12%以上,监测系统工作稳定,运行良好,适于野外条件下山地橘园生长环境无人远程实时监测工作。  相似文献   

10.
为提高水资源利用率和灌溉智能化管理的需要,设计了以无线传感器网络技术为核心的荔枝园节水灌溉控制系统,该系统的无线通信模块选择CC2530模块,传感器模块包括空气温湿度传感器DHT22,光照强度传感器GY-30,土壤水分含量传感器TDR-3以及一些外围电路,精确采集荔枝园温度、湿度、光照度和土壤含水率等多项环境信息,通过无线传感器网络、通用分组无线服务技术(General Packet Radio Service,GPRS)和互联网进行数据的传输,保证了传输的实时性和远程性,实现了对荔枝园环境的实时监控;同时,远程服务器和网站上都对荔枝园的土壤含水率的阈值进行了设定,当土壤含水率的值超过了阈值,服务器或者网站就会自动发送相关命令对相应的电磁阀进行控制,实现双向控制。分析、测试了系统的功耗和通信距离,在空旷地带,节点的双向有效通信距离达1 205 m,在荔枝园中双向有效通信距离达81.5 m。在传感器节点系统工作周期为30 min情况下,根据试验结果估算出,两节额定容量为3 000 m A·h的3.7 V锂电池串联可使传感器节点持续工作时间最大为500 d,可使电磁阀控制节点工作5 a以上。试验结果表明,该系统运行稳定,网络平均丢包率为3.87%,能够准确监测荔枝园信息采集和控制电磁阀工作,实现和控制荔枝园智能节水灌溉双向通信。  相似文献   

11.
基于无线传感器网络的精细农业智能节水灌溉系统(英)   总被引:10,自引:8,他引:2  
在精细农业相关应用和理论研究基础上,自行设计用于监测农田水分含量和水层高度的无线传感器,构建农田水分无线传感器网络体系结构,设计基于水分无线传感器网络的智能节水灌溉控制系统,通过实时农田水分数据和农作物水分需求专家数据形成灌溉决策,由灌溉控制系统实施定量灌溉。实际应用表明,该系统体现出可行性和高效性,有利于精细农业的发展和水资源的可持续利用。  相似文献   

12.
基于频域法的便携式无线土壤水分测量装置设计与试验   总被引:4,自引:4,他引:0  
针对农田土壤水分测量的实际需要,研制了一种便携式无线土壤水分测量装置。该装置结构一体化设计采用"T"型结构,将土壤水分传感器和信息采集与发送单元融合,可在0~300 mm的不同深度下测量土壤水分,并采用蓝牙传输技术,将测量数据实时发送给Android手机,手机可通过App软件对数据进行分析处理,实现了农田数据的大容量存储和智能化处理。在实验室环境下,使用砂土和壤土2种土样对测量装置进行了标定试验,土壤容积含水率与传感器输出电压服从二次曲线关系,决定系数均达到0.99以上;将测量装置与波兰Easy Test TDR土壤测试仪进行对比试验,二者测量结果呈线性相关关系,决定系数为0.987。试验结果表明该装置可准确测量土壤水分含量。  相似文献   

13.
柑橘园土壤墒情远程监控系统设计与实现   总被引:4,自引:0,他引:4  
针对传统的土壤墒情监测手段存在的监测范围小、采样率低等不足,设计实现了基于ZigBee无线传感网络和J2EE三层B/S架构技术的柑橘园土壤墒情远程监控系统。系统采用具有ZigBee无线数据传输功能的XBee-PRO模块和ECH2O型土壤水分传感器EC-5为核心组成传感器节点,部署于柑橘园的各个采集点对土壤墒情信息进行采集、预处理和无线发送等工作,通过基于ARM9的嵌入式网关与Internet网络连接,采集数据传输至远程Web主机,通过远程监控中心系统实现对采集数据分析处理和系统运行的远程和实时监控。进行了不同距离的传感器节点发送数据包的耗时和数据包发送成功率试验,在1 km以内耗时低于100 ms,数据包发送成功率高于98%。试验结果表明,系统实现了稳定可靠的数据传输,适合柑橘园土壤墒情的远程和实时监控。  相似文献   

14.
针对传统温室环境监测系统布线繁杂、成本较高、监测灵活性差及以往无线传感器网络(wireless sensor network, WSN)能耗较高等问题,设计了一种基于WSN的温室环境参数监测系统。利用CC2530无线传感网络芯片和外围接口搭建了系统硬件,使用Z-Stack协议栈编制了系统底层软件,基于VB软件平台开发了的温室环境监测系统上位机软件,并验证分析了CC2530芯片的传输特性。结果表明,节点在距地表1.5 m时的有效传输距离为60 m,单个节点使用2节5号电池能够持续进行温室环境参数数据采集工作45 d,能较为准确的对温室环境温湿度及作物土壤体积含水率进行监测,系统具有较高的实用性与可靠性。  相似文献   

15.
基于ARM和GPRS的远程土壤墒情监测预报系统   总被引:8,自引:5,他引:3  
为提高农业灌溉用水利用率、实现节水灌溉,设计了基于GPRS的无线土壤墒情监测预报系统。提出了一种土壤墒情监测预报模型,开发了以ARM9系列S3C2410处理器、GPRS模块和CS8900a网卡等组成数据采集系统,实现了对土壤墒情信息的自动采集、存储和墒情信息的无线网络传输,并可以根据墒情信息实施定时、定量的灌溉控制。该系统已投入国家农业示范基地使用15个月的时间,试验表明,该系统对土壤墒情的预报值与实际测试数据误差为3.39%,实现了对土壤墒情的有效监测和准确预报。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号