首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
To date our knowledge is limited with regard to the cycling of ethylene (C2H4) in temperate forest soils containing volcanic ash, and the effect of forest‐to‐orchard conversion on its cycling. We studied ethylene accumulation in such forest soils by oxic and anoxic incubations, along with the stimulatory effect of glucose addition on soil C2H4 accumulation. We also studied the effect of antibiotics and autoclaving on C2H4 production and consumption by volcanic forest soils, and the cycling of C2H4 and CH4 in surface soils after conversion of a Japanese cedar forest to an orchard. Ethylene production and consumption by forest surface soils results from a microbial process, and soil streptomycin‐sensitive bacteria make a minor contribution. Soil C2H4 accumulation was much larger during anoxic than during oxic incubation, which indicates that anoxic conditions can induce C2H4 accumulation in forest soils. Glucose addition as a carbon source can sharply increase C2H4 accumulation rates in the anoxic and oxic forest soils during the first week of incubation. However, there was no difference in total C2H4 accumulation in the amended and non‐treated soils after 35 days of anoxic incubation. Ethylene production of the 0–5 cm and 5–10 cm soils beneath forest and orchard showed the greatest rate after 2 weeks of anoxic incubation when soil CH4 production started to increase sharply, and later it was strongly suppressed. The forest‐to‐orchard conversion showed little influence on the CH4 production of surface soils during short‐term anoxic incubation, but significantly reduced soil C2H4 production. The conversion also significantly decreased the consumption of soil CH4 and C2H4, the former more than the latter. Soil properties such as total C, water‐soluble organic C and pH contribute to the consumption and production of C2H4 in the 0–5 cm and 5–10 cm soils, and there are the parallels between CH4 and C2H4 consumption in soils, which suggests the presence of similar microorganisms. Long‐term anoxic conditions of in situ surface upland soils are normally not prevalent, so it can be reasonably concluded that there is a larger C2H4 accumulation rather than CH4 accumulation in surface soils beneath forest and orchard after heavy rainfall, especially beneath forest.  相似文献   

2.
There is limited knowledge about the consumption and interaction of methane (CH4) and ethylene (C2H4) in forest soils under disturbances of temperature and acidification. Temperate volcanic forest topsoils (0‐5 cm) sampled under different tree species (e.g. Pinus sylvestris, Cryptomeria japonica and Quercus serrata) were used to study the capacities for CH4 and C2H4 consumption and their sensitivity to temperature and pH. We also studied the responses of soil nitrogen (N) transformations to temperature and relationships to consumption of both CH4 and C2H4. The C2H4 consumption rates increased with temperature up to 35oC, whereas the optimum temperature for CH4 consumption rates was approximately 25oC. Both Q10 values and activation energies for CH4 consumption rates over the range 5 to 25oC were larger than corresponding values for C2H4 consumption rates. The rates of nitrous oxide (N2O) and nitric oxide (NO) evolution and net N mineralization in the soils increased exponentially with temperature up to 35oC, with relatively large Q10 values and activation energies for NO evolution. In these forest topsoils, rates of CH4 and C2H4 consumption at pH < 4.0 were negligible, and the pH optimum for both consumptions varied from 5.5 to 6.2. Most of the tested forest soils had an optimum pH for CH4 and C2H4 consumption that was above natural pH values, which indicated that soil acidification would inhibit CH4 and C2H4 consumption in situ. There was a high rate of net C2H4 evolution from forest soils acidified experimentally to pH < 4.0, particularly from Cryptomeria japonica forest soil, and 67% of the variation in C2H4 evolution rates could be accounted for by the increase in soil water‐soluble organic carbon concentrations. Previous studies have shown that addition of C2H4 in headspace gases can inhibit atmospheric CH4 consumption in such forest soils. Hence, the evolution of C2H4 from temperate volcanic forest soils at decreasing pH can exacerbate inhibition of the soil atmospheric CH4 consumption in situ.  相似文献   

3.
Production of C2H4, but not of CH4, was observed in anoxically incubated soil samples (cambisol on loamy sand) from a deciduous forest. Ethylene production was prevented by autoclaving, indicating its microbial origin. Ethylene production gradually decreased from 4 to 12 cm soil depth and was not affected by moisture or addition of methionine, a possible precursor of C2H4. Oxidation of atmospheric CH4 in soil samples was inhibited by C2H4. Ethylene concentrations of 3, 6 and 10 μl l−1 decreased CH4 uptake by 21, 63 and 98%, respectively. Methionine and methanethiol, a possible product of methionine degradation, also inhibited CH4 oxidation. Under oxic conditions, C2H4 was consumed in the soil samples. Ethylene oxidation kinetics exhibited two apparent Km values of 40 μl l−1 and 12,600 μl l−1 suggesting the presence of two different types of C2H4-oxidizing microorganisms. Methanotrophic bacteria were most probably not responsible for C2H4 oxidation, since the maximum of C2H4 oxidation activity was localized in soil layers (2-8 cm depth) above those (8-10 cm depth) of CH4 oxidation activity. Our observations suggest that C2H4 production in the upper soil layers inhibits CH4 oxidation, thus being one reason for the localization of methanotrophic activity in deeper soil layers.  相似文献   

4.
Temperate volcanic forest surface soils under different forest stands (e.g., Pinus sylvestris L., Cryptomeria japonica, and Quercus serrata) were sampled to study the kinetics of ethylene (C2H4) oxidation and the C2H4 concentrations that effectively inhibit oxidation of atmospheric methane (CH4) and nitrification. The kinetics of C2H4 oxidation in temperate volcanic forest soils was biphasic, indicating that at least two different microbial populations, one with low and another with high apparent K m values, were responsible for ethylene oxidation. Methane consumption activity and ammonium oxidation of soil were inhibited by adding ethylene. Added C2H4 at concentrations of 3, 10, and 20 μl C2H4 per liter in the headspace gas respectively reduced by 20%, 50%, and 100% atmospheric CH4 consumption by soil, and these values were much smaller than those inhibiting ammonium oxidation in these forest soils; thus, the CH4 consumption activity was more sensitive to the addition of C2H4 than ammonium oxidation. Previous studies have shown that accumulation of C2H4 in such volcanic forest soils within 3 days of aerobic and anaerobic incubations can reach a range from 0.2 to 0.3 and from 1.0 to 3.0 μl C2H4 per liter in the headspace gas, respectively. It is suggested that C2H4 production beneath forest floors, particularly after heavy rain, can to some extent affect the capacity of forest surface soils to consume atmospheric CH4, but probably, it has no impact on ammonium oxidation.  相似文献   

5.
Photocatalytic reduction of CO2 in seawater into chemical fuel, methanol (CH3OH), was achieved over Cu/C-co-doped TiO2 nanoparticles under UV and natural sunlight. Photocatalysts with different Cu loadings (0, 0.5, 1, 3, 5, and 7 wt%) were synthesized by the sol–gel method and were characterized by XRD, SEM, UV–Vis, FTIR, and XPS. Co-doping with C and Cu into TiO2 remarkably promoted the photocatalytic production of CH3OH. This improvement was attributed to lowering of bandgap energy, specific catalytic effect of Cu for CH3OH formation, and the minimization of photo-generated carrier recombination. Co-doped TiO2 with 3.0 wt% Cu was found to be the most active catalyst, giving a maximum methanol yield rate of 577 μmol g-cat?1 h?1 under illumination of UV light, which is 5.3-fold higher than the production rate over C-TiO2 and 7.4 times the amount produced using Degussa P25 TiO2. Under natural sunlight, the maximum rate of the photocatalytic production of CH3OH using 3.0 wt% Cu/C-TiO2 was found to be 188 μmol g-cat?1 h?1, which is 2.24 times higher than that of C-TiO2, whereas, no CH3OH was observed for P25.  相似文献   

6.
石灰性土壤交换性盐基组成的测定,通行的方法是采用70%乙醇溶液反复洗盐,再经pH 8.50.1 mol L-1氯化铵-70%乙醇(CH3CH2OH)溶液进行多次交换处理,测定交换液中的K+、Na+、Ca2+、Mg2+浓度。但此方法常常受操作步骤繁琐,以及土壤中碳酸盐的溶解量因多次浸提而增加的困扰,最终导致测定结果偏高。基于上述原因,选择不同浓度、不同pH的NH4OAc和NH4Cl 10种交换剂,对比分析10种交换剂中的碳酸盐溶解度和土壤交换性钙镁含量。结果表明,pH=8.5 1 mol L-1氯化铵-70%乙醇(CH3CH2OH)溶液较适合石灰性土壤交换性盐基的测定。此新方法是先经70%乙醇(CH3CH2OH)溶液洗盐,再用pH8.5 1 mol L-1氯化铵(NH4Cl)-70%乙醇(CH3CH2OH)溶液进行一次性交换处理,然后测定交换液的K+、Na+、Ca2+、Mg2+浓度,简化了操作程序的同时有效抑制了土壤碳酸盐的溶解,降低了测定结果的偏差。  相似文献   

7.
Soil‐atmosphere fluxes of trace gases such as methane (CH4) and nitrous oxide (N2O) are determined by complex interactions between biological activity and soil conditions. Soil gas concentration profiles may, in combination with other information about soil conditions, help us to understand emission controls. This paper describes a simple and robust diffusion probe for soil gas sampling as part of flux monitoring programmes. It can be deployed with minimum disturbance of in‐situ conditions, and also at sites with a high or fluctuating water table. Separate probes are used for each sampling depth, in this study ranging from 5 to 100 cm. The probe has a 10‐ml diffusion cell with a 3‐mm diameter opening covered by a 0.5‐mm silicone membrane. At sampling the diffusion cell is flushed with 10 ml N2 containing 50 µl l?1 ethylene (C2H4) as a tracer; tracer recovery is used to calculate sample concentrations. Ethylene is immediately removed by flushing with unamended N2. Equations are presented to correct for dead volumes of connecting tubing and valves. Laboratory tests evaluated recovery of CH4, N2O and carbon dioxide (CO2), removal of C2H4 and equilibration of CH4, N2O and CO2 in air and water. Field tests on peat soils used for grazing showed soil gas concentrations of CH4 and N2O as influenced by topography, site conditions and season. The applicability of the diffusion probe for trace gas monitoring is discussed.  相似文献   

8.
Suspensions of Al(OH)3 gel, gibbsite or alumina were loaded with varying amounts of Cu, Cd, Zn, or Pb ions by varying the system pH. A complex relationship between metal uptake and equilibrium pH was noted (due to substrate buffering) but total loss of metal ion from solution was observed at pH > 6.5. The pre-loaded particles were back-extracted with fifteen different chemical solutions and the percentage of sorbed ion retrieved generally varied along the sequence NaCl, CaCl2 < MgCl2, NH4NO3 < CH3OOONH4, Na citrate, Na4P2O7, EDTA, DTPA ≈ CH3OOOH, H2C2O4, HCI, HN03. The recovery value varied with initial surface loading and an observed minimum around 1 gruel M2+ per 20 mg solid is considered to reflect changes in metal species nature (e.g., bonded M2+, MOH+, precipitated M(OH)2) and substrate surface charge. In the ‘minima’ region less than 10% of metal ion was displaced by many reagents. With different loadings up to 40% was displaceable by salts (i.e., weakly sorbed) while acids or complex formers at times released over 90 % of the pre-sorbed metal species. It was concluded that the degree of metal ion interaction varied with the initial system pH, with retention being due to a combination of weak adsorption, occlusion in gels, chemi-sorption and precipitation of M(OH)2.  相似文献   

9.
Reduction of N2O in moist soil was inhibited completely by 10?2 atm C2H2 and partially by 10?5 atm C2H2. The effect of C2H4 was 104 times less than that of C2H2. Denitrification of NO?3 occurred in anaerobically or aerobically incubated waterlogged soil and in anaerobic but not in aerobic moist soil. In the absence of C2H2 there was transient accumulation of N2O. In the presence of C2H2 there was stoichiometric conversion of NO?3 to N2O. Some kinetics of the reduction of N2O and of NO?3 to N2O are presented. Denitrification of 1 μg added NO?3-N.g? could be measured within 1 h. Stoichiometries of production of N2O from NO?2 and NO?3, respectively, and production of CO2 attributable to denitrification were consistent with reported energy yields. Reduction of C2H2 to C2H4 occurred immediately following complete denitrification of added NO?3. The incubation of soil in the presence and in the absence of C2H2 thus permits assay of both denitrification and N2 fixation and provides information on the mole fraction of N2O in the products of denitrification.  相似文献   

10.
Coated CaC2 is a newly developed product which can supply nitrification-inhibiting quantities of C2H2 (1–10 Pa) to the soil, throughout a cropping season. This method of applying C2H2 to the soil maintains C2H2 in the soil continuously for several months. It is not know whether these low C2H2 concentrations alter soil microbial processes. A field study was initiated to determine the effect of supplying C2H2 to a clay soil, using coated CaC2, on soil respiration, denitrification, nitrification, and C2H2 consumption. The C2H2 consumption rate increased with length of soil exposure to C2H2 (r 2=0.59). The rates of CO2 production (r 2=0.88) and denitrification (r 2=0.86) were both highly correlated with the C2H2 consumption rates. The nitrifier potential decreased to a minimum of 21% of the control after 3 months of C2H2 treatment. After this time, nitrifier activity increased to 41% of the control after 11 months of treatment. This increase was due to increased C2H2 consumption in the soil. After 3 months of continuous application of C2H2 to the soil, the C2H2 concentrations were generally below that necessary to inhibit nitrification. No adaptation to the C2H2 by nitrifiers was found. Repeating these measurements 1 year later showed that soils previously exposed to C2H2 retained their enhanced C2H2 oxidation capacity and the capacity to use C2H2 to increase denitrification. Nitrification potentials remained about 50% lower in soils exposed to C2H2 a year earlier compared to soils not previously exposed to C2H2.  相似文献   

11.
In a long-term pot experiment with paddy rice, the effect of a wet or dry fallow on methanogenesis was studied during the ninth season. At times of CH4 measurement, the oxidation of CH4 was suppressed by C2H2. Methanogenesis started earlier in continuously flooded soil and was higher during the entire rice-growing period than in soil kept dry during the fallow and rewetted again before transplanting the rice seedlings. Increased CH4 emission from the wet fallow treatment was, in contrast to the dry fallow treatment, associated with constantly low redox potentials. The experiment shows that the water regime during the fallow period is important to methanogenesis during the growth of rice plants.  相似文献   

12.
Laboratory studies were conducted to determine if acetylene affects the rate of NO3? reduction to N2O and N2, if C2H2 ist anaerobically metabolized in the presence of nitrate, and if C2H2 affects soil carbon metabolism. These studies in water saturated soil, incubated under air or N2 atmosphere, with or without acetone-free acetylene, show that C2H2 can accelerate NO3? reduction. Acetylene inhibited carbon mineralization when NO3? was limited but accelerated it when sufficient NO3? was available. After three days, only two per cent or less of the added C2H2 was directly oxidized to CO2, however, up to 28 % of the added C2H2 carbon remained in the soil. The residual C2H2 carbon was oxidized aerobically and anaerobically when NO3? was added. These data suggest that when C2H2 is used in denitrification studies, the results must be carefully scrutinized. Once a soil is exposed to C2H2 it should not be used again soon to assess denitrification.  相似文献   

13.
The inhibiting effect of C2H2 on nitrification was investigated in two agricultural soils. Nitrification was totally inhibited at 10 Pa partial pressure of C2H2 which is lower than previously reported for soils. There were no differences in rates of nitrate production between flasks without C2H2 and flasks with C2H2 at 0.01 Pa, while there was an effect on nitrification at 0.1 PaC2H2. At 0.1 Pa no inhibition was noted during the first 3 days; after this period nitrification was partially inhibited. The inhibiting effect did not cease until 7 days after removal of C2H2. The sensitivity of nitrification to low concentrations of C2H2 should be noted when denitrification rates are determined by the use of the acetylene inhibition method (usually C2H2 at 10kPa).  相似文献   

14.
The specific C2H2 reducing activity of excised nodules of Acacia cyanophylla was found to be 0.442 nmoles C2H4 produced min?1 mg dry wt nodule?1 and the apparent Km value for C2H2 between 8.5–11.0 × 10?3atm. Subjection of plants of A. cyanophylla to drought, waterlogging, shading and defoliation led to drastic reduction or complete cessation of the ability of their nodules to reduce C2H2 to C2H4 When water-stressed and waterlogged plants were returned to a regular watering regime and the shaded plants to normal daylight the ability of their nodules to reduce C2H2 to C2H4 was partially or totally restored.  相似文献   

15.
The influence of moisture level, light, aeration, and glucose upon C2H2 reduction by a clay soil was studied. C2H2 reduction was greater in 15 g samples of the air-dried soil moistened with 9 ml water than in samples moistened with 5 ml water. Illumination of the soil led to significantly more C2H2 reduction than when the soil samples were incubated in the dark. The addition of glucose to the soil increased C2H2 reduction. C2H2 reduction by soil samples incubated under an aerobic gas phase (either Ar + O2, 80; 20; or air) was not significantly different from that of samples incubated under an anaerobic gas phase (Ar). Several questions regarding the use of the C2H2 reduction technique in assessing nitrogen fixation by natural ecosystems are raised.  相似文献   

16.
Sulphur is an essential element for aquatic biosystems, the life processes of which lead to the formation of low molecular weight S compounds in the water. The results of our calculations indicate a pronounced tendency for Hg(II) to form HgS (or HgOHSH) and Hg(SR)2 complexes in the presence of H2S and thiols. Likewise, McHg will form CH3HgSH and CH3HgSR complexes, but in this case the chloride complex will dominate at low concentrations of H2S and thiols. In acidic low salinity water, CH3HgCl is the dominant McHg species at the lowest concentration of sulphide/thiols (0.1 nM), whereas a hundredfold increase of the sulphide/thiol concentration, or an increase of the pH to neutral or slightly alkaline conditions, will result in a total dominance for CH3HgSH and CH3HgSR.  相似文献   

17.
Several fungi were isolated from rhizosphere soils of various crops through enrichment on l-methionine (l-MET) as a sole C and N source. These fungi were examined for their C2H4 production potential in vitro. GC-FID analysis indicated that 78%, 83%, 89% and 72% of fungi isolated from rhizosphere soil of wheat, maize, potato and tomato, respectively, produced C2H4 from substrate l-MET. Eight of the most efficient C2H4-producing fungal isolates (two from each crop) were further tested for their ability to produce C2H4 from 2-keto-4-methylthiobutyric acid (KMBA) and α-ketoglutaric acid (α-KGA). Interestingly, all eight fungi produced C2H4 from KMBA, but none used α-KGA as C2H4 precursor. This result implies that the MET→KMBA→C2H4 pathway was most likely operating in these fungi. The most efficient C2H4 producer fungus (isolated from maize rhizosphere soil) was identified as Aspergillus terreus; this isolate was further studied to determine the optimal conditions for C2H4 production from l-MET. It was observed that a substrate (l-MET) concentration of 10 mmol l−1, a glucose (C-source) concentration of 6.0 g L−1, no nitrogen, a pH of 6.0, an incubation temperature of 30 °C and an incubation time of 72 h were optimal conditions for l-MET-derived C2H4 biosynthesis by Aspergillus terreus. In addition, C2H4 released from precursor (l-MET) by Aspergillus terreus significantly affected the seedling length and stem diameter of etiolated pea seedlings in both sterilized and non-sterilized soils compared to a control. C2H4-producing microflora may be ubiquitous in soil, and the availability of a substrate like l-MET could enhance C2H4 synthesis in the rhizosphere of a plant, in turn evoking a physiological response. As far as we know, this study represents the first comprehensive screening of rhizosphere fungi for their ability to produce C2H4 from l-MET and KMBA.  相似文献   

18.
The reliability of the C2H2 reduction test for estimating the activity of N2-fixing bacteria associated with the roots of cereals has been evaluated in Scottish soils. Six wheat cultivars, including two chromosome substitution lines, and five barley cultivars were grown in a glasshouse in nine soils from the North East of Scotland. All the soils exhibited C2H4 oxidase activity which was completely inhibited by 0.0001–0.1 atm C2H2. Over-estimation of C2H2 reduction, resulting from the accumulation of endogenous C2H4, could, therefore, occur in assays of undisturbed plants, with the real possibility of deducing the existence of N2-fixation where none existed. However, radiolabelled C2H2 reduction tests on undisturbed plants producing 2.4–18.0 μmol C2H4 day?1, showed that all the C2H4 had been derived from the C2H2. With less active plants, the source of the C2H4 could not be accurately determined by this tracer method. These low rates of C2H4 production (< 2.4 μmol C2H4 day?1), referred to as apparent C2H2 reduction, should, therefore, not be considered proof of N2-fixation.The highest C2H2 reduction activities were observed in soils at maximum water holding capacity (MWHC). Roots removed from these soils reduced C2H2 immediately, if the initial partial pressure of O2 (pO2) was < 0.1 atm. Roots washed free of soil did not oxidize C2H4 during the 8 h assay. The C2H2 reduction activities of these excised roots could not be related to the activity of plants in soil for three reasons. (1) Development of C2H2 reduction was dependent on protein synthesis (inhibited by chloramphenicol), indicating re-establishment of activity destroyed by exposure to atmospheric pO2, rather than continuation of the activity of undisturbed roots. (2) A lag period, dependent on the volume of the incubation vessel, was observed, indicating the involvement of root respiration in the assay. (3) Growth of N2-fixing bacteria on compounds released from the roots (reducing sugars, amino acids and α-keto acids) occurred during the assay.Even with the possibility of over-estimation of N2-fixation, the C2H2 reduction activities measured were considered to be too low to contribute significantly to the nitrogen requirement of the cereals grown under field conditions in Scotland.Some guidelines for screening programmes of N2-fixation associated with the roots of grasses are suggested.  相似文献   

19.
Abstract

The availability of soil Mn to corn in relation to extractability of soil Mn by EDTA, Mg(NO3)2, CH3COONH4, hydroquinone, H3PO4, and NH4H2PO4 as affected by liming was evaluated under field conditions on a single soil type. EDTA, Mg(NO3)2 and CH3COONH4‐extractable Mn were related inversely to available Mn. No useful relationships were found between hydroquinone, H3PO4, and NH4H2PO4‐extractable soil Mn and Mn uptake by sweet corn.  相似文献   

20.
In the C2H2-C2H4 assay for measurement of heterotrophic N2 fixation in water-logged soils, the diffusion of C2H2 into the soil and the recovery of C2H4 from it are critical factors regulating the assay result. To establish an C2H2-C2H4 assay technique suitable for waterlogged soils, the C2H2-reducing activities (ARA), assayed by varying the method of assay gas filling, the pC2H2 of the assay gas, the duration of assay incubation and of soil vibration before the gas sampling, were compared.

A maximum ARA was measured when the following set of procedures were applied to the soil sample in assay flasks: 1) a 4-fold repetition of I-min evacuation under 0.01 atmospheric pressure and the subsequent I-min filling under 1 atmospheric pressure with assay gas at pC2H2 of 0.1 atm, 2) an assay incubation for 3 hr, and 3) a sampling of an aliquot of the headspace gas after strongly vibrating the flask for 1 min.

The ARA measured by this technique was several times larger than those measured by the techniques hitherto applied, and corresponded to an almost 80% of the V max of the sample. This technique was, therefore, proposed for the assay of heterotrophic N2 fixation in waterlogged soils.

A striking depression of ARA in the soil sample prepared with agitation indicated that a microbial ecosystem established in the soil should be kept as undisturbed as possible throughout the C2H2-C2H4 assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号