首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 578 毫秒
1.
目的采摘是林果种植中的劳动密集型作业,果园中的果实采收环境较为复杂,我国采摘机具的行业研究相对薄弱,采摘机器人等高科技装备在当前果园采摘中的实际应用还具有一定的局限性,因此发展辅助人工摘果装备具有切实的社会和经济意义。方法针对球形带梗果实,以苹果为例提出了果梗锁定—枝果分离的采摘方法,并设计完成了相应采摘器。采摘器整体结构为欠驱动布局,以曲柄摇杆机构为原型设计了果梗锁定机构,构造了固定板、浮动板结构的双板枝果分离机构,利用摇杆滑块机构作为手持驱动单元,利用钢丝和绕线丝轮的传动方法将滑块的输出运动首先传递到曲柄摇杆机构,驱动结构和尺寸对称的两套果梗锁定机构对果梗进行锁定,果梗锁定后继续驱动浮动板向下移动与固定板分离完成摘果。结果分析了驱动单元和果梗锁定机构的几何参数,驱动单元的手柄转动5.5°即可使摘果器完成87°的果梗锁定和50 mm的双板分离动作,果梗锁定机构在锁定果梗时处于反向死点位置,保证了锁定的可靠性。应用Adams软件仿真了采摘器的果梗锁定和双板分离动作,验证了采摘器欠驱动结构的设计可行性,并对输出曲线在锁定果梗过程中的振动情况进行了解释;对采摘过程中的驱动力进行了仿真。采摘器样机实验顺利完成了锁定果梗—枝果分离的顺序采摘动作。结论枝果分离的采摘方法和欠驱动双板分离式采摘器在实际应用中具有可操作性,可用于发展人工辅助采摘机具。   相似文献   

2.
为解决苹果在采摘过程中机械化程度低的问题,根据人手采摘苹果的机理,借鉴章鱼吸盘吸附猎物的方法,研制一种仿生无损吸取式苹果采摘装置。该装置主要由气吸式末端执行器、摆位支撑机构、送果机构、实时在线采摘监控系统以及计重系统等组成。对采摘装置的关键部件进行有限元静力学强度分析和动力学模态分析,以确保设计方案的合理性。模拟采摘和吸取损伤试验结果表明:1)该苹果采摘装置可以采摘3 m高度以下,直径60~90 mm、果梗直径3.3~4.8 mm的苹果。2)该苹果采摘装置采用3关节万向节的气吸式末端执行器便于调整转动,在苹果采摘过程中可以调整末端执行器的采摘位姿与果实的生长姿态保持一致,并避开树叶、树枝造成的障碍,从而以最优位置和最佳角度实现采摘。3)对同一批次大小、质量相近,表面完好的30个苹果进行吸取损伤试验,吸盘吸力不会对苹果表皮造成损伤;对放置了7 d的试验苹果削皮处理后也未发现其内部果肉组织有损伤情况。  相似文献   

3.
钙果采摘装置技术参数的试验研究   总被引:1,自引:1,他引:0  
为实现钙果的机械化采摘,根据钙果果实的生长特性及种植方式,设计了一种钙果采摘机。该机构利用旋转的钢丝碰撞果实进行脱果,通过调整双摘果辊轴心距,可适应不同形状和尺寸钙果的采摘。为确定机构的最佳工作参数,在分析机构特点和工作原理的基础上,对研制的样机进行了三因素混合的正交试验研究。根据因素的不同搭配对摘不净率的综合影响效果,得到各指标的最佳参数:摘果辊直径140mm,转速300r·min-1,进给速度80mm·s-1。研究结果可为钙果采摘装置的后续优化设计与改进提供重要的依据和技术基础。  相似文献   

4.
为改善现有油茶果摘果机工作效率低以及需要人工辅助采摘等技术难点,设计了一种基于多连杆机构的油茶果采摘机,通过液压系统驱动执行机构进行往复运动,实现了振动式自动采摘油茶果。本研究首先介绍了基于多连杆机构的油茶果摘果机工作原理,确定了曲柄滑块机构关键部件的结构参数并完成了可调速液压系统设计。然后,开展了油茶果摘果机关键部位加速度和动态应力测试,评估了运动特性及强度指标。结果表明,整机能够正常运转,但是,滑块最大加速度为90 m·s-2,上底盘最大应力为541 MPa,安全系数<1,需要开展优化设计。  相似文献   

5.
为提高果园采收环节机械参与力度,设计了一种基于人工采摘的"单人,轻量,低能耗"采摘作业平台,并实现对苹果人工辅助识别下自动采摘以及全自动输送和装箱。对采摘作业平台的果实输送系统设计作业,其设计充分考虑机械损伤理论,利用三级输送装置实现苹果从采摘工位到果箱的转移过程,对整体装置中各功能单元的空间布局,结构尺寸和工作原理进行细致而全面的设计与分析。样机实验结果表明:模拟实际采收条件下,在果实通过量90个·min~(-1)情况下,损伤率不超过5%,每小时最大采摘量为5 400个,设计满足和实际作业要求。  相似文献   

6.
针对中国果园苹果人工装箱效率低、劳动强度大的问题,设计了一种智能装箱设备,实现采摘连续性、自动智能装箱等功能,在提高果实装箱效率的同时降低果实损伤率。该设备由垂直输送装置、升降装置、均布装置和检测装置组成。通过试验分析,确定了均布装置的结构参数和工作参数,即均布装置转速为40 r/min,均布装置距果面高度10 cm,均布类置叶片长度60 cm。对装箱设备关键部件进行设计,其中包括升降装置、均布和检测装置。通过SolidWorks对整机进行设计。控制部分采用8个红外避障传感器,水平分布在扇叶所在的上升模块上,当所在水平面上苹果填充的数量达到设定标准时,单片机输出信号,控制电机驱动模块,实现均布装置的自动提升,可满足箱满时均布装置与箱体相配合的要求。  相似文献   

7.
设计了一种基于自动定向原理的用于苹果品质动态、实时检测的智能化分级生产线,由苹果输送系统、自动定向小车、计算机视觉识别控制系统和分级执行装置组成。其中,苹果输送系统将苹果按分级节拍输送到自动定向小车上,由自动定向小车将苹果果梗花萼轴线定向到垂直于水平面的位置,位于圆周分布的3个摄像头一次性采集苹果表面信息,通过计算机识别控制系统进行智能识别,根据国家标准判断每个苹果的等级,并确定苹果的位置信息,通过计算机识别控制系统发出指令传输给分级控制装置,完成苹果的分级。  相似文献   

8.
为解决目前我国油茶果采摘效率低,劳动强度大,采摘成本高等问题,设计了一款油茶果采摘装置,并对其关键部件进行了详细设计.通过建立油茶果采摘力学模型和求解,得到影响油茶果的采摘因素.运用ADAMS仿真分析得到激振器最大输出加速度为124.7 m·s-2,激振器产生的最大惯性力为10.03 kN;结合油荼果采柄分离力试验结果,确定了采摘装置参数设计的合理性.正交试验表明:影响油荼果采摘率主次因素依次为激振频率、激振时间和激振幅值;影响花苞损伤率主次因素依次为激振频率、激振幅值和激振时间.采用综合评分法得到了油茶果采摘最佳参数组合,即激振时间为10s、激振频率为15 Hz、激振幅值为150 mm时,此时油茶果的采摘率为85.36%,花苞损伤率为14.35%.  相似文献   

9.
针对现有花生摘果装置普遍存在损伤率高且秧蔓易缠绕、堵塞和排秧困难等问题,以及满足我国两段式花生收获的捡拾摘果联合收获机摘果装置研究需要,提出了基于两段收获的螺杆弓齿轴流式花生摘果机方案并设计研制出摘果样机,螺杆以及焊接其上的弓齿与摘果滚筒母线之间均设计为一定的夹角,使花生植株在摘果过程中受到轴向力作用而不断向排草口运动;确定了弓齿齿迹距、齿间距等结构参数以及弓齿的排列方式;为了及时、顺利地完成摘果功能,根据花生荚果外形尺寸、花生随滚筒转动而产生的荚果惯性力、摘果部件的主动力和凹板筛的约束力等因素,设计了凹板筛整体形状与半径大小、筛孔的形状与大小;通过调整伸入套管之中的滚筒轴连接杆相对伸入量,实现摘果间隙在20~40mm之间可调。为检验摘果装置性能与设计合理性,选取晾晒3d的花育30为研究对象,以喂入量、摘果间隙和滚筒转速为试验因素,以摘净率和损伤率为试验指标,采用正交试验方法对摘果样机进行性能试验。试验结果表明:当喂入量为0.5kg·s-1、摘果间隙为25mm、滚筒转速为550r·min-1时,摘净率为99.13%,损伤率为1.56%,符合农业部发布的花生行业标准(NY/T 993-2006),满足实际生产要求。本研究结果可为深入研究花生摘果装置,实现花生两段收获提供重要参考价值。  相似文献   

10.
基于S7-200 PLC的苹果采摘机器人控制系统研究   总被引:1,自引:0,他引:1  
通过对采摘机器人控制系统要求的分析,以PLC控制器为核心,对末端执行器、物料收集装置、采摘机械大臂和小臂、移动平台和横向滑移机构等设备的控制,实现苹果采摘的全自动化控制。  相似文献   

11.
为提高山核桃采摘效率,降低采摘成本,针对目前我国山核桃高空作业机械化程度低等特点,设计并研制了一款手自一体式山核桃采摘机。文章阐述了该机关键部件的设计,并对偏心轮机构进行数学建模与分析计算。应用ANSYS对果树进行自由模态响应分析,初步确定山核桃树采摘的频率范围为7~20 Hz。根据山核桃采摘试验,结果表明:振动频率对果树的采摘率具有显著影响(P=0.05),果实采摘率随振动频率的增大而增大,当振动频率为22 Hz时,采摘率为95.1%;为了提高采摘率且尽可能减小芽枝和果树的损伤,建议控制采收频率为16~18 Hz,此时果实的平均采摘率为83.9%~88.0%。未采摘的果实通过人工或机械二次采摘。  相似文献   

12.
采取文献综述与经验总结相结合的方法,对国内外香蕉采摘机械的现状进行研究;从香蕉采摘机械手与自动化采摘机械2个方面对文献知识进行梳理与归纳。结果表明:1)国内外出现众多的香蕉采摘机械手,包括采摘机械夹持装置、支撑装置、切割装置等,可以实现替代人工,降低果实损伤的目的。2)目前集采摘、运动于一体的自动化香蕉采摘机械,极大的提高了香蕉采摘的效率,促进香蕉产业快速发展。3)多功能、智能化香蕉采摘机械仍然是当前香蕉采摘机械的研究重点。针对香蕉采摘机械发展过程中存在的不足,提出如下的发展方向:深入研究香蕉采摘机械的行走装置,实现快速运动与灵活转向;在当前自动化采摘机械的基础之上,全面研究香蕉果实视觉识别系统与计算机决策系统;进一步研究移动小车与机械臂,增强香蕉采摘机械的抗倾覆能力;香蕉采摘、落梳与包装一体机或可更换机械手的多功能化果实采摘机是未来香蕉采摘机械的研究热点。  相似文献   

13.
红枣采摘作业是林果业生产中非常重要的环节。红枣采摘机械的使用可以解决人工采摘红枣时所出现的劳动强度大、效率低、成本高等不足。将液压技术应用到红枣采摘机械设备中,可使设备具有传递功率大、结构简单、传动平稳等优点。设计出一种全液压振动式红枣采摘设备,依靠液压系统驱动偏心装置使其产生振动来完成红枣的采摘,该设备结构简单、设计合理、操作方便,可为同类型林果类采摘设备的设计和研发提供一定的参考价值。  相似文献   

14.
针对传统水果套网包装机套网过程中存在卡网、套网错位等问题,采用PLC基本单元担任主控站点,气动装置和PC机进行辅助调试配置,通过I/O点实现分布式控制,对各机构进行集中管理;以传感器检测技术检测输送机构运行状态和套网状态,实时通过PLC进行监视控制,确保系统稳定运行,设计基于PLC自动控制的气动式水果套网包装机控制系统。该系统通过编写PLC程序对系统中的设备进行控制,完成水果套网过程的连续动作,控制系统包括手动模式和自动模式,自动控制模式用于平时的正常生产,按照套网作业的要求在一定的时序下顺序进行,当自动控制出现错误和问题时,转到手动模式进行。采用三菱GX Develop编程软件完成了程序的在线调试和仿真,结果显示控制程序能够完成水果网套包装机各机构的运动控制要求。  相似文献   

15.
基于SA-PSO算法采摘机械臂参数优化   总被引:1,自引:0,他引:1  
当前油茶果的采摘方式为人工采摘,采摘方式落后,采摘效率低,导致生产成本高,严重制约油茶产业的健康发展。为解决这一问题,实现油茶果机械化和自动化采摘,设计了一款振动式油茶果采摘机。油茶果采摘机工作过程中采摘机械臂的结构尺寸将会限制其工作的范围。为确保采摘机能高效率的采摘油茶果,对采摘机械臂进行参数优化,寻找最优参数。结合实地考察的结果,确定优化设计的变量为举升液压缸行程Sj、伸缩液压缸行程Ss、俯仰液压缸行程Sf,建立目标函数,确定约束条件。基于SA-PSO算法,对油茶果采摘机械臂进行结构参数优化,得到最优参数解:举升液压缸行程为Sj=154mm,伸缩液压缸行程为Ss=320mm,俯仰液压缸形成为Sf=166mm,为采摘机的优化设计了提供了理论数据支持。  相似文献   

16.
草莓是一种具有较高营养价值和经济价值的水果,因而在人群中广受欢迎,草莓种植业也繁荣起来。我国有相当大的草莓种植面积,然而目前,草莓的采摘主要靠人工完成,任务繁重,效率较低。再加上草莓属于浆果,水分含量很高,采摘时极易损坏。文章以辅助人工采摘草莓的装置为研究对象,设计出一款利用太阳能作为动力,便于携带,高效高果实完整率采摘的基于太阳能辅助人工采摘草莓装置。大大减轻了采摘工人的劳动强度,提高了果实的完整度,节约了能源。为广大草莓种植户提供了很好的草莓采摘辅助,在现代农业应用上有很好的发展前景。  相似文献   

17.
为了解决无患子Sapindus mukorossi果皮萃后物人工沥水导致的效率低、车间地面黏滑与皂苷浪费等问题,创新设计了一种双向旋转式无患子果皮萃后物滤水分料装置。提出了以"双向旋转式"为核心工作理念的新装置结构,并对其主要的滤水过程进行了理论与运动学分析,且利用增材制造技术制作了样机,依据功能要求进行了性能测试。结果表明:该装置结构简单可靠,实用性强;采用的轴向偏角α < 90°的搅动叶片设计方式可减小果皮堆积的概率;平均滤水率可达45.83%,平均出料率可达85%以上,均满足设计要求。该装置能够较好地实现无患子果皮萃后物和皂苷混合物的分离、皂苷混合物的再回收利用以及萃后物低湿度分离的功能,提高了无患子果皮皂苷的萃取率,从而便于进行后续烘干和晒干工艺,推动了无患子加工产业机械化。  相似文献   

18.
设计了一个将蔬菜和烟草幼嫩脆弱型穴盘苗取出并投送至指定位置的机构,该机构包含定位输送装置与取投苗装置。在穴盘输送台上对生长至3~4片真叶的烟草穴盘苗进行取投苗试验,以伤苗率、取苗成功率、投苗成功率为评价指标,对取苗机构的电机转速、苗夹安装高度、机械手指的插入角度等进行了单因素试验与多因素正交试验。单因素试验结果表明,取苗机构的电机转速为120 r/min时,伤苗率为1.5%,取苗成功率为92.5%,投苗成功率为93.12%;苗夹的安装高度为90 mm时,伤苗率为1.32%,取苗成功率为91.2%,投苗成功率为94.45%;机械手指的插入角度为7°时,伤苗率为1.28%,取苗成功率为93.35%,投苗成功率93.1%。正交试验结果表明,取苗机构的电机转速为120 r/min,苗夹的安装高度为90 mm,取苗爪的插入角度为7°时,为最优组合,伤苗率为1.8%,取苗成功率为94%,投苗成功率为96.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号