首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Containerized red pine (Pinus resinosa Ait.) seedlings were grown over a 16-week rotation at different irrigation treatments to assess moisture stress on plant growth and nutrition, and to evaluate container capacity as a guide for irrigation. Wet, moist and dry moisture regimes were induced by watering trees to the container capacity weight of the growing medium after declining to respective 92, 73 and 57% of this reference weight. The seedlings received the same amount of fertilizer over the growth period. Maximum shoot and root growth was attained under the wet moisture regime, but biomass was reduced 21 and 43% for the moist and dry regimes. Plant nutrient concentrations were not significantly affected by watering treatment, and vector diagnosis of dry matter production and element composition indicated that macronutrients were non-limiting. Seedling nutrient uptake however, was significantly diminished by moisture stress which was attributed to decreased root growth and lower mass flow and diffusion of nutrients when moisture availability was reduced in the peat rooting media. Container capacity was found to be a sensitive reference for judging the watering requirements of greenhouse-grown containerized seedlings. The method can be relatively easily applied on an operational basis.  相似文献   

2.
Three different stock sizes of containerized black spruce (Picea mariana [Mill.] B.S.P.) seedlings were planted in an abandoned agricultural field. The small planting stock was of a conventional type produced in 110 cm3 containers. The experimental medium and large stock types were produced in 340 and 700 cm3 containers, respectively. Gas exchange, xylem water potential and dry masses were measured six times during each of the first two growing seasons in field plots with and without vegetation control. During the first growing season, the effect of planting shock masked most physiological and growth differences among seedling types. During the second growing season, in plots with vegetation control, small and medium seedlings had similar values of physiological variables and of growth as measured by relative growth rates (RGR), but the large seedlings showed lower values of both net photosynthesis and of RGR, a difference attributed to low initial quality of the root system in the larger seedlings. In plots without vegetation control, the trend was identical, but differences were not significant; the greater height of the larger seedlings, and the resulting greater access to light, compensated for their lower initial quality. The similarity in response between the medium and the small seedlings shows that a fourfold increase in shoot size (1.68–6.82 g) in the initial size and a doubling of the shoot : root ratio (2.17–4.54) of the planting stock did not result in increased planting shock or reduced growth in these containerized conifer stock types. The results also show the importance of the interaction between stock height and the vertical light profile created by the competing vegetation in the final assessment of stock performance.  相似文献   

3.
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings of a single seed source were grown in a bare-root nursery for two years to produce five different stock types by varying spacing and transplanting treatments. They were then planted in the forest together with one-year-old container seedlings of the same seed source, which constituted a sixth treatment. Stem volume mean relative growth rate (R(v)) was low immediately after planting for all stock types except the container seedlings, and increased over the following 7.6 years. An 8-week greenhouse test of the six stock types showed that dry weight mean relative growth rate (R(w)) generally decreased with seedling dry weight, but this effect was less obvious after planting, because only the three smaller stock types showed a decrease in R(w) with size. In another experiment, bare-root Douglas-fir seedlings were grown at five different spacings in a nursery for two years, and seedlings from each spacing treatment were sorted into large or small by height. The resulting 10 treatments were planted in the forest and stem volumes determined over 6.7 years. The linear effect of nursery spacing on stem volume was no longer evident 3.6 years after planting, but large seedlings had greater stem volume than the small seedlings throughout the 6.7 years of the study. There was no indication that R(v) declined with time, but small seedlings had higher R(v) than large seedlings. Relative growth rates of two-year-old Douglas-fir were depressed for a year or two after planting, but then remained relatively constant, or increased during the ensuing 5 years. Relative growth rates of smaller seedlings were greater than those of larger seedlings so that relative biomass differences decreased with time, and the time advantage (the time necessary for small seedlings to reach the present biomass of large stock) of larger stock decreased. Absolute size differences increased with time.  相似文献   

4.
Effects of three gaps which are large (118 m^2), medium (86 m^2) and small (20 m^2), respectively, and under canopy of Tsuga longibracteata forest on the seedling establishment of T. longibracteata were studied through seed burial experiments from December 2003 to January 2005 in Tianbaoyan National Nature Reserve of Fujian, China. The results showed that the area of gap had an evident effect on the seedling establishment of T. longibracteata. The seedling emergence rates of T. longibracteata in plots of large gap, medium gap, small gap and under canopy were 10%, 10%, 4% and 6%, representing an increasing trend along with the gap size increasing without a significant difference. Rain eroding and insects feeding were two main factors leading to seedling death. The larger the gap size was, the more seedlings were killed by rain erosion and the fewer seedlings were killed by insects feeding. The emergence time of seedlings was almost same in all plots while their death time was different respectively. The gap size had a significant impact on seedling survival rate. The seedling survival rate was highest in the medium gap plot (27.0%) and next to the highest in large gap plot (7.3%), and seedling in small gap plot and under canopy plot died out after one growing season. Increased light supply in gaps was favorable for the seedlings growth and survival. Increased light supply in the large gap could enhance the growth of seedling leaf and root of T. longibracteata, and the seedling in turn allocated more dry mass to root and leaf, but it has little impact on the growth of stem. This research indicates that T. longibracteata is a pioneer species and its seedling establishment need a medium or large gap (〉50 m^2).  相似文献   

5.
Red pine seedlings were grown for 16 weeks under contrasting fertilizat (conventional, exponential) and moisture (wet, moist, dry) regimes to assess preconditioning effects of treatments on biomass production, nutrient uptake and allocation, and water relations. Growth, nutrient status, and water relations were affected more by moisture availability than by fertilization regime. Exponential fertilization under limited irrigation lowered shoot/root mass ratio, increased root nutrient reserves, and enhanced drought avoidance compared to conventional fertilization regimes. Drought treatments decreased nutrient uptake in the shoots of both fertilization regimes by 24%, but increased nutrient accumulation in the roots by 39% in the exponential regime compared to 17% in the conventional. These results may explain improved outplanting performance noted for exponentially fertilized container stock.  相似文献   

6.
Seedlings grown under different N supply were examined for relationships between root system size attributes and its hydraulic properties. These relationships were also studied on seedlings of different stock types (grown in different container types). Measurements with root pressure probes were taken at various times after germination, under applied hydrostatic pressure and non-limiting soil moisture. Different N-treatments and stock types were used solely to produce seedling of different sizes, especially root system sizes. Specific root hydraulic conductivity (Lpr) typically declined with an increasing root system size and correlations between Lpr and the root system size attributes were often negative. The flow of water through the root system correlated well with root system size attributes only in young (3–4 month old) seedlings but the correlations were inconsistent among different N treatments and stock types. Neither the root system surface area nor dry weight reliably reflected its ability to absorb and conduct water. Generally, the amount of water delivered through the root system and available for transpiration per unit or leaf surface area or unit of leaf dry weight correlated poorly or negatively with the root system size. Practical and scientific implications of the findings are discussed. *Paper presented at Forest Seedling Root Development Conference: From the Nursery to the Field, Eugene, Oregon, May 12–13, 2004.  相似文献   

7.
Root characteristics and field performance of container and bare-root seedlings of red oak (Quercus rubra L.) were compared during the first growing season after planting. Sixty seedlings of each stock type were planted on a clearfell and weed-free site near Restoule, Ontario. Twenty-four additional seedlings from each stock type were compared at the start of the study in terms of shoot and root parameters. Measurement of root and shoot parameters were repeated at three dates during the first growing season in the field. The root systems of container stock had a larger number of first order lateral long roots and were significantly more fibrous than bare-root stock. These differences were sustained throughout the first growing season. In terms of field performance, container seedlings had 100% survival and achieved significant increases in both biomass and shoot extension. Bare-root seedlings suffered 25% mortality, significant shoot dieback and more variable growth. The mean relative growth rate (RGR) of container seedlings increased throughout the study period to a maximum of 30 mg/g/day, whereas the mean RGR of bare-root stock remained close to or below zero. Overall, the container seedlings proved less prone to transplanting shock than the bare-root seedlings, most likely due to favourable root architecture and the pattern of root development. Further work may be warranted in container design, growing regimes and root architecture to fully realise the potential of container systems for the production of high quality red oak seedlings across a range of site conditions.  相似文献   

8.
Successful regeneration of northern red oak (Quercus rubra L.) on productive sites is problematic in eastern North American forests. Natural and artificial regeneration often cannot compete with fast-growing, shade intolerant species such as yellow-poplar (Liriodendron tulipifera L.). This study examines 5-year survival, growth, and competitive ability of planted northern red oak seedlings in various group selection harvest sizes in south-central Indiana, USA. Seedling stocktypes consisted of high (BHD; 75 seedlings m?2) and low (BLD; 21 seedlings m?2) nursery-bed-density bareroot seedlings, and small (CS; 11.4 L) and large (CL; 18.9 L) container seedlings. Group selection openings included large (0.400 ha), medium (0.100 ha), and small (0.024 ha) circular gaps in four stands. Larger stocktypes and gap sizes improved seedling height, diameter, and growth; ANOVA indicated only gap size was significant for seedling survival. Logistic regression showed survival was positively correlated to diameter at year 1, and aspect, gap size, and stocktype were significant predictors of survival. Our data indicated no differences in density of natural regeneration among gap sizes, although trends suggest greater numbers of bigger competitors in larger gaps sizes. Yellow-poplar regeneration was the tallest competitor of more than 50% of all northern red oak seedlings. Competitive status of seedlings after 5 years differed only by stocktype, with large container stock in a better competitive position than bareroot stock. However, less than 20% of seedlings in all stocktypes in each gap treatment were considered competitive (i.e., ≥80% of the height of tallest competitor) against their tallest competitor. The use of larger planting stock may offer greater opportunities for successfully regenerating northern red oak seedlings on productive sites but likely would have to be accompanied by treatments to reduce woody competition.  相似文献   

9.
Many bottomland tree species are tolerant of compacted soil and perform well in urban environments; however, the mechanism underlying this tolerance is unknown. Increased soil water content has been shown to alleviate some of the effects of soil compaction on plant growth, presumably because increasing soil water reduces soil strength. We hypothesized that tree species tolerant of very wet soils would have opportunities for root growth in compacted soil when high soil water contents reduced soil strength, whereas species intolerant of bottomland conditions would not. We tested this hypothesis on flowering dogwood (Cornus florida L.), a mesic species intolerant of inundation, and silver maple (Acer saccharinum L.), a bottomland species. Seedlings of both species were grown in pots for 21 and 30 days, respectively, in a growth chamber in native loam soil maintained at various combinations of soil strength and soil water tension. Downward root growth rate decreased in response to increasing soil strength in both species. At low soil strength (0.6 MPa), downward root growth rate of dogwood seedlings slowed when soil was either excessively wet or dry, whereas root growth rate of silver maple seedlings increased linearly with soil water content. In moderately compacted soil (1.5 g cm(-3) bulk density), silver maple seedlings had greater root growth rate, root length per plant, and ratio of root length to root dry weight in wet soil (0.006 MPa soil water tension) than in moist and dry soils (0.026 and 0.06 MPa, respectively), even though mean oxygen diffusion rate (ODR) was only 0.28 &mgr;g cm(-2) (SE = 0.05). No such effect was detected in highly compacted soil (1.7 g cm(-3) bulk density) in either species. Mean ODR showed a weak positive correlation with soil water tension (r = 0.40, P = 0.07), but was unrelated to soil strength. We conclude that silver maple roots can grow in moderately compacted soil when high soil water content decreases soil strength, whereas dogwood is unable to take advantage of this opportunity.  相似文献   

10.
山地木麻黄菌根菌的筛选和接种效应的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用3个内生菌根菌(AMF)和6个外生菌根菌(ECMF)接种山地木麻黄苗,测定小苗的树高、根长、地径、地上干质量、地下干质量和总生物量,并在干旱胁迫下测定小苗的保存率.结果表明:接种内、外生菌根菌后都能极显著地促进山地木麻黄苗期的生长;山地木麻黄对供试的AMF和ECMF菌根都属于中等强度或较弱的依赖性;山地木麻黄接种菌根菌后对地上部分(苗高、地径和地上干质量)生长的促进作用比地下部分(根长和地下干质量)要大;在供试的9个菌根菌种和菌株中,AMF比ECMF更能提高山地木麻黄的抗旱力;筛选出菌根效应较好的菌根菌有:苏格兰球囊霉90068、苏格兰球囊霉90036、地表球囊霉9004、黄硬皮马勃0207、蜡蘑E439,可在山地木麻黄苗期接种应用.  相似文献   

11.
Western red cedar (Thuja plicata Donn) seedlings were grown in a greenhouse and subjected to six nursery cultural treatments (long-day wet (LDW), long-day moderate (LDM), long-day dry (LDD), short-day wet (SDW), short-day moderate (SDM), and short-day dry (SDD)) during mid-summer. Seedling attributes were measured before fall and spring planting.Short-day and moisture stress treatments reduced shoot but not root growth, resulting in reduced shoot to root ratios. Fall tested LDW seedlings had a higher osmotic potential at saturation and turgor loss point than other treatments. Fall tested short-day seedlings had lower resistance to plant water movement. The LDW seedlings had the greatest new root growth in fall testing, while one of the lowest in spring testing. In the fall, LDW seedlings had the greatest net photosynthesis (Pn) at 25 °C root temperature, with all treatments having a similar decline in Pn as root temperatures decreased to 1 °C. In the spring, all treatments had a similar decline in Pn with decreasing predawn shoot water potential. Moisture stress and short-day nursery cultural treatments applied in mid-summer will not harden western red cedar seedlings for all potential field conditions.Spring, compared to fall, tested seedlings had two times the shoot and three times the root dry weight. Spring tested seedlings had a lower osmotic potential, maximum modulus of elasticity, relative water content at turgor loss point and greater dry weight fraction. Fall, compared to spring, tested seedlings had lower resistance to plant water movement and greater cuticular transpiration. In general, fall tested seedlings had more root growth than spring tested seedlings. Spring, compared to fall, tested seedlings generally had greater stress resistance.  相似文献   

12.
Containerized coastal Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were grown with conventional soluble fertilizer and supplemented with one of four slow-release fertilizers (SRF treatments) or unsupplemented (control treatment). Seedlings were outplanted to two sites in 1998. At the time of outplanting, SRF incorporated into the growing medium resulted in larger seedlings with higher foliar nutrient concentrations as compared to conventionally fertilized seedlings. After four growing seasons, SRF-amended seedlings at both sites had significantly greater height, basal stem diameter, and stem volume, with increases up to 19, 21, and 73%, respectively, as compared to conventionally fertilized seedlings. Additionally, three stock sizes were compared at one of the sites. Increasing stock size resulted in increased growth during the first two seasons, enabling larger stock to maintain their size advantage. Seedling responses to SRF are attributed to larger initial size, increased internal nutrient reserves at planting, and continued fertilization after planting.  相似文献   

13.
Peterson  John 《New Forests》1997,13(1-3):329-339
Black spruce (Picea mariana [Mill.] B.S.P.) overwintered container crops produced in four container types spanning a range of container sizes and seedling rearing densities were compared for two consecutive years. In 1989 two growing environments (greenhouse and outdoors) were compared. In 1990 three growing environments (greenhouse, coldframe, and outdoors) and two hardening regimes (short day and natural) were compared. Seedlings were outplanted during the spring of 1989 and 1990 and total height and survival were assessed for five years.The outdoor-grown crop was shorter, smaller in root collar diameter and had less dry weight at time of planting than the crops produced in the greenhouse (1989 study) and in the greenhouse and coldframe (1990 study). Although the greenhouse crops in both studies were larger at time of planting, the outdoor-grown crops (1989 and 1990) and coldframe-grown crop (1990) displayed significantly greater annual height increment in the first two years after planting. The enhanced early height growth of the outdoor-grown crops may be due to the natural acclimation created by their growing environment.Seedlings grown in a large volume container, at a low plant density (441 plants/m2), had significantly larger root collar diameters and total dry weights at time of planting than seedlings grown in a smaller volume container at a high plant density. Stem volume production in the field was greater on seedlings from larger volume containers grown at low densities.  相似文献   

14.
Tolerance of bareroot and container-grown seedlings of black spruce (Picea mariana (Mill.) B.S.P.), jack pine (Pinus banksiana Lamb.), and eastern white pine (Pinus strobus L.) to competition from herbaceous vegetation was examined in the first five years after planting on a site in the Great Lakes/St. Lawrence forest of Ontario, Canada. Shoot and root morphological characteristics of various stocktypes were measured before planting and correlated with 5-year survival and growth following control and no control of herbaceous vegetation. For black spruce and jack pine, medium-sized bareroot stocktypes had greater relative 5-year stem volume growth in the presence of herbaceous vegetation than did container stock of either species or large bareroot stock of spruce. Relative volume growth was measured as the ratio of the cumulative stem volume increment in the presence of vegetation (Veg) to that in the absence of vegetation (NoVeg), i.e., the Veg:NoVeg ratio. In white pine, the Veg:NoVeg ratio of volume increment of medium container and large bareroot stocktypes exceeded that of small container and medium bareroot stocktypes. In jack pine, root collar diameter at planting and number of first-order lateral roots were positively correlated with 5-year Veg:NoVeg ratio of volume increment. In white pine, the Veg:NoVeg ratio was also positively correlated with root collar diameter at planting and with root volume. In black spruce, the ratio was not related to pre-plant morphology. Thus, for white pine and jack pine, certain pre-plant morphological features may be useful in forecasting the relative ability of different stocktypes to grow under herbaceous competition conditions in the field.  相似文献   

15.
Tan  Weixing  Hogan  Gary D. 《New Forests》1997,14(1):19-31
The morphological and physiological responses to nitrogen (N) limitation in jack pine (Pinus banksiana Lamb.) seedlings were studied following the initiation of four different dynamic N treatments for six and 15 weeks. The N treatments produced needle N concentrations from 11 to 31 mg g-1dry weight, and seven-fold difference in dry weight at 15 weeks. Low-N jack pine seedlings: 1) had an higher root/shoot ratio; 2) extended their tap root more rapidly; 3) were better able to maintain turgor when shoot water potential declined; and 4) had a larger dry weight fraction and apoplasmic fraction than seedlings with higher foliar N concentrations. These responses may contribute collectively to enhance drought tolerance in N-limited plants, thereby affecting seedling quality. Modifying nursery fertilization regimes, other than optimal as usually applied, may thus be needed to produce stock for use on particularly droughty sites. Knowledge of the nature of drought at a particular site could be an important consideration when making decisions related to fertilization.  相似文献   

16.
The effect of warm storage (15°C) for 0, 15 or 31 days, applied after cold storage until April, and date of lifting to cold storage on the physiological condition and field performance of two-year-old oak seedlings (Quercus robur L.) was investigated. Assessments before planting included plant moisture status, root and shoot dry weight, root growth potential (RGP), while after planting root growth, shoot growth phenology, shoot and root dry matter accumulation and stem quality were assessed. Warm storage effects were large, but lift date effects were small. Warm storage for 31 days reduced height and diameter growth, stem quality, total biomass, root growth, and reduced stem quality in the field, but 15 days storage had a smaller effect. Warm storage delayed bud break and shoot growth cessation but survival was unaffected. The depletion of food reserves during storage and low moisture availability might have caused shoot dieback leading to the development of poor quality stems. There was evidence that dry weight fraction of both the shoot tip and the taproot provided good information on the quality of the stock before planting. RGP was also a good indicator of quality. Electrolyte leakage readings from fine and taproots were not reliable indicators of plant quality.  相似文献   

17.
To investigate the effects of soil water content on growth and transpiration of Japanese cedar (Cryptomeria japonica D. Don) and Hinoki cypress (Chamaecyparis obtusa (Siebold et Zucc.) Endl.), potted seedlings were grown in well-watered soil (wet treatment) or in drying soil (dry treatment) for 12 weeks. Seedlings in the wet treatment were watered once every 2 or 3 days, whereas seedlings in the dry treatment were watered when soil water content (Theta; m3 m(-3)) reached 0.30, equivalent to a soil matric potential of -0.06 MPa. From Weeks 7 to 12 after the onset of the treatments, seedling transpiration was measured by weighing the potted seedlings. After the last watering, changes in transpiration rate during soil drying were monitored intensely. The dry treatment restricted aboveground growth but increased biomass allocation to the roots in both species, resulting in no significant treatment difference in whole-plant biomass production. The species showed similar responses in relative growth rate (RGR), net assimilation rate (NAR) and shoot mass ratio (SMR) to the dry treatment. Although NAR did not change significantly in either C. japonica or C. obtusa as the soil dried, the two species responded differently to the dry treatment in terms of mean transpiration rate (E) and water-use efficiency (WUE), which are parameters that relate to NAR. In the dry treatment, both E and WUE of C. japonica were stable, whereas in C. obtusa, E decreased and WUE increased (E and WUE counterbalanced to maintain a constant NAR). Transpiration rates were lower in C. obtusa seedlings than in C. japonica seedlings, even in well-watered conditions. During soil drying, the transpiration rate decreased after Theta reached about 0.38 (-0.003 MPa) in C. obtusa and 0.32 (-0.028 MPa) in C. japonica. We conclude that C. obtusa has more water-saving characteristics than C. japonica, particularly when water supply is limited.  相似文献   

18.
The effects of drought stress on growth and dry matter partitioning of seven provenances of Parkia biglobosa were assessed in a nursery experiment. Three different water regimes were applied: soil high, medium and low water content (HWC, MWC and LWC) corresponding respectively to 100, 75 and 50 % of field capacity. A split-plot experimental design was applied with the provenance as main plot and the water regime as sub-plot, replicated three times. Each provenance was represented by 30 seedlings in each replication, corresponding to three test periods with ten seedlings each (6, 12 and 18 months after water stress started). There were significant interactions between provenance and water regime for survival rate and the relative growth rates of diameter and height. After 18 months, the dry matter mean was 20.00 ± 0.65 g for the HWC regime, 11.50 ± 2.90 g for the MWC regime while all plants in the LWC regime died. After 6 months, the accumulated water use efficiency (WUE) showed significant differences between water regimes, but not between provenances. Seedlings from the LWC regime showed higher WUE than those from the MWC regime. However, the HWC regime displayed the highest mean value of WUE. Despite differences between provenances, it was not possible to clearly separate them according to the geographical position or climatic parameters, based on the growth performance or both fresh to dry weight and shoot to root dry weight ratios.  相似文献   

19.
Abstract

Second year Norway spruce [Picea abies (L.) Karst.] container seedlings, short-day (SD) treated for 3 weeks in July, were exposed together with untreated control seedlings (Co) to three different drought treatments for 5 weeks after planting in early August. The treatments were: (1) regular watering (0 week drought); (2) 2 weeks of drought and 3 weeks of watering; and (3) no watering (5 week drought). No difference was found in the vigour and shoot xylem water potential between the SD-treated and the Co seedlings after the drought treatments. The root growth decreased less for the SD seedlings than for the Co seedlings along with the increase in the length of the drought period.  相似文献   

20.
Kooistra  C.M.  Bakker  J.D. 《New Forests》2002,23(3):225-237
In temperate climates, conifer seedlings are often held in frozen storage (–2 °C) for extended periods and then placed in cool storage (+2 °C) so the root plug can thaw prior to outplanting. Two plug temperature treatments were used to test the hypothesis that thawing seedlings prior to outplanting may be unnecessary: seedlings were planted with frozen root plugs (frozen seedlings) and with thawed root plugs (thawed seedlings). The experiment was conducted under two watering regimes (irregular, regular) and with three conifer species (lodgepole pine [Pinus contorta var. latifolia], western larch [Larix occidentalis], interior spruce [Picea glauca × engelmannii]) to increase the generality of the results. The warming of root plugs after planting was examined. Thawed root plugs warmed to soil temperature rapidly (about 30 min) while frozen root plugs took longer (to 2 h) because ice in the plug had to melt before temperatures rose. Larger root plugs took longer to warm to soil temperature. Several aspects of seedling field performance were also assessed. For all species, variable fluorescence did not differ between frozen and thawed seedlings. Bud break was faster for thawed than frozen western larch seedlings but did not differ between frozen and thawed seedlings for either lodgepole pine or interior spruce. Height increment differed significantly between frozen and thawed seedlings that received the irregular watering regime; this effect was likely a response to the positioning of irrigation nozzles, which resulted in sporadic and non-uniform irrigation patterns. Height increment did not differ between frozen and thawed seedlings that received the regular watering regime. Root collar diameter and volume increments were not significantly affected by plug temperature treatment under either watering regime. Planting seedlings with frozen root plugs did not hinder field performance over one growing season under these watering regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号