首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 406 毫秒
1.
多路径下桃园射频信号传输特性   总被引:1,自引:0,他引:1  
为解决无线传感器网络在桃园中的快速部署问题,该文研究了2.4 GHz无线射频信号在桃园中的传播特性。依据角度选取4条传输路径,在3种(0.5、1.5、2.5 m)典型的天线高度,同时测量丢包率和路径损耗情况,分析表明两者具有明显的相关性,天线高度和通信距离是路径损耗的主要影响因素。在天线高度为0.5和1.5 m时,可靠传输距离为6个行距(27 m);在天线高度为2.5 m时,可靠传输距离大于14个行距(63 m),因此冠层顶部为布设天线的最佳位置。对路径损耗数据进行回归分析,发现其在每种天线高度,每条传输路径下对数模型最适合作为路径损耗模型,模型的R2最大为0.945,最小为0.732。为研究节点部署于桃园任意位置时的路径损耗情况,便于节点快速灵活地部署,在3种天线高度下对路径损耗数据进行对数回归分析,R2最大为0.976,最小为0.939。最后对2组模型进行了验证,表明模型可以预测射频信号在桃园中的路径损耗情况,该文研究结果为无线传感器网络在桃园中的部署提供了参考。  相似文献   

2.
基于无线传感器网络的农田信息采集节点设计与试验(简报)   总被引:18,自引:6,他引:12  
研究基于ZigBee协议的无线传感器网络技术,结合嵌入式处理器开发了无线传感器网络节点和汇聚节点。网络节点规则分布在被监测区域,负责采集土壤水分信息,并自组成网,将信息发送给汇聚节点,实现对信息的动态显示和大容量存储;节点天线分别在0.5、1.0、1.5和2.0 m 4个高度下,对小麦苗期、拔节期和抽穗期3个典型的生长时期进行试验,得出无线电信号在小麦不同生长时期,最佳天线高度下的有效传输距离,为无线传感器网络在农业中的应用提供技术支持。  相似文献   

3.
基于780MHz频段的温室无线传感器网络的设计及试验   总被引:1,自引:1,他引:0  
针对以往农用无线传感器网络(wireless sensor network,WSN)能耗与成本较高、传输性能不理想等问题,该文选用无线射频芯片AT86RF212、单片机C8051F920等,设计了一种工作在780 MHz中国专用频段且与IEEE802.15.4c标准兼容的无线传感器网络。该文简述了无线传感器网络节点结构,重点介绍了780 MHz无线传感器网络的硬件设计,并选择北方典型的日光温室作为试验研究环境,通过改变无线收发距离,对780、433和2 400 MHz频段的无线传感器网络节点的接收信号强度值(RSSI,received signal strength index)和平均丢包率(PLR,packet loss rate)进行了测试与分析。试验结果表明,3种不同频段的无线收发模块的接收信号强度值RSSI都随着收发距离的增大而减小。在温室内测试,收发距离小于20 m时,3种无线模块的RSSI值相近;收发距离为40~90 m时,7803 MHz模块比433 MHz模块的RSSI值略大,2.4 GHz的RSSI值最小。在温室内收发距离小于90 m的范围内,780 MHz模块和433 MHz模块的丢包率均为0,2.4 GHz模块的最高丢包率不超过5%。在温室间测试,收发距离为50~90 m时,780 MHz模块和433 MHz模块的RSSI值相近;收发距离大于90 m时,780 MHz模块比433 MHz模块的RSSI值大;2.4 GHz模块在温室间收发距离为50~140 m时的RSSI值均小于433、780 MHz。2.4 GHz模块在收发距离大于70 m时出现丢包现象,收发距离大于135 m时丢包率达到100%;温室间收发距离为140 m时,433 MHz模块的最大丢包率为11%,780 MHz的最大丢包率不超过6%。因此,在温室环境监测的应用中,780 MHz频段的无线传感器网络的传输性能表现最佳,且与433 MHz都明显优于2.4 GHz。  相似文献   

4.
为解决橘园中无线传感器网络(WSN)规划和快速部署问题,该文基于无线射频信号的传播特性,研究了橘园中WSN射频信号与影响因素间的关系。试验中选取433 MHz载波频率,基于连续无线电波分析了WSN射频信号受植被深度、天线高度和通信距离等因素联合作用下射频信号在橘园的衰减情况,建立了橘园中不同影响因素作用下,433 MHz无线射频信号接收强度与环境传播因子及通信距离间的线性模型,拟合曲线的R2最低为0.797,最高为0.980,验证了此模型用来预测橘园中影响因素对接收信号强度衰减趋势的可行性;得到了基于无线射频信号接收强度指示下不同植被深度、天线高度和通信距离变化联合作用下的最佳天线高度分布表,为无线传感器网络在橘园中的节点部署提供指导。  相似文献   

5.
柿园无线传感器网络信号传输损耗研究   总被引:1,自引:1,他引:0  
为探究柿园无线传感器网络信号传输特性,该文研究了在2.4 GHz无线信道下柿树处于萌芽期、幼叶期和花期3种时期时无线网络信号传输的衰减情况。试验中分别在柿子树萌芽期、幼叶期和花期3个生长时期下选择一列长势均匀的柿树,通过调节子节点和汇聚节点装置的高度和距离测量柿子树从距离地面3个高度冠层底部(0.8 m)、冠层最密部(1.8 m)和冠层顶部(2.8 m)处各8个距离点的链路质量指示值(link quality indicator,LQI),并对试验数据进行分析。结果表明LQI值随着距离的变化呈正弦曲线式衰减趋势。萌芽期时子节点和汇聚节点的高度均位于冠层顶部时,节点间距38 m时是最佳位置;幼叶期时子节点和汇聚节点的高度均位于冠层顶部,节点间距32 m时是最佳位置;花期时子节点和汇聚节点的高度均位于冠层顶部时,节点间距26 m时是最佳位置。通过对3次数据进行曲线拟合分析分别建立了在2.4 GHz信道下信号衰减模型,其中3种生长时期下均是三次多项式模型决定系数R2最大,为最适模型。果园中无线传感器网络信号传输损耗的研究为在果园中无线传感器网络节点部署提供了技术基础。  相似文献   

6.
农业生态环境的物理形态和结构复杂多样,对WSN(wireless sensor networks)的无线信号传输造成不同衰减影响。为确保无线传感器网络在农业环境中经济、合理、高效部署,有必要明确典型农业环境中无线传感节点间的有效传输距离。该文基于Shadowing信号衰减模型,利用当前通用的CC2530和CC2591无线通信模块,分别选定4种不同农业环境(湖泊、草地、农田、树林)开展单跳组网试验,通过设定不同距离测试传感器节点的接收信号强度指标(received signal strength indication,RSSI),分析不同环境中RSSI与传输距离间的变化特征。试验结果表明,所有测试环境获得的RSSI值与有效距离遵从Shadowing模型,其拟合度在0.9232~0.9846之间。通过对实测数据建立拟合模型,以接收节点的灵敏度为临界值,计算出湖泊、草地、农田、树林4种环境的理论传输距离分别为663.3,419.3,208.0和79.5 m,而实测有效传输距离与理论值之间的相对误差在22%~34%之间。从误差分布看,复杂环境的实测值更接近理论值,而特殊结构的复杂环境似对实际信号传输有增强作用。该文的研究方法和模型估算获得的信号衰减系数可为实际环境监测组网提供有益参考。  相似文献   

7.
小麦田中天线高度对2.4GHz无线信道传播特性的影响   总被引:9,自引:8,他引:1  
探索农田环境下无线信道传播特性,将为无线传感器网络部署与功率控制方面的研究打下基础。该研究在小麦田地中实地测试了不同生育期 2.4GHz 无线信号的功率衰减情况和丢包率,进而得出传输范围及路径损耗,并用MATLAB对路径损耗进行了回归分析。研究表明,小麦田中,信号衰减的速度随天线高度的变化单调递减,而传输距离随天线高度的变化单调递增,因此,天线的较优位置应略高于成熟植株(1.2 m左右)。同一天线高度下,小麦生长后期无线信号的衰减大于前期。2.4GHz 无线信号的衰减情况可用对数距离路径损耗模型来预测,理论值与测量值的相关系数在0.961~0.996之间。路径损耗指数与天线高度呈现对数衰减趋势;在同一天线高度下,路径损耗指数随着小麦的生长而增大。  相似文献   

8.
农田无线传感器网络中的簇首轮换机制   总被引:1,自引:1,他引:0  
在大规模农田无线传感器网络WSN应用中,如何选择最优的网络架构和相应的自组织方式是一个急需研究的问题。在多跳、无线自组织网络Ad Hoc结构基础之上,针对规模农田面积大、作物生长周期长、传感器节点众多的特点,借鉴生物体内大量细胞生长发育和相互协作的组织机理,提出一种星状网和网状网相结合的分层无线传感器网络拓扑结构和簇首轮换机制,通过簇内控制减少节点与基站远距离的信令交互,降低网络建立的复杂度,减少网络路由和数据处理的开销。  相似文献   

9.
基于太阳能的无线土壤水分传感器的研制   总被引:9,自引:6,他引:3  
为实现土壤水分的自动检测与无线传输,采用电场法检测土壤质量含水率,利用Zigbee技术构建无线传感网络实现数据传送。利用太阳能电池收集太阳能并存储于锂电池中,实现对系统供电。通过合理的充放电管理,能有效地延长锂电池寿命。试验结果表明,该传感器能够实现0~30%间的土壤质量含水率的测量,相对误差小于10%。利用Zigbee模块及MiWi(TM)协议栈构建星形网络能实现数据无线传输。当节点发射功率为1 mW时,在无阻挡条件下可靠传输距离为30 m,在有农作物遮挡时,可靠传输距离为10 m左右。在1 h采集发送  相似文献   

10.
无线传感器网络在农业中的应用   总被引:1,自引:6,他引:1  
无线传感器网络集传感器技术、微机电系统(MEMS)技术、无线通信技术、嵌入式计算技术和分布式信息处理技术于一体,是多学科高度交叉的、知识高度集中的热点研究领域,因其广阔的应用前景而备受关注。该文综述了无线传感器网络的节点构成、体系结构、研究热点,以及在农业中的应用研究现状,针对性地提出在温室、节水灌溉、畜牧等农业领域应用无线传感器网络的方案与思路,为无线传感器网络在农业中的应用拓宽思路,争取早日将无线传感器网络投入到农业应用领域。  相似文献   

11.
为解决应用无线传感器网络技术监测农田信息时无法快速预测射频信号路径损耗的问题,基于神经网络理论研究了田间路径损耗与其影响因素间的关系。试验中选取915和2 470 MHz 2个载波频率,在冬小麦的不同生长阶段测量射频信号在田间各影响因素作用下的路径损耗,建立和验证基于神经网络的射频信号田间路径损耗预测模型。所建立模型模拟值与实测值的相关系数为0.92,应用建立的神经网络预测田间射频信号路径损耗并与实测值对比,最大预测误差绝对值为4.186 dB,最大预测标准差为2.759 dB,预测准确度为94.2%。所建立的BP网络可以对田间射频信号路径损耗进行预测。  相似文献   

12.
基于ZigBee网络的温室环境远程监控系统设计与应用   总被引:35,自引:8,他引:27  
针对温室环境数据信息监控特点,本文进行了基于ZigBee协议的传感器节点技术的开发,并在此基础上组成现场监控无线传感器网络,通过网络汇聚节点与无线移动网络(GPRS/CDMA)和INTERNET的无缝连接,实现数据远程传输至指定数据库服务器。无线传感器网络组建采用星型拓扑结构,通过软件设置在需求时唤醒ZigBee网络节点,使监控设备具有组网灵活、拆移便捷等优点。通过在实际生产过程中应用表明,该系统工作性能稳定,在数据采集和传输等方面均达到了设计要求,尤其是有效简化了现场设备安装与拆移等过程,使之更适合各类农业现场数据监控的需要。  相似文献   

13.
茶园信息采集无线传感器网络节点设计   总被引:9,自引:7,他引:2  
针对茶园中所存在的无线通信障碍问题,该文设计了一款适合茶园信息采集的无线传感器网络节点。节点以ATmega128为核心,nRF905射频芯片及其外围电路作为无线通信模块,SHT11空气温湿度传感器和TDR-3土壤含水量传感器及其外围电路作为传感器模块,并以该节点为硬件平台编写了通信协议、应用程序和后台管理软件。分析、测试了节点的功耗和通信距离,在空旷地带,节点的有效通信距离达到150 m,与Micaz节点对比室内外通信距离分别提高了200%和150%。在广东省英德茶园基地进行了组网试验测试,结果表明:网络平均丢包率为0.84%,传感器感知精度达到98.2%,能够满足茶园信息采集的应用要求。  相似文献   

14.
针对传统温室环境监测系统布线繁杂、成本较高、监测灵活性差及以往无线传感器网络(wireless sensor network, WSN)能耗较高等问题,设计了一种基于WSN的温室环境参数监测系统。利用CC2530无线传感网络芯片和外围接口搭建了系统硬件,使用Z-Stack协议栈编制了系统底层软件,基于VB软件平台开发了的温室环境监测系统上位机软件,并验证分析了CC2530芯片的传输特性。结果表明,节点在距地表1.5 m时的有效传输距离为60 m,单个节点使用2节5号电池能够持续进行温室环境参数数据采集工作45 d,能较为准确的对温室环境温湿度及作物土壤体积含水率进行监测,系统具有较高的实用性与可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号