首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ORV是LNG接收站工艺中长期运行的关键设备之一,江苏冬季海水温度较低,为保证接收站安全平稳运行,资源合理利用,针对江苏LNG投产运行第一个冬季ORV的实际运行情况,介绍了ORV的基本结构和运行特点,讨论了冬季海水水温较低、海域潮差造成的海水流量波动等因素对ORV气化效率的影响.详细分析了海水温度与ORV本体结冰高度及LNG气化出口温度的变化关系.求证了ORV在江苏LNG接收站海水最低温度下的使用效率,有利于在今后的操作中,根据海水温度的变化合理调整工艺,使设备运行于最佳状态.  相似文献   

2.
SCV是LNG接收站实现气化外输的重要设备,在投用前需要对其入口管道进行预冷.但如果每次预冷均启动SCV,会造成一定量的燃料气浪费,且预冷初期LNG流量较小,极易引起设备因水浴温度高于设定值而导致联锁跳车.因此,在预冷SCV时,为了保护设备和降低燃烧成本,需要对预冷SCV所引起的水浴温降进行计算.通过现场ORV的实际运行状态及预冷记录,计算得出相同条件下LNG的平均比定压热容和预冷SCV的LNG量.通过牛顿冷却公式,计算得出预冷SCV时LNG与入口管道的表面传热总量.根据热量守恒原理,最终获得了能保证SCV预冷完成的最低水浴温度.为SCV在水浴温度高于7.2℃时不点火也可以实现预冷提供了理论支持.  相似文献   

3.
《油气储运》2014,(11):1217
2014年10月17日,由中石油京唐液化天然气有限公司组织研发的国内首台国产化开架式海水气化器(ORV)在唐山LNG接收站顺利通过工业性试验并投料运行成功。ORV分别在40 t/h、80 t/h、120 t/h、160 t/h、180 t/h等进料负荷状态下试运行,各项性能指标均达到研发设计要求,一次投用成功,标志着国产首台ORV成功实现国产化。ORV是LNG接收站海水气化系统的核心设备,此前国内各LNG接收站均采用进口设备。京唐液化天然气有限公司按照国家  相似文献   

4.
开架式气化器(Open Rack Vaporizers,简称ORV)是LNG接收站中的关键设备,它以海水为热源将LNG气化成气态天然气.ORV及其相关管道在备用时处于常温状态,为了防止低温LNG突然进入常温管道和设备,引起管道急剧收缩造成损坏,ORV在运行前必须进行预冷.重点介绍了江苏LNG接收站中ORV预冷的准备工作、工艺流程、工作要点、冷却过程等,并针对实际过程中的操作要点和控制重点进行了分析.  相似文献   

5.
LNG的气化外输主要依赖于浸没燃烧式气化器,其稳定运行决定着整个LNG接收站的外输能力和经济效益。以唐山LNG接收站浸没燃烧式气化器运行情况为例,分析了气化器运行中的主要风险,并提出了优化措施;通过分析浸没燃烧式气化器的运行状态和燃料气消耗情况,将试验研究与计算方法相结合,对其参数设定进行优化,提高了设备稳定性,降低了燃料气成本,提升了设备运行的经济性。该优化方法科学可行,可为LNG接收站的运营、浸没燃烧式气化器的国产化提供参考。  相似文献   

6.
LNG接收站不同运行参数下最小外输量的计算   总被引:1,自引:0,他引:1  
投产初期LNG接收站的外输量较小,需要在最小外输量下运行;接收站主要起调峰作用,天然气外输需求不稳定,随时可能在最小外输量下运行,因而影响接收站的安全运行。分析了影响最小外输量的主要因素,由BWRS方程和能量、质量守恒定律,确定再冷凝器回收BOG所需的最小LNG流量,同时采用二分法确定运行SCV时的最小外输量。据此,以Force Control V7.0为平台,设计出LNG接收站不同参数下最小外输量的计算软件,并以大连LNG接收站实际运行参数验证其可靠性,计算结果表明:大连LNG接收站正常运行ORV的最小外输量为375.65×104 m3/d,运行SCV的最小外输量为322.82×104 m3/d,与实际运行数据380×104 m3/d和320×104 m3/d非常接近。  相似文献   

7.
SCV是LNG接收站冬季运行的重要设备,SCV热效率,直接影响SCV的运行成本,应尽量提高SCV运行热效率.分析了LNG在SCV管束内被加热的3个阶段,利用HYSYS软件,计算了江苏LNG接收站SCV实际运行时的热效率.定性分析了冬季和夏季SCV运行热效率的差异,状态方程选择PR方程,SCV进口高压LNG和出口高压NG焓值选择Lee -Kesier方程进行修正,计算结果表明:江苏LNG接收站SCV实际热效率98.02%,基本达到设计要求.建议对江苏LNG接收站SCV燃料气流量计进行标定,减少计量误差,提高热效率计算精度;SCV运行时尽可能降低SCV出口天然气设定温度,节约运行成本.  相似文献   

8.
最小外输工况下BOG再冷凝工艺的平稳控制是LNG接收站安全平稳运行的关键,对LNG接收站BOG再冷凝工艺在最小外输工况下的控制难点和技巧进行分析,结果表明:最小外输工况下LNG接收站产生的BOG的量较多,通过再冷凝器底部旁路的LNG量过少,运行过程中调整压缩机负荷、槽车站装车量波动等因素都会导致再冷凝器的压力、液位波动较大,同时也无法满足高压泵入口的温度要求及维持其入口压力的稳定.最后提出减少接收站BOG产生量、降低进入再冷凝器的BOG温度、保证BOG压缩机在高负荷下运行及提高再冷凝器的操作压力等措施,这些措施能够提高BOG再冷凝工艺控制的平稳性,保证系统安全运行.  相似文献   

9.
LNG接收站处于低流量外输工况下,海水泵跳车后,为了避免接收站启动零外输工况,维持接收站在运设备的正常运行,可以采用开启零外输循环流量控制阀的方法,将高压泵排量引入高压排净总管,然后进入低压排净总管,最终汇入储罐.以水力学分析为基础,通过计算该流程最大通过流量和评估其对储罐压力的影响,证明该应急操作具有一定的适用性,可为应急操作提供理论支持.  相似文献   

10.
在工业生产中,经常通过流量分程控制测量、调节工艺参数,通过对给定对象的测量调节系统的压力和流量等参数,从而排除干扰,消除偏差,保证系统的稳定运行.随着天然气用量的增加,LNG接收站通过储存、气化、外输这一过程实现能源的充分利用,而LNG工艺系统控制的平稳性直接影响接收站的外输供气.通过对江苏LNG接收站流量分程控制回路运行情况进行观察和分析,总结了可能影响其稳定性的各种因素,提出了可行的优化方案.  相似文献   

11.
随着中国天然气需求量的爆发式增长,LNG接收站外输管道里程不断增长,出站压力随之持续增高,对压缩机、高压泵等设备性能提出了更高要求。以青岛LNG接收站为例,针对外输压力的变化,提出对其4台高压泵增加4级叶轮的改造方法,并对改造后外输高压泵的性能变化及其对LNG接收站工艺运行的影响进行研究。通过对改造后的高压泵扬程、轴功率、效率随着流量增加的变化趋势进行现场测试,结果表明:高压泵增加叶轮后,其扬程、轴功率、效率、电流均显著提高,其中3台高压泵的运行参数可满足LNG接收站现场实际需要,另外1台即使在相同的测试条件下出口压力仍明显偏低;气化器、HIPPS(High Integrity Pressure Protective System)系统、外输管道高报压力及联锁值均需随之上调,接收站高压区连接法兰出现了多处泄漏,应加大巡检频率和力度;当LNG接收站高压泵性能不同时,在运行过程中应该尽量选用性能相近的泵。研究结果可为高压泵的国产化设计、制造提供参考。  相似文献   

12.
针对江苏LNG接收站长期处于低外输量运行工况储罐压力偏高、设备运行存在潜在安全隐患等问题,分析了LNG接收站BOG的产生原因,包括储罐吸热、管道漏热以及一些其他因素,提出了B()G预冷再冷凝工艺,即经过BOG压缩机压缩后的BOG,不直接进入再冷凝器,而先进入换热器,与高压泵出口输出的LNG间接换热,BOG经过预冷后再进入再冷凝器冷凝处理,而换热后的LNG继续进入气化器气化外输,从而达到预冷BOG的目的,实现低外输量工况下BOG处理最优化.同时,从方案的可行性出发,提出了相关注意事项.与现有工艺流程相比,新工艺在低外输量工况下能够处理更多的BOG,从而有效降低储罐压力,为避免高压泵发生气蚀提供了可靠的温度保证,并表现出一定节能降耗的效果.  相似文献   

13.
LNG浮式储存与再气化装置(Floating Storage Regasification Unit,FSRU)的建设周期短、装置灵活性高,其再气化模块是LNG-FSRU的重要功能模块,中间介质气化器(Intermediate Fluid Vaporizer,IFV)则是LNG-FSRU关键设备之一。基于LNG-FSRU中间介质再气化工艺现状,选择4种中间介质与2种加热源进行组合,确立8种再气化工艺流程,利用Aspen HYSYS软件建立再气化工艺流程模型,对再气化工艺进行敏感性分析。模拟结果表明:以丙烷为中间介质的整体式海水加热再气化工艺所需的海水流量及丙烷循环量较低,气化器结构紧凑、经济性好,其可作为LNG-FSRU再气化工艺的首选;当海水温度较低时,可采用海水和蒸汽联合加热的再气化方式。研究结果可为LNG-FSRU再气化系统的设计提供参考。  相似文献   

14.
广东大鹏LNG接收站实施轻烃分离的可行性   总被引:1,自引:0,他引:1  
介绍了国际上LNG冷能的利用现状,阐述了广东大鹏LNG接收站基于LNG化学组成和LNG冷能利用增设轻烃分离装置的必要性,指出了实现轻烃分离需要解决的技术问题:同时保证天然气管道在比较稳定的高压力下运行和轻烃分离装置稳定的进料量,确定了增设轻烃分离装置的原则.通过开展联合工艺研究和轻烃分离装置模拟计算,使轻烃分离装置和接收站都处于优化运行状态,不但解决了接收站气化外输量的波动对轻烃分离装置的影响问题,而且确保了广东大鹏LNG公司连续安全地向用户供应天然气.  相似文献   

15.
中间介质气化器IFV(Intermediate Fluid Vaporizer)是海上浮式液化天然气接收终端的关键换热设备。基于传热理论,建立了多换热器的耦合换热计算模型,并采用混合工质作为中间介质,研究了运行参数对气化器换热性能的影响规律。通过分析混合中间介质饱和温度对气化器换热性能的影响,结合海水温度波动的敏感性分析,优选了混合中间介质的最佳饱和温度范围为256~265 K,此时IFV总换热面积较小且变化受海水温度波动影响较小,运行更稳定,蒸发器和冷凝器的换热系数较高,IFV换热性能较好。通过研究海水在调温器内的温降变化对IFV换热性能的影响规律,优选了海水在调温器内的温降范围为0.6~1.2 K,此时各换热器的UA值(换热系数U与传热面积A之积)和热负荷均表现为高量,热流密度较大,换热器的换热性能较好,且IFV的总换热面积变化控制在最小换热面积的10%以内,各换热器所占比例均为20%~50%,更有利于提高IFV运行的稳定性和适应性,且推荐换热器间热负荷比为3~7。(图10,表1,参24)  相似文献   

16.
为了研究SCV液化天然气气化器水浴内复杂的两相流传热规律,简化SCV气化器的工程应用计算方法,利用传热学理论,通过忽略烟气对传热过程的影响,简化了传热管束外流体流场、换热管内的温度场和流场,建立了水浴加热-液化天然气气化传热过程的数学模型。将实际运行中的浸没燃烧式液化天然气气化器的工作性能参数带入新建数学模型,计算得到了管外平均对流传热系数、总传热系数、总换热管长、总换热面积,同时根据SCV气化器的加热负荷、管外测量水流速度等反算上述数学模型中的4个参数值,结果表明:管外平均传热系数的模型计算结果与实际运行参数的偏差为16.8%,但总传热系数、总换热管长、总换热面积的偏差仅为6.9%、-7.9%以及-7.9%,总体上可满足工程计算的需要,验证了所建数学模型的可靠性。  相似文献   

17.
随着我国进口LNG量的快速增长,LNG储罐已成为接收站的重要储存设施,其容量大小不仅直接影响接收站LNG的接收和天然气的外输,而且直接影响接收站的投资和运行的经济性。由于LNG接收站的存储特点,其存储能力会受到许多因素的影响,包括LNG运输船的运输方案、天然气外输方案、接收站的作业特点等。通过分析,确定了影响LNG储罐罐容的因素和罐容的计算方法,并对不同计算方法进行了讨论。  相似文献   

18.
LNG接收站BOG处理工艺优化及功耗分析   总被引:1,自引:0,他引:1  
为优化LNG接收站BOG处理工艺,降低整个接收站的功耗,以外输量为200 t/h、储罐BOG蒸发量为3.04 t/h的某LNG接收站为例,对再冷凝工艺和直接压缩工艺两种典型的BOG处理工艺进行了功耗分析,得出BOG压缩机和LNG高压泵的功耗为整个工艺的主要功耗。运用ASPENHYSYS模拟软件对现有工艺流程进行了优化:在现有BOG处理工艺的基础上,通过对LNG进一步加压至高于外输压力,靠气化后膨胀高压外输天然气做功来实现BOG的压缩和对LNG的加压。优化结果表明:BOG直接压缩工艺和再冷凝工艺分别节约功耗1 616.27 k W、1 270.64 k W。  相似文献   

19.
对比了大型LNG储罐的几种氮气吹扫和干燥方案的优缺点,重点介绍了各方案干燥时间的长短、安全性及经济性.结合江苏LNG接收站储罐的氮气吹扫和干燥方案,通过干燥时间的理论计算,分析了LNG储罐干燥时间的主要影响因素,提出了优化方案.结果表明:若在液氮气化器后端增加一个功率为266 kW以上的氮气加热器,同时在控制储罐压力和温度的前提下适当增加氮气流量和注入压力,可缩短氮气吹扫和干燥时间.江苏LNG接收站储罐的氮气吹扫和干燥方案具有经济效益高、可操作性强、安全性高等优点.  相似文献   

20.
LNG接收站高压泵并联运行时,单台泵故障停车或其他水力干扰会导致泵瞬间流量过大,电机过载,造成全站停车甚至损坏电机.针对高压泵设备特性及机组并联运行工艺现状,并结合全站工艺流程,分析了高压泵并联运行控制特点及操作难点.通过优化启停机操作程序,避免水力冲击.采用增加运行泵的数量以增宽流量调节范围的方法优化配泵方案.将高压泵出口的紧急切断阀改成调节阀,在单台泵故障停车时通过改变管路特性匹配系统流量,可有效减小运行泵的流量增幅,降低泵过载停车风险.在分析接收站天然气外输管网压力趋势的基础上,提出管道压力越高越有利于高压泵的平稳运行,根据不同工况采取有效措施保证高压泵机组安全、平稳、高效运行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号