首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The effect of pruning all branches (complete pruning) or retaining one branch (partial pruning) on the dynamics of nitrogen cycling in aboveground biomass, nitrogen supplying power of an amended Eutric Cambisol, and fine root length, was studied in an Erythrina poeppigiana (Walp.) O.F. Cook—tomato (Lycopersicon esculentum Mill.) alley cropping practice in Turrialba, Costa Rica during 1999–2000. Over the 1 year pruning cycle, in which trees were completely or partially pruned four times, respective aboveground biomass production was 4.4 Mg or 7 Mg ha−1 (2-year-old trees) and 5.5 Mg or 9 Mg ha−1 (8-year-old trees); N cycled in aboveground biomass was 123 kg or 187 kg ha−1 (2-year-old trees) and 160 kg or 256 kg N ha−1 (8-year-old trees); mean fine root length was 489 or 821 m (2-year-old-trees), 184 or 364 m per tree (8-year-old-trees). Pruning intensity did not significantly affect net N mineralisation and net nitrification rates during the tomato-cropping season. For the tomato crop, pre-plant mean net N mineralisation rate of 2.5 mg N kg−1 soil day−1 was significantly lower than 16.7 or 11.6 mg N kg−1 soil day−1 at the end of vegetative development and flowering, respectively. Mean net nitrification rates of 3.5, and 4.3 mg N kg−1 soil day−1, at pre-plant and end of vegetative development, respectively, were significantly higher than 0.3 mg N kg−1 soil day−1 at end of flowering. In humid tropical low-input agroforestry practices that depend on organic inputs from trees for crop nutrition, retention of a branch on the pruned tree stump appears to be a good alternative to removal of all branches for reducing N losses through higher N cycling in aboveground biomass, and for conserving fine root length for higher N uptake, although it might enhance competition for associated crops.  相似文献   

2.
In alley cropping systems, fast growing leguminous trees are pruned to reduce competition with crops for light and to provide organic inputs for crop nutrition. Tree regrowth depends on non-structural carbohydrate reserves in the remaining tree parts. In this study, the dynamics of starch and soluble carbohydrates in roots and stems of completely pruned (all shoots removed), partially pruned (one branch retained on the pruned stump) and unpruned Erythrina poeppigiana (Walp.) O.F. Cook and Gliricidia sepium (Jacq.) Kunth ex Walp. trees were studied under humid tropical conditions in Turrialba, Costa Rica. Measurements on starch and soluble carbohydrates in roots and stems were made at 0, 2, 6 and 12 weeks after pruning during both a “rainy” and a “dry” season. In general, the dynamics of non-structural carbohydrates in roots and stems of pruned E. poeppigiana and G. sepium trees were similar. Starch concentration was highest in unpruned trees and higher in roots than in stems of pruned trees. The effect of pruning intensity was first observed in stems, and starch reserves were more depleted in stems than in roots, an effect more evident during the “dry” season. The critical tree regrowth stage for starch mobilisation was that of vigorous sprout development at six or four weeks after pruning particularly in completely pruned trees. At this time, fine root biomass and length and nodule biomass in pruned trees decreased. Survival of fine roots and nodules was greater in partially pruned than in completely pruned trees. Starch accumulation in roots recommenced at 12 weeks after pruning in G. sepium, and later than 12 weeks after pruning in E. poeppigiana roots. This study showed that E. poeppigiana responded better to pruning regimes than G. sepium. Recovery of trees after pruning is better when trees are partially pruned than when completely pruned.  相似文献   

3.
In August, eight 4-m tall citrus trees were pruned by removing the top third of their canopy. Eight unpruned trees served as controls. Root growth, which was examined nondestructively with minirhizotrons over a four-month period, tended to be less in the pruned than unpruned trees seven days after pruning and this difference was significant (P < 0.05) from 14 to 49 days after pruning. Total reducing and ketone sugars (includes free fructose, sucrose and fructans) in the fine roots were less in pruned than unpruned trees 20 days after pruning, but not thereafter. By 30 days after pruning, at least 20% of the roots of the pruned trees at a soil depth of 9 to 35 cm apparently died. By 63 days after pruning, root length density had recovered to that of the unpruned trees, although starch reserves were 18% less in the fine roots of pruned than unpruned trees at this time. Nine to eleven months after pruning (May to July), total biomass of leaves and fine roots to a depth of 1 m were similar in pruned and unpruned trees. However, fruit biomass harvested in April from pruned trees was only 24% of that in the unpruned trees. In May, nonstructural carbohydrates in the fine and coarse roots of pruned trees were generally greater than in unpruned trees, possibly reflecting previous differences in fruit production.  相似文献   

4.
Pruning of agroforestry trees, while reducing shade of the crops, usually reduces both biomass production and nitrogen fixation. Short pruning cycles are often not sustainable on the long run, because tree production declines over subsequent pruning cycles. We compared biomass and labile carbohydrate dynamics of Erythrina lanceolata Standley (Papilionaceae) shade trees under total and partial pruning regimes in a vanilla (Vanilla planifolia L.) plantation in South-western Costa Rica. The highest biomass production was measured in the unpruned control, followed by trees with 50% of the leaf pruned every three months, while total pruning every six months resulted in the lowest biomass pruduction. In the more productive treatments, a higher proportion of the production was in branches. Because, the N content of woody branches was high, they were important for nitrogen cycling. In the partial pruning treatment more nitrogen was returned to the soil from litter and woody branches than from pruned leaf. Sugar concentrations were not different between treatments and the dynamics of non-structural carbohydrates (sugar and starch) seems to depend more on plant phenology than pruning treatment. However, the starch concentrations in the total pruning were lower than in the other treatments.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

5.
We tested the hypothesis that shallow-rooted crops and deep-rooted trees will share the available water in a complementary manner, when grown together, in a field trail in the Turkana district of northern Kenya during 1994 to 1996. Such studies have been few in dryland agroforestry. The effects of two different Acacia saligna (Labill.) H. Wendl. tree planting densities (2500 and 833 trees per ha), tree pruning (no pruning vs. pruning) and annual intercrops (no intercrop vs. intercrop) on total biomass production and their interactions were tested. In 1996 Sorghum bicolor (L.) Moench was used during the first vegetation period and Vigna unguiculata (L.) Walp. during the second. We used naturally generated runoff water for irrigation to supplement low rainfall amounts typical for the area. High biomass production (> 13 t ha–1 over a two year period) was observed irrespective of intercropping of pruned trees or sole tree stands. Although the pruning treatment reduced total tree biomass yields by a quarter, the introduction of annual intercrops after the pruning of trees outweighed this loss. The yields of the intercrops in the pruned tree treatments were similar to their yields when grown as monocrops. The calculation of land equivalent ratios showed overyielding for intercropped, pruned systems. The high values for LER (1.36 at low and 1.47 at high density of trees) indicate that there is complementarity in resource use between the different species.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

6.
Tree pruning is a common management practice in agroforestry for mulching and reducing competition between the annual and perennial crop. The below-ground effects of pruning, however, are poorly understood. Therefore, nutrient dynamics and root distribution were assessed in hedgerow plantings of Acacia saligna (Labill.) H.L. Wendl. after tree pruning. Pruning to a height of 1.5 m was carried out in March and September 1996. In July and October 1996, the fine root distribution (< 2 mm) and their carbohydrate contents were determined at three distances to the tree row by soil coring. At the same time, foliar nutrient contents were assessed, whereas nutrient leaching was measured continuously. The highest root length density (RLD) was always found in the topsoil (0–0.15 m) directly under the hedgerow (0–0.25 m distance to trees). Pruning diminished the RLD in the acacia plots at all depths and positions. The relative vertical distribution of total roots did not differ between trees with or without pruning, but live root abundance in the subsoil was comparatively lower when trees were pruned than without pruning. In the dry season, the proportion of dead roots of pruned acacias was higher than of unpruned ones, while the fine roots of unpruned trees contained more glucose than those of pruned trees. Pruning effectively reduced root development and may decrease potential below-ground competition with intercropped plants, but the reduction in subsoil roots also increased the danger of nutrient losses by leaching. Leaching losses of such mobile nutrients as NO3 were likely to occur especially in the alley between pruned hedgerows and tended to be higher after pruning. The reduced size of the root system of pruned acacias negatively affected their P and Mn nutrition. Pruning also reduced the function of the trees as a safety net against the leaching of nutrients for both NO3 and Mn, though not for other studied elements. If nutrient capture is an important aim of an agroforestry system, the concept of alley cropping with pruning should be revised for a more efficient nutrient recycling in the system described here.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

7.
Fine root and nodule production and turnover in pruned 2- and 8-yr-old Erythrina poeppigiana (Walp.) O.F. Cook trees were estimated under humid tropical conditions by applying the compartment flow model (CFM) to fine root and nodule biomass and necromass measured in sequentially taken core samples. Shoot pruning intensities compared were complete pruning (i.e., complete removal of shoots) and partial pruning (i.e., retention of one branch on the pruned stump). The CFM provided reasonable estimates of nodule dynamics but did not apply to fine root data. Over a five-month observation period, nodule production in completely and partially pruned 2-yr-old trees was 58.2 and 115 g tree–1, respectively, and the corresponding values in 8-yr-old trees were 26.8 and 26.4 g tree–1. Senescent nodules and fine roots pass to soil organic matter via decomposition. Partially and completely pruned 2-yr-old trees added 95.4 and 50.4 g tree–1 decomposed nodules to soil, respectively. The respective value for 8-yr-old trees were 26.7 and 36.5g tree–1. Nodule and fine root turnover was compensated for by new production at 10–14 weeks after pruning. The retention of a branch on the pruned E. poeppigiana tree stump allows better fine root and nodule survival, and enhances tree biomass production.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

8.
In July and in October of 1978, 1979, 1980 five Picea abies stands in Baden-Württemberg, Germany were green-pruned up to a tree height level of c. 10 m. In 1993–94, 30 pruned trees and five control trees from each stand were harvested for investigation. The quality of pruning proved to be excellent because only few branch collar, bark injuries or too long branch stubs were detected. Based on isolations from more than 6000 wood specimens of c. 20 mm3 obtained from 175 trees, specific infection rates are given for different tree compartments. Wood decay fungi as well as important blue stain fungi were only rarely present. Tolerable discolourations were limited to the stub containing core of a few trees. Wood formed after pruning showed neither more fungal infections nor other related disadvantages compared with the respective increment from unpruned control trees. Nectria fuckeliana, proved to be the most abundant fungus in pruned trees especially in the branch stubs. Respective infection rates in and close to dry branches were compared. Bacteria could be found in the pruned branch stubs, however, they did not penetrate into the heartwood or sapwood of the stems. Both summer and autumn pruning involve only very low risk of wood deterioration. However, summer pruning shows some advantages with respect to lower infection rates by N. fuckeliana.  相似文献   

9.
On fertile alluvial soils on the lakeshore plain of Malawi, maize (Zea mays L.) yields beneath canopies of large Faidherbia albida (synAcacia albida) trees greatly exceed those found beyound tree canopies, yet there is little difference in soil nutrients or organic matter. To investigate the possibility that soil nutrient dynamics contribute to increased maize yields, this study focused on the impact of Faidherbia albida on nitrogen mineralization and soil moisture from the time of crop planting until harvest. Both large and small trees were studied to consider whether tree effects change as trees mature.During the first month of the rainy season, a seven-fold difference in net N mineralization was recorded beneath large tree canopies compared to rates measured in open sites. The initial pulse beneath the trees was 60 g N g–1 in the top 15 cm of soil. During the rest of the cropping cycle, N availability was 1.5 to 3 times higher beneath tree canopies than in open sites. The total production of N for the 4-month study period was 112 g N g–1 below tree canopies compared to 42 g N g–1 beyond the canopies. Soil moisture in the 0–15 cm soil layer was higher under the influence of the tree canopies. The canopy versus open site difference grew from 4% at the beginning of the season to 50% at the end of the cropping season.Both N mineralization and soil moisture were decreased below young trees. Hence, the impact of F. albida on these soil properties changes with tree age and size. While maize yields were not depressed beneath young F. albida, it is important to realize that the full benefits of this traditional agroforestry system may require decades to develop.  相似文献   

10.
We modeled tree responses to pruning on the basis of growth rules established on unpruned trees and a simple principle governing root-shoot interactions. The model, which integrates architectural and ecophysiological approaches, distinguishes four types of anatomical organs in a tree: rootstock, main axis, secondary axes and new roots. Tree structure is described by the position of secondary axes on the main axis. The main processes considered are plastochronal activity, branching, assimilate production, respiration and assimilate partitioning. Growth and development rules were based on measurements of two unpruned trees. The model was used to simulate growth of peach trees (Prunus persica (L.) Batsch) in their first growing season. Assuming that the equilibrium between roots and shoots tends to be restored after pruning, the response to removal of the main axis above the twentieth internode in mid-July was simulated and compared to the response measured in three pruned trees. The model fit the unpruned tree data reasonably well and predicted the main traits of tree behavior after pruning. Dry matter growth of the secondary axes of pruned trees was increased so that shoot seasonal carbon balance was hardly modified by pruning. Rhythmicity of growth was enhanced by pruning, and might result from variations induced in the root:shoot ratio. Variation in pruning severity had greater effects than variation in pruning date. A sensitivity analysis indicated that: (1) root-shoot partitioning was a critical process of the model; (2) tree growth was mainly dependent on assimilate availability; and (3) tree shape was highly dependent on the branching process.  相似文献   

11.
Producing high value veneer wood requires that the tree bole be branch-free. This can be accomplished by natural or artificial pruning. Since wild cherry does not self prune well, pruning artificially is the only practical option. The study analysed the effect of conventional whorl-wise pruning and selective pruning, on height growth, diameter growth and secondary shoot development of wild cherry. Four pruning treatments were applied on cherry trees in summer 2007, one group of cherries was left unpruned to serve as a control: treatment C1 (upper 5 whorls left), C2 (upper 3 whorls left), S1 (removal of branches larger than 3 cm or with an angle to the stem < 40°), S2 (removal of branches larger than 2 cm or with an angle to the stem < 40°), N (unpruned). Data showed that height growth was not affected by pruning. In contrast, diameter growth at breast height of the C2 pruned cherry was reduced by approximately 5% (SE = 2.7%) in the year of pruning (trees were pruned in July). This pruning treatment produced significant (p = 0.028) nine percent less diameter growth than the control in the second year following pruning. The diameter increment of the C1 pruned trees with five whorls left after pruning and the selective pruned cherries were only about 4% (SE = 4.0%) smaller than the control after two years. This loss was statistically not significant. Analyses showed that on selective pruned trees the survival rate of secondary shoots was significantly reduced compared to those on whorl-wise pruned trees. Significant differences in the size of the secondary shoots were only found between the C1 and S1 (p < 0.05) pruned trees. We did not find differences in the total number of secondary shoots per tree among pruning treatments. Solely from a tree growth perspective, the moderate whorl-wise pruning treatment C1 and the selective prunings were equally effective in minimizing the reduction of diameter growth and are recommended in practice. However it was found that the survival of secondary shoots was reduced on selective pruned trees although the amount of pruning work needed in selective pruning was slightly greater than conventional moderate pruning.  相似文献   

12.
This study was conducted near Hyderabad, India during 1991–1994 to quantify the effects of shoot pruning, fertilization, and root barriers around Leucaena leucocephala trees on intercropped sorghum(Sorghum bicolor) or cowpea (Vigna unguiculata) crop production under rainfed conditions. Crop plants grown with pruned trees attained higher dry matter and leaf area index than did those with unpruned trees. Two-year mean grain yields of sorghum with no root barriers were76% and 39% of pure crop yield (1553 kg ha–1)for pruned and unpruned trees, respectively. Corresponding values for cowpea were 49% and 26% of pure crop yield (1075 kgha–1). Sorghum or cowpea intercropped with trees responded to fertilizer application more strongly than did their respective pure crops, suggesting an increased need for fertilizer application in this agrisilviculture system over that currently used for pure crops. Impact of root barriers was small on either crop. Irrespective of root barriers, a high response to tree pruning suggested above ground competition for light dominated tree/crop interactions in this agrisilviculture system. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Cacao trees under different shade tree shelter: effects on water use   总被引:1,自引:1,他引:0  
We asked how shade tree admixture affects cacao water use in agroforests. In Central Sulawesi, Indonesia, cacao and shade tree sap flux was monitored in a monoculture, in a stand with admixed Gliricidia trees and in a mixture with a multi-species tree assemblage, with both mixtures having similar canopy openness. A Jarvis type sap flux model suggested a distinct difference in sap flux response to changes in vapor pressure deficit and radiation among cacao trees in the individual cultivation systems. We argue that differences originate from stomatal control of transpiration in the monoculture and altered radiation conditions and a different degree of uncoupling of the VPD from the bulk atmosphere inside shaded stands. Probably due to high sap flux variability among trees, these differences however did not result in significantly altered average daily cacao water use rates which were 16 L day?1 in the multi-species assemblage and 22 L day?1 in the other plots. In shaded stands, water use of single cacao trees increased with decreasing canopy gap fraction in the overstory since shading enhanced vegetative growth of cacao fostering transpiration per unit ground area. Estimated transpiration rates of the cacao tree layer were further controlled by stem density and amounted to 1.2 mm day?1 in the monoculture, 2.2 mm day?1 for cacao in the cacao/Gliricidia stand, and 1.1 mm day?1 in the cacao/multi-species stand. The additional transpiration by the shade trees is estimated at 0.5 mm day?1 for the Gliricidia and 1 mm day?1 for the mixed-species cultivation system.  相似文献   

14.
We developed site-specific allometric models for Leucaena leucocephala × pallida var. KX2 trees in a shaded coffee agroecosystem in Hawaii to predict above- and belowground biomass and the regrowth potential of pollarded trees. Models were used to compare tree growth rates in an experimental agroforestry system with different pollarding frequencies and additions of tree pruning residues as mulch. For all allometric equations, a simple power model (Y = aXb) provided the optimal prediction of biomass or regrowth after pollarding. For aboveground biomass components (stem, branches, leaves, and seed and pods), stem diameter alone was the best predictor variable. Stump diameter provided the best prediction of coarse root biomass and aboveground regrowth after pollarding. Predictions of biomass from generalized allometric models often fell outside the 95% confidence intervals of our site-specific models, especially as biomass increased. The combination of pollarding trees once per year plus the addition of tree mulch resulted in the greatest aboveground regrowth rates as well as accumulation of biomass and C in the stump plus coarse roots. Although optimal prediction required the development of site-specific allometric relationships, a simple power model using stem or stump diameter alone can provide an accurate assessment of above- and belowground tree biomass, as well as regrowth potential under specific management scenarios.  相似文献   

15.
Growing Acacia albida as a permanent tree crop, on farmlands with cereals, vegetables and coffee underneath or in between, is an indigenous agroforestry system in the Hararghe highlands of Eastern Ethiopia. However, there is practically no systematic record or data on the merits and benefits of this practice.The paper presents the results of an investigation into the effects of the presence of A. albida on farmlands on the yield of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench). Twenty seven plot pairs each consisting of one plot underneath the A. albida foliage cover and the other in the open, away from the tree-on farmers' fields, in a 40 km radius around the Alemaya College of Agriculture, were sampled and the yield components analyzed. A statistically significant increase in crops yields by 56% on average was found for the crops under the tree canopies compared to those away from the trees. This increase was caused by the improvement in 1000 grain weight and number of grains of plants under the tree, indicating that the trees enhanced the fertility status of the soil and improved its physical conditions in terms of crop growth.Additional benefits from the A. albida trees include supply of fuelwood and fodder. Quantitative estimates of these outputs as well as their monetary values are presented in the paper. However, in order to realize these benefits to a discernible extent, higher stand densities of the tree than at present are required.Based on an enquiry about the farmers attitude towards A. albida, the prospects for an extension of this promising agroforestry technique are discussed against the background of the state and trends of development of agriculture in the area. It is surmised that despite some shortcomings like the relatively slow and highly variable growth of A. albida and a conflict with the spreading cultivation of Ch'at (Catha edulis Forsk.), the prospects of extension of this technique are good. It is recommended that its propagation should be incorporated into the programmes of the extension agencies of the various governmental agencies concerned with land use.  相似文献   

16.
Crop and livestock production in the Guinea savanna zone of northern Ghana has been declining over the past years as a result of increasing pressure on land. To sustain soil productivity, pigeon pea(Cajanus cajan), a leguminous perennial crop was evaluated for its potential as a short duration fallow crop for fodder and grain, and maize (Zea mays)production. It involved comparing a natural fallow (i.e., control) and four improved fallows of pigeon pea pruned annually at 30 cm, 60 cm and 90 cm from the ground, and unpruned pigeon pea over a two-year period. After this time, the land was cleared manually and planted to maize. The highest mean annual biomass of pigeon pea over the two-year period of 6.1 t ha−1 dry matter (DM) was obtained by pruning at 60 cm. The highest leaf litter production and pigeon pea seed yield was obtained from the no pruning treatment. The mean maize grain yield from the improved fallow (3.02 t ha−1) in the first year after clearing was significantly (P < 0.05) greater than that of the natural fallow (1.54 t ha−1). Considering the biomass of pigeon pea from pruning, pigeon pea seed yield and maize grain yield after the pigeon pea, pruning pigeon pea at 60 cm is the most promising regime for crop-livestock production systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The nitrogen status of most Zambian soils is inherently low. Nitrogen-fixing trees such as Faidherbia albida (F. albida) could have the potential to restore soil fertility. We conducted a study to examine the role of mature F. albida trees on the soil microbial communities and overall N fertility status in Zambia. Soil samples were collected under and outside the canopies of F. albida trees in representative fields from two sites namely; Chongwe (loamy sand) and Monze (sandy loam). To assess the long term canopy effects; total N, mineral N and soil organic carbon (Corg) content were directly measured from soils collected under and outside the canopy. Short term litter effects were assessed by subtracting concentrations of biochemical properties of non-amended controls from amended soils with F. albida litter during an 8 week incubation experiment. We also determined N mineralization rates, microbial community structure—Phospholipid fatty acids, microbial biomass carbon, and labile organic carbon (\({\text{C}}_{{{\text{org[K}}_{ 2} {\text{SO}}_{ 4} ]}}\)) during incubation. For the long term canopy effect, average N mineralization rate, Corg, total N and mineral N content of non-amended soils under the canopy were (all significant at p < 0.05) greater than soils outside the canopy on both sites. In the short term, amending soils with litter significantly increased N mineralization rates by an average of 0.52 mg N kg?1 soil day?1 on soil from Monze. Microbial biomass carbon measured after 4 weeks of incubation was on average significantly higher on amended soils by 193 and 334 mg C kg?1 soil compared with non-amended soils in Chongwe and Monze soils, respectively. After 6 weeks of incubation, the concentration of all selected biomarkers for major microbial groups concentrations in non-amended soils were significantly higher (all p < 0.05) under the canopy than outside in Monze soil. Using principal component analysis, we found that the segregation of the samples under and outside the canopy by the first principal component (PC1) could be attributed to a proportional increase in abundances of all microbial groups. Uniform loadings on PC1 indicated that no single microbial group dominated the microbial community. The second principal component separated samples based on incubation time and location. It was mainly loaded with G-positive bacteria, and partly with G-negative bacteria, indicating that microbial composition was dominated by these bacterial groups probably at the beginning of the incubation on Monze soils. Our results show that the improvement of soil fertility status by F. albida could be attributed to a combination of both long term modifications of the soil biological and chemical properties under the canopy as well as short term litter fall addition.  相似文献   

18.
The coverage of trees in the highland Vertisol areas of Ethiopia is very scarce. A tree screening trial was conducted from 1997 to 2002 in Ginchi (central Ethiopia) to select fast growing and high biomass producing tree species; evaluate foliage macronutrient concentration of different tree species; and assess effects of trees on soil chemical properties beneath their canopies. Acacia decurrens Willd, A. mearnsii De Wild and Eucalyptus globulus Labill attained the highest height growth at 64 months as compared to other indigenous and exotic species. E. globulus provided better height increment from 24 to 36 and 36 to 64 months than other tree and shrub species. Acacia mearnssi and A. saligna Labill Wendl produced high biomass at 40 and 64 months. Differences between the highest and lowest dry biomass at 12, 40 and 64 months were 1.13, 29.19 and 38.89 kg tree−1, respectively. None of the tree species resulted in a foliage to stem biomass ratio of >0.98 at 40 and 64 months. Sesbania sesban (L.) Merr had high N and P concentrations in its foliages and stems at 12 and 40 months. Total N under Acacia abyssinica Hochst. Ex Benth, A.␣saligna and S. sesban was slightly greater at 40 months than 12 months.  相似文献   

19.
Water is the most limiting factor for plant production in arid to semiarid regions. In order to overcome this limitation surface runoff water can be used to supplement seasonal rainfall. During 1996 we conducted a runoff irrigated agroforestry field trial in the Turkana district of Northern Kenya. The effects of two different Acacia saligna (Labill.) H. Wendl. tree planting densities (2500 and 833 trees per ha), tree pruning (no pruning vs. pruning) and annual intercrops (no intercrop vs. intercrop: Sorghum bicolor (L.) Moench during the first season and Vigna unguiculata (L.) Walp. during the second season) on water use were investigated. The annual crops were also grown as monocrops. Water consumption ranged from 585 to 840 mm during the first season (only treatments including trees). During the second season, which was shorter and the plants relied solely on stored water in the soil profile, water consumption was less than half of that during the first season. Highest water consumptions were found for non-pruned trees at high density and the lowest were found for the annual crops grown as monocrops. Tree pruning decreased water uptake compared to non-pruned trees but soil moisture depletion pattern showed complementarity in water uptake between pruned trees and annual intercrops. The highest values of water use efficiency for an individual treatment were achieved when the pruned trees at high density were intercropped with sorghum (1.59 kg m–3) and cowpea (1.21 kg m–3). Intercropping and high tree density increased water use efficiency in our runoff agroforestry trial. We ascribe the observed improvement in water use efficiency to the reduction of unproductive water loss from the bare soil.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

20.
Sap flow density and meteorological variables were monitored in a very dense Acacia melanoxylon stand (about 9,000 trees/ha) in north-western Iberian Peninsula during the growing season of 2006 (from 8 June to 24 August). Evidences of an increment of stomatal control on transpiration were observed during the study period, probably as a consequence of higher evaporative demand of the atmosphere. However, high sap flow density values observed for the whole study period (from 1.14 to 52.73 dm3 dm−2 day−1) were similar than those found for other fast-growing species. Mean transpiration for the whole study period was 2.21 mm day−1, with a maximum value of 3.17 mm day−1 and a minimum of 1.23 mm day−1. Mean sap flow density values were correlated with crown length and crown ratio, relationships being fairly weak with other dendrometric parameters such as tree diameter or height. Mean transpiration values were correlated with main dendrometric parameters (diameter at breast height, total height, crown length, sapwood area and leaf biomass). It was found that the degree of competition per tree could be used as a good index for sap flow density. Taking into account the high tree density of the stand and the sap flow density values, water consumptions of A. melanoxylon can be very high, playing a relevant role in the hydrological balances of the watersheds where it grows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号