首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of utilizing interfacial complexes, formed through the electrostatic interactions of proteins and polysaccharides at oil-water interfaces, to stabilize model beverage cloud emulsions has been examined. These interfacial complexes were formed by mixing charged polysaccharides with oil-in-water emulsions containing oppositely charged protein-coated oil droplets. Model beverage emulsions were prepared that consisted of 0.1 wt % corn oil droplets coated by beta-lactoglobulin (beta-Lg), beta-Lg/alginate, beta-Lg/iota-carrageenan, or beta-Lg/gum arabic interfacial layers (pH 3 or 4). Stable emulsions were formed when the polysaccharide concentration was sufficient to saturate the protein-coated droplets. The emulsions were subjected to variations in pH (from 3 to 7), ionic strength (from 0 to 250 mM NaCl), and thermal processing (from 30 or 90 degrees C), and the influence on their stability was determined. The emulsions containing alginate and carrageenan had the best stability to ionic strength and thermal processing. This study shows that the controlled formation of protein-polysaccharide complexes at droplet surfaces may be used to produce stable beverage emulsions, which may have important implications for industrial applications.  相似文献   

2.
The effect of the pH of heating (6.3-7.3) on the composition of sera in reconstituted skimmed milks was investigated. A combination of SDS-PAGE analysis and size exclusion chromatography (SEC) combined with an original approach to the analysis of the SEC profiles was performed. The composition of the sera varied greatly when the pH of heating was adjusted below and above the natural pH of milk. The formation, composition, and concentration of heat-induced soluble complexes depended on the combination of the effect of adjusting the pH of the milk and the heat treatment. Two types of mechanism for the formation of soluble aggregates appeared to exist, depending on the pH of the milk. The first type results from the formation of WP/kappa-casein aggregates at the surface of the micelle, and these were detached partially into the serum in larger amount as the pH increased up to 6.7, where it reaches a maximum. The second type of complexes, whose amount increased as the pH of heating increased from 6.7 to 7.3, may be formed between caseins (kappa- but also perhaps some alpha(s)-casein) and aggregated WP resulting in complexes that are smaller in size and with a higher kappa-casein/whey protein ratio than the first type.  相似文献   

3.
Sorption of antibiotics to clay minerals is a key process controlling their transport and fate in environment. In this study, the effects of pH, ionic strength, and Cu(II) on ofloxacin (OFL) sorption to kaolinite were investigated by batch sorption experiments. The results of sorption edge experiments suggested that OFL sorption to kaolinite was pH and ionic strength dependent. Cation exchange was a major contributor to the sorption of OFL+ to kaolinite. The decreased OFL sorption with increasing ionic strength indicated the formation of outer-sphere complexation. When solution pH was lower than 7.0, Cu-OFL complexes facilitated OFL sorption through electrostatic attraction or formation of kaolinite-Cu-OFL and kaolinite-OFL-Cu ternary surface complexes. However, existence of free Cu(II) cation in solution competed for sorption sites, and thus suppressed OFL sorption. When solution pH was higher than 7.0, Cu(II) existed as Cu(OH)2, and the Cu-OFL complexes in aqueous phase and solid phase (precipitation) enhanced OFL removal efficiency from solution. The results imply that Cu(II) effects should be taken into account in the evaluation of OFL mobility in environment.  相似文献   

4.
Fulvic acid is a water-soluble humic material that occurs widely in soils and waters and that tends to form water-soluble and water-insoluble complexes with a variety of metal ions, some of which are toxic. This paper presents information on the conditions under which the different types of FA-metal complexes are formed. The solubility in water, separately and after mixing, of FA (2 to 30 mg/100 ml) and eleven metal ions (Fe(III), Al, Cr(III), Pb, Cu, Hg(II), Zn, Ni, Co, Cd and Mn; 1 × 10?5 moles of each metal ion) was investigated over the pH range 4 to 9. After mixing, the solubility of the components was significantly affected by pH only when less than 20 mg of FA was present. As the systems became richer in FA (22 to 30 mg), most of the metal ions remained in the aqueous phase, likely due to the formation of FA-metal complexes, inhibiting the formation of metal hydroxides. The order in which the eleven metal ions tended to form water-insoluble FA-metal complexes depended on the pH. At pH 6 it was: Fe = Cr = Al > Pb = Cu > Hg > Zn = Ni = Co = Cd = Mn. This order appeared to correlate with the valence, 1st hydrolysis constants and effective hydrated ionic diameters of the metal ions. In general, FA/metals weight ratios of > 2 favored the formation of water-soluble FA-metal complexes; at lower ratios, water-insoluble complexes, which could accumulate in soils and sediments, were formed.  相似文献   

5.
The adsorption of a mixture of 16 isotopes of 14 rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) present in the initial solution in equal concentrations by quartz and goethite in the presence of bacteria Rhodopseudomonas palustris was studied under different acidity conditions. The solution pH was apparently the leading factor in the interaction of rare earth ions with the surface of mineral and biological sorbents. These interactions were controlled by electrostatic forces in acid (pH 4) and neutral (pH 7) solutions; the precipitation of elements from the solution was the predominant mechanism under alkaline conditions (pH 9). Microorganisms affected the adsorption of lanthanides by quartz in the entire pH range under study, especially at pH 7. In the presence of bacteria, the adsorption of the elements studied by goethite increased in an acid solution, remained unchanged under neutral conditions, and slightly decreased under alkaline conditions. Microorganisms increased the concentration of nonexchangeable forms of the elements adsorbed on the surface of quartz and goethite, which could be due to the formation of low-soluble complexes of rare earth elements with organic substances produced by bacteria.  相似文献   

6.
Interfacial protein-polysaccharide complexes can be used to improve the physical stability of oil-in-water emulsions. The purpose of this study was to examine the impact of ionic strength on the formation and stability of oil-in-water emulsions containing polysaccharide-protein-coated droplets. Emulsions were prepared that contained 0.1 wt % corn oil, 0.05 wt % beta-lactoglobulin, and 0.02 wt % pectin at pH 7. The emulsions were then adjusted to pH 4 to promote electrostatic deposition of the pectin molecules onto the surfaces of the protein-coated droplets. The salt concentration of the aqueous phase (0 or 50 mM NaCl) was adjusted either before or after deposition of the pectin molecules onto the droplet surfaces. We found that stable emulsions containing polysaccharide-protein-coated droplets could be formed when the salt was added after pectin adsorption but not when it was added before pectin adsorption. This phenomenon was attributed to the ability of NaCl to promote droplet flocculation in the protein-coated droplets so that the pectin molecules adsorbed onto the surfaces of flocs rather than individual droplets when salt was added before pectin adsorption. We also found that polysaccharide-protein-coated droplets had a much improved stability to salt-induced flocculation than protein-coated droplets with the same droplet charge (zeta-potential). Theoretical predictions indicated that this was due to the ability of the adsorbed polysaccharide layer to strongly diminish the van der Waals attraction between the droplets.  相似文献   

7.
Molecular complexes based on proteins and ionic polysaccharides have considerable potential for encapsulation of functional food components, but their widespread utilization is limited because their structure is highly sensitive to pH and ionic strength. We have investigated the possibility of creating stable hydrogel particles by thermal treatment of protein (beta-lactoglobulin) and cationic polysaccharide (chitosan) mixtures. Mixed solutions of beta-lactoglobulin (0.5 wt %) and chitosan (0.1 wt %) were prepared at various pH's (3-8) and were heated (80 degrees C for 20 min). Prior to heating, the biopolymer mixtures formed molecular complexes at pH values where there was an electrostatic attraction between the protein and the polysaccharide: soluble complexes at pH 4.5; complex coacervates at pH 5.0 and 5.5; precipitates at pH>5.5. After heating, relatively small (d approximately 140 nm) and cationic (zeta>+20 mV) hydrogel particles were formed at pH 4.5, but much larger aggregates were formed at pH 5.0 and higher (d>1000 nm). The thermally treated hydrogel particles formed at pH 4.5 maintained their initial particle size when the pH was subsequently adjusted within the range pH 3-5, but they aggregated when the pH was adjusted to >pH 5 because of a reduction in the magnitude of their electrical charge. This study suggests that hydrogel particles can be formed by heating mixed protein-polysaccharide systems under controlled conditions. These hydrogel particles may be useful for encapsulation of functional food components.  相似文献   

8.
Citrate forms strong complexes with A1 ions and may thus influence the stability and formation of Clay-A1 hydroxide polymer systems (CAIHO). We studied the adsorption of citrate to CAIHO and the influence of citrate on the stability and formation of CAIHO at different A1:clay and A1:citrate ratios and pH values and at a total salt concentration of 0·01 M monovalent anions. The amount of citrate sorbed to the aged CAIHO was independent of the A1 fixed to the clay as A1 hydroxide polymers (AIHO) at 5 < pH < 6·6. The added citrate seemed not to sorb to the AIHO but only to the edges of the clay. As the citrate: Al ratio increased from 15–1:l at pH 6, more of the AIHO of the aged CAMO systems dissolved. The change in the CEC of the clay indicated that the nature of the remaining AIHO is independent of the amount of A1 dissolved. Citrate influenced the formation of CAIHO systems as measured at pH 6·6, to an extent which depended on the citrate: Al ratio. At a small ratio (1:5), AIHO formed and all citrate was incorporated in the AIHO, probably leading to a coprecipitate. The amount of citrate incorporated depended linearly on the amount of AIHO present. Co-precipitation of AIHO and citrate probably led to the formation of a separate phase, which was only weakly bound to the clay particles. At a large citrate: Al ratio (1:1) soluble Al-citrate complexes became dominant, and only a small part of the added A1 was present as AIHO.  相似文献   

9.
Gel formation was monitored by low amplitude rheometry during acidification at 40 degrees C with 1.5% glucono-delta-lactone in combined milk systems containing soluble and/or micelle-bound heat-induced (95 degrees C/10 min) aggregates of denatured whey proteins and kappa-casein and in heated dairy mixes with varying micellar casein/whey protein ratio (CN/WP). Both soluble and micelle-bound aggregates increased gelation pH and gel strength. Micelle-bound aggregates seemed to modify the micelle surface so that micelles were destabilized at a pH of 5.1 (instead of 4.7), while soluble aggregates precipitated at their calculated pI of approximately 5.3, and initiated an early gelation by interacting with the micelles. Decreasing the CN/WP ratio produced larger aggregates with higher whey protein: kappa-casein ratio, which gave more elastic gels. The specific effects of the micellar and soluble aggregates on gel strength are discussed with respect to their relative proportions in the heated milk.  相似文献   

10.
The pH of a soil was altered by incubating it with either lime or acid at 60°C for 1 day. Subsamples were then mixed with fluoride solutions in order to measure the effects of pH on fluoride retention. The results were compared with those previously obtained with phosphate on the same soil. At equal concentration of total fluorine in solution, fluoride retention was greatest at about pH 5.5 and decreased at both lower and higher pH. The decrease at low pH appeared to be caused by the formation of complexes between fluoride and aluminium in solution. As a result, only a small proportion of the total fluorine in solution was present as fluoride ions. At equal concentrations of fluoride ions, fluoride retention decreased with increasing pH. It was shown that this decrease could be explained by decreases in the electrostatic potential of the variable charge materials. The decrease in potential was steeper than that required to describe phosphate retention. This is consistent with the plane of adsorption of fluoride ions being closer to the plane of adsorption of H+ and OH? ions.  相似文献   

11.
The objective of the present work was to investigate the physicochemical conditions that trigger the self-assembly of peptide β-lg f1-8 and therefore lead to nanofibers and hydrogel formation. Nanostructures formed by self-assembly of peptide β-lg f1-8 in the pH range of 2.0-11.0 were studied by transmission electron microscopy (TEM). Hydrogel formation was studied as a function of pH and resulted in evidence of a link between hydrogel formation and the charge distribution carried by the peptide structure. Finally, circular dichroism (CD) spectroscopy was used to characterize the effects of peptide concentration (0.4-2.0 mg/mL), ionic strength (0-1 M NaCl), and temperature (20-80 °C) on the secondary structure of peptide β-lg f1-8. Hydrogels were obtained at peptide concentrations above 2.5 mg/mL. Peptide concentration and pH adjustment were shown to trigger self-assembly of β-lg f1-8, but increasing ionic strength had no effect. Heating to 80 °C induced a stronger CD signal intensity due to an increase in solubility of the peptide, whereas only slight changes in CD pattern were found upon cooling to 20 °C. Overall, results emphasize the role of particular molecular interactions in β-sheet self-assembly of peptide β-lg f1-8 and pH-dependent electrostatic interactions occurring between β-lg f1-8 units, which can explain its propensity to self-assembly.  相似文献   

12.
Casein micelles were separated from unheated reconstituted skim milk powder (RSMP) and were resuspended in the serum of RSMP that had been heated, with and without dialysis of this serum against unheated RSMP. Using size-exclusion chromatography, it was found that the soluble complexes of whey protein (WP) with κ-casein in the serum of the heated milk bind progressively to unheated casein micelles during renneting, even prior to the onset of clotting. Similar trends were noted when casein micelles from RSMP heated at pH values of 6.7, 7.1, or 6.3, each with different amounts of WP coating the micelles, were renneted in the presence of soluble WP/κ-casein complexes. No matter what was the initial load of micelle-bound WP complexes, all micelle types were capable of binding additional serum protein complexes during renneting. However, it is not clear that this binding of WP/κ-casein complexes to the micellar surface is a direct cause of the impaired rennet clotting of the RSMP.  相似文献   

13.
14.
As a contribution to understanding the speciation of mercury in the environment and to the study of the sequestering ability of phytate (Phy) toward heavy metal and organometal cations, this paper describes the results of an investigation (at t = 25 degrees C by potentiometry, ISE-H+ glass electrode) of its interactions with mercury(II) cation in NaCl aqueous solutions at different ionic strengths (I = 0.15 and 1.0 mol L(-1)), in the pH range 2.5 < or = pH < or = 9.5 and considering metal-to-ligand ratios of 1:1 < or = Hg/Phy < or = 4:1. The formation of 11 HgiHjPhy(12-2i-j)(- species with i = 1 and 0 < or = j < or = 7 and i = 2 and 0 < or = j < or = 2 was observed. Their complex formation constant values proved to be fairly dependent on ionic strength. The speciation of phytic acid and mercury(II) is also dependent on the metal-to-ligand ratio; the dependence of the stability of phytate-mercury(II) species on the phytate protonation step was modeled, and an empirical predictive relationship was proposed. From the results obtained, phytate has very good sequestering ability toward Hg2+, even in the presence of considerable excesses of chloride ion, that is, another ligand strongly interacting with mercury; this supports future studies both on the use of plants that naturally synthesize it for phytoremediation purposes and on its direct application in remediation techniques.  相似文献   

15.
The formation of conjugates between beta-lactoglobulin and acacia gum based on electrostatic complexes formed at pH 4.2 was investigated upon dry-state incubation for up to 14 days at 60 degrees C and 79% relative humidity (RH). By means of SEC-HPLC and RP-HPLC, it was shown that the beta-lactoglobulin incubated alone was able to form polymers with molecular masses higher than 200 kDa until 50% of the initial monomeric protein disappeared after 14 days. In the presence of acacia gum at initial protein to polysaccharide weight mixing ratios of 2:1 and 1:2, only 35% of the initial beta-lactoglobulin monomers disappeared after 14 days. Using RP-HPLC, an apparent reaction order of 2 was found for the disappearance of monomeric beta-lactoglobulin both in the presence or absence of acacia gum. However, the reaction rate was faster in the absence of acacia gum. SDS-PAGE electrophoresis with silver staining confirmed the formation of beta-lactoglobulin/acacia gum conjugates. The solubility curves of the incubated beta-lactoglobulin showed a minimum around pH 4-5. By contrast, the minimum of solubility of the beta-lactoglobulin/acacia gum incubated mixtures shifted to lower pH values compared to initial mixtures. The conjugates exhibited higher foam capacity than the incubated protein as well as lower equilibrium air/water surface tension. Conjugation at ratio 1:2 led to increased interfacial viscosity (300 mN s m(-1) at 0.01 Hz) compared to beta-lactoglobulin alone (100 mN s m(-1) at 0.01 Hz), but similar interfacial elasticity (30-40 mN m(-1)). The foam capacity of the conjugates was significantly higher than that of the incubated beta-lactoglobulin as well as foam expansion and drainage time, especially at pH 5.3, i.e., higher than the pH of formation of the conjugates.  相似文献   

16.
Background, Aims and Scope   The German DIN 19730 (1997) describes a method for the extraction of readily available trace elements from soil by shaking the soil with 1 M NH4NO3-solution. Based on this method trigger and action values for the transfer of heavy metals and arsenic from soils to plants have been published in the German Federal Soil Protection and Contaminated Sites Ordinance (BBodSchV 1999). The chemical mechanisms involved in this soil extraction procedure were evaluated in some detail to create requirements to improve environmental risk assessment for soil contaminations.Methods   The chemical mechanisms involved when soil is extracted with 1 M NH4NO3-solution were evaluated. This was followed by a laboratory experiment to quantify the formation of soluble metal ammine complexes during the extraction. Cd, Zn, Ni, Cu, Co and Hg were extracted from 16 soils by 1 M NH4NO3, 1 M KNO3 and water. pH was adjusted in 5 steps between 5.0 to 7.5. The potassium cation (K+) and the ammonium cation (NH4+) behave similarly when cations from soil surfaces are desorbed, because they have almost identical ion radii (e.g. 0.133 and 0.143 nm). K+ does not form ammine complexes with other ions, whereas, due to the increasing formation of NH3 from NH4 by dissociation with rising pH, metal ammine complex formation is an important process in soil extraction when using ammonium salt solutions. A difference in the extraction efficiency of 1 M NH4NO3- and 1 M KNO3-solution for a given soil can therefore be attributed to the formation of soluble metal ammine complexes. Conclusion   Our experiments resulted in considerably higher extraction rates of Cu, Cd and Hg by 1 M NH4NO3-solution as compared to 1 M KNO3-solution. This effect, caused by the formation of soluble metal ammine complexes, was only evident in soils with higher readily soluble heavy metal contents and a soil pH above 6 – 6.5 for Cu and 7 – 7.5 for Cd. Further chemical mechanisms involved when soils are extracted with 1 M NH4NO3 are a moderate decrease in pH and an increase in ionic strength. Most of the colloids and parts of soluble metal-organic complexes are precipitated due to the high ionic strength. High ionic strength also decreases the activity of metal-OH+ species and the electrostatic potential of the particle surfaces, which in turn, increases the desorption of heavy metal cations from negatively charged soil surfaces. In contrast, the adsorption of anions like arsenate is favoured by the decreasing electrostatic potential. The prediction of heavy metal uptake by plants from the results of the 1 M NH4NO3-solution extraction fits well for elements, which are mainly bound by low strength electrostatic forces to the soils. Such conditions are found in acidic soils for Cd and Tl, which have a low tendency for hydrolysis compared to other heavy metals. The correlation between 1 M NH4NO3 soil extraction and plant uptake is less significant for Ni and Zn. Only low positive correlation coefficients have been found for Pb, As, Hg and for the Cu-uptake by wheat. Imprecise prediction of plant uptake of heavy metals by the extraction with 1 M NH4NO3-solution is mainly caused by conditions leading to an overestimation of plant availability such as elements are strongly bound to soils, or low soluble trace element contents in soils. Neutral to alkaline soil pH can also lead to imprecise prediction due to increasing formation of soluble metal-organic (Cu, Pb, Hg) and metal ammine (Hg, Cu, Cd) complexes and less importantly due to the formation of colloids. Therefore, at low 1 M NH4NO3-extractable soil contents usually no high plant contents are to be expected. Recommendation and Outlook   Extraction of soil with 1 M NH4NO3-solution is a suitable method for the determination of readily soluble and plant available trace element contents. The chemical soil extraction process may cause misleading predictions of the transfer of trace elements to plants for some soil properties. This knowledge should be used to improve risk assessment of soil contaminations. It has to be considered, that the processes involved in plant uptake of trace elements are too complex to expect that just one soil extraction method can always guarantee a correct prognosis of toxicological significant element contents in plants. Soil analyses may be used for the preliminary examination of suspicious areas and the demarcation of contaminated areas. The results of soil analyses should be checked additionally by plant analyses especially under conditions with a high probability for misleading results by the 1 M NH4NO3-extraction. Alternatively, extraction with 1 M KNO3-solution can be performed to exclude the effect of metal ammine complex formation.  相似文献   

17.
This paper deals with the influence of different levels of three pectins, low-methylated pectin (LMP), high-methylated pectin (HMP), and low-methylated and amidated pectin (LMA), on the in vitro gastric hydrolysis of beta-lactoglobulin (beta-lg). Proteolysis by pepsin consisted of a 2-h progressive reduction of pH. A turbidity measurement of beta-lg-pectin mixtures was carried out during the proteolysis. The influence of pectins on pepsin enzymatic activity was also evaluated. beta-Lg was resistant to peptic digestion. The presence of each of the three pectins at a concentration of 50 wt % increased the N release at all pH values considered, despite a significant inhibition of the pepsin enzymatic activity with the pectins. The turbidity of beta-lg solutions during proteolysis was reduced by the addition of pectins, because of the formation of electrostatic complexes between this protein and pectins. The increase of N release could be a false positive result due to the difficulty of precipitating protein by trichloroacetic acid because of the formation of electrostatic complexes demonstrated by the decrease of turbidity.  相似文献   

18.
磷酸根在矿物表面的吸附-解吸特性研究进展   总被引:3,自引:0,他引:3  
严玉鹏  王小明  胡震  王慧  殷辉  刘凡  冯雄汉 《土壤》2021,53(3):439-448
综述了磷酸根在一些常见土壤矿物表面吸附–解吸特性的研究进展。磷酸根在矿物表面的吸附特性受环境pH、离子强度、温度、反应时间、矿物类型等多种因素的共同影响。一般说来,矿物表面的磷吸附量随pH降低而增加,受离子强度的影响较小。磷酸根在矿物表面的吸附动力学过程可分为快速吸附过程和慢速吸附过程,且在弱结晶矿物中存在微孔扩散过程。磷酸根在矿物表面的解吸过程通常存在两个阶段(初始快速解吸和随后的缓慢解吸),在解吸反应后期甚至还会发生再吸附。此外,磷酸根的吸附特性也受共存阴离子配体或金属阳离子的影响。其中,共存阴离子通过位点竞争、静电作用和空间位阻效应等机制影响磷酸根的吸附。天然有机质(包括胡敏酸和富里酸)降低了磷酸根在矿物表面的吸附,特别是在低p H条件下。通常,富里酸比胡敏酸更能有效降低磷酸根在矿物表面的吸附。金属阳离子可通过表面静电效应、形成三元络合物以及形成表面沉淀等机制促进磷酸根和金属在矿物表面的共吸附。最后,展望了与磷酸根在矿物表面吸附特性有关的研究热点和方向。  相似文献   

19.
Intermolecular disulfide bond formation in pure beta-lactoglobulin (beta-Lg) B and in its 1:1 mixture with alpha-lactalbumin (alpha-La), heated at 85 degrees C for 10 min in solutions of low and high (100 mM NaCl) ionic strength and pH 6.0, was studied by reverse-phase HPLC and MALDI-TOF mass spectrometry. Disulfide bonding between beta-Lg monomers was more extensive than reported in the literature for a temperature of 68.5 degrees C, including formation of trimers connected by two of the three adjacent cysteines, C106/C119/C121. The participation of the different thiol groups in disulfide bonds appeared to depend on their location in the native structure, with surface-located cysteines more involved than internally located ones. This also applied to alpha-La-beta-Lg interactions, where the predominant participants were the surface-located alphaC111, alphaC120, alphaC61, and alphaC6. The least active participant was alphaC28, suggesting that it becomes sterically inaccessible during unfolding of the protein. High ionic strength apparently promoted disulfide bonding. The order of cysteine participation at the high ionic strength was similar to that at low ionic strength, with fewer native-location bonds observed and a lower activity of some groups, such as beta-C106/C119/C121 and alphaC61.  相似文献   

20.
Two surface soils (Patua and Tokomaru) of contrasting mineralogy were incubated with several levels of either CaCO3 or HC1. The effects of ionic strength on pH, on surface charge, and on the adsorption of phosphate and sulphate were measured in three concentrations of NaCl. The pH at which the net surface charge was zero (point of net zero charge—PZC) was 1.8 for the Tokomaru soil and 4.6 for the Patua soil: differences that can be related to mineralogical composition. There was an analogous point of zero salt effect (PZSE) that occurred at pH 2.8 for the Tokomaru soil and at 4.6 for the Patua soil. The presence of permanent negative charge in the Tokomaru soil resulted in an increase in PZSE over PZC. The effect of ionic strength on adsorption varied greatly between phosphate and sulphate. For phosphate, there was a characteristic pH above which increasing ionic strength increased adsorption and below which the reverse occurred. This pH (PZSE for adsorption) was higher than the PZC of the soil and was 4.1 for the Tokomaru soil and 5.3 for the Patua soil. In contrast, increasing ionic strength always decreased sulphate adsorption and the adsorption curves obtained in solutions of different ionic strengths converged above pH 7.0. If increasing ionic strength decreases adsorption, the potential in the plane of adsorption must be positive. Also, if increasing ionic strength increases adsorption, the potential must be negative. This suggests that, depending upon pH, phosphate is adsorbed when the potential in the plane of adsorption is either positive or negative, whereas sulphate is absorbed only when the potential is positive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号