首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Restoration of forests poses a major challenge globally,particularly in the tropics,as the forests in these regions are more vulnerable to land-use change.We studied land-use change from natural forest (NF) to degraded forest (DF),and subsequently to either Jatropha curcas plantation (JP) or agroecosystem (AG),in the dry tropics of Uttar Pradesh,India,with respect to its impacts on soil microbial community composition as indicated by phospholipid fatty acid (PLFA) biomarkers and soil organic carbon (SOC) content.The trend of bacterial PLFAs across all land-use types was in the order:NF > JP > DF> AG.In NF,there was dominance of gram-negative bacterial (G-) PLFAs over the corresponding gram-positive bacterial (G+) PLFAs.The levels of G-PLFAs in AG and JP differed significantly from those in DF,whereas those of G+ PLFAs were relatively similar in these three land-use types.Fungal PLFAs,however,followed a different trend:NF > JP > DF =AG.Total PLFAs,fungal/bacterial (F/B) PLFA ratio,and SOC content followed trends similar to that of bacterial PLFAs.Across all land-use types,there were strong positive relationships between SOC content and G-,bacterial,fungal,and total microbial PLFAs and F/B PLFA ratio.Compared with bacterial PLFAs,fungal PLFAs appeared to be more responsive to land-use change.The F/B PLFA ratio,fungal PLFAs,and bacterial PLFAs explained 91%,94%,and 73% of the variability in SOC content,respectively.The higher F/B PLFA ratio in JP favored more soil C storage,leading to faster ecosystem recovery compared to either AG or DF.The F/B PLFA ratio could be used as an early indicator of ecosystem recovery in response to disturbance,particularly in relation to land-use change.  相似文献   

2.
We have compared the total microbial biomass and the fungal/bacterial ratio estimated using substrate-induced respiration (SIR) in combination with the selective inhibition technique and using the phospholipid fatty acid (PLFA) technique in a pH gradient (3.0-7.2) consisting of 53 mature broad-leaved forest soils. A fungal/bacterial biomass index using the PLFA technique was calculated using the PLFA 18:2ω6,9 as an indicator of fungal biomass and the sum of 13 bacterial specific PLFAs as indicator of the bacterial biomass. Good linear correlation (p<0.001) was found between the total microbial biomass estimated with SIR and total PLFAs (totPLFA), indicating that 1 mg biomass-C was equivalent to 130 nmol totPLFA. Both biomass estimates were positively correlated to soil pH. The fungal/bacterial ratio measured using the selective inhibition technique decreased significantly with increasing pH from about 9 at pH 3 to approximately 2 at pH 7, while the fungal/bacterial biomass index using PLFA measurements tended to increase slightly with increasing soil pH. Good correlation between the soil content of ergosterol and of the PLFA 18:2ω6,9 indicated that the lack of congruency between the two methods in estimating fungal/bacterial ratios was not due to PLFA 18:2ω6,9-related non-fungal structures to any significant degree. Several PLFAs were strongly correlated to soil pH (R2 values >0.8); for example the PLFAs 16:1ω5 and 16:1ω7c increased with increasing soil pH, while i16:0 and cy19:0 decreased. A principal component analysis of the total PLFA pattern gave a first component that was strongly correlated to soil pH (R2=0.85, p<0.001) indicating that the microbial community composition in these beech/beech-oak forest soils was to a large extent determined by soil pH.  相似文献   

3.
Land-use change can have significant impacts on soil conditions and microbial communities are likely to respond to these changes. However, such responses are poorly characterized as few studies have examined how specific changes in edaphic characteristics do, or do not, influence the composition of soil bacterial and fungal communities across land-use types. Soil samples were collected from four replicated (n = 3) land-use types (hardwood and pine forests, cultivated and livestock pasture lands) in the southeastern US to assess the effects of land-use change on microbial community structure and distribution. We used quantitative PCR to estimate bacterial–fungal ratios and clone libraries targeting small-subunit rRNA genes to independently characterize the bacterial and fungal communities. Although some soil properties (soil texture and nutrient status) did significantly differ across land-use types, other edaphic factors (e.g., pH) did not vary consistently with land-use. Bacterial–fungal ratios were not significantly different across the land-uses and distinct land-use types did not necessarily harbor distinct soil fungal or bacterial communities. Rather, the composition of bacterial and fungal communities was most strongly correlated with specific soil properties. Soil pH was the best predictor of bacterial community composition across this landscape while fungal community composition was most closely associated with changes in soil nutrient status. Together these results suggest that specific changes in edaphic properties, not necessarily land-use type itself, may best predict shifts in microbial community composition across a given landscape. In addition, our results demonstrate the utility of using sequence-based approaches to concurrently analyze bacterial and fungal communities as such analyses provide detailed phylogenetic information on individual communities and permit the robust assessment of the biogeographical patterns exhibited by soil microbial communities.  相似文献   

4.
The objective of this study was to investigate the effects of short-term (less than 2 years) conservation managements [no-tillage (NT) and crop residue returning] on top soil (0–5 cm) microbial community composition and soil organic C (SOC) fractions under a rice-wheat rotation at Junchuan town of Hubei Province, China. Treatments were established following a split-plot design of a randomized complete block with tillage practices [conventional tillage (CT) and NT] as the main plot and residue returning level [no residue returning (0) and all residues returned to fields from the preceding crop (S, 2,146 kg C ha?1)] as the subplots. The four treatments were CT with or without residue returning (CT0 and CTS) and NT with or without residue returning (NT0 and NTS). The abundances of microbial groups [total FLFAs, fungal biomass, bacterial biomass, fungal biomass/bacterial biomass (F/B), monounsaturated fatty acids/saturated fatty acids (MUFA/STFA), and microbial stress] were determined by phospholipid fatty acid (PLFA) analysis of soil. The ratio of MUFA/STFA reflects aeration of soil and greater MUFA/STFA means better aeration condition of soil. Moreover, the microbial stress, the ratio of cy19:0 to 18:1ω7, was regarded as an indicator of physiological or nutritional stress of microbial community. PLFA profiles were dominated by the fatty acids iC15:0 (9.8 %), C16:0 (16.5 %), 10Me17:0 (9.9 %), and Cyc19:0 (8.3 %), together accounting for 44.6 % of the total PLFAs. Compared with CT, NT significantly increased microbial biomass C (MBC) by 20.0 % but did not affect concentrations of total organic C (TOC), dissolved organic C (DOC), easily oxidizable C (EOC), and SOC of aggregates. Residue returning significantly increased MBC by 18.3 % and SOC content of 2–1-mm aggregate by 9.4 %. NT significantly increased total PLFAs by 9.8 % and fungal biomass by 40.8 % but decreased MUFA/STFA by 15.5 %. Residue returning significantly enhanced total PLFAs, bacterial biomass, fungal biomass, F/B, and MUFA/STFA by 31.1, 36.0, 95.9, 42.5, and 58.8 %, respectively, but decreased microbial stress by 45.9 %. Multivariate analysis (redundancy analysis and partial correlation analysis) indicated that SOC of 2–1-mm aggregate was related to changes in the composition of soil microbial groups, suggesting that SOC of 2–1-mm aggregate was sensitive to changes in soil microbial community composition affected by short-term conservation management practices in our study.  相似文献   

5.
As a key component of desert ecosystems, biological soil crusts (BSCs) play an important role in dune fixation and maintaining soil biota. Soil microbial properties associated with the colonization and development of BSCs may indicate soil quality changes, particularly following dune stabilization. However, very little is known about the influence of BSCs on soil microbes in sand dunes. We examined the influence of BSCs on soil microbial biomass and community composition in revegetated areas of the Tengger Desert. BSCs increased soil microbial biomass (biomass C and N), microbial phospholipid fatty acid (PLFA) concentrations and the ratio of fungal to bacterial PLFAs. The effects varied with crust type and crust age. Moss crusts had higher microbial biomass and microbial PLFA concentrations than cyanobacteria-lichen crusts. Crust age was positively correlated with microbial biomass C and N, microbial PLFA concentrations, bacterial PLFA concentrations, fungal PLFA concentrations and the ratio of fungal to bacterial PLFAs. BSCs significantly affected microbial biomass C and N in the 0–20 cm soil layers, showing a significant negative correlation with soil depth. The study demonstrated that the colonization and development of BSCs was beneficial for soil microbial properties and soil quality in the revegetated areas. This can be attributed to BSCs increasing topsoil thickness after dunes have been stabilized, creating suitable habitats and providing an essential food source for soil microbes.  相似文献   

6.
We investigated the link between aboveground and belowground diversity in temperate deciduous forest ecosystems. To this end, we determined the effects of the tree species composition on the biomass and composition of the soil microbial community using phospholipid fatty acid (PLFA) profiles in the Hainich National Park, a deciduous mixed forest on loess over limestone in Central-Germany. We investigated the effects of the leaf litter composition on the microbial community, hypothesizing that distinctive leaf litter compositions increase signature PLFAs. In addition, we studied the impact of clay content, pH and nutrient status of the soil on the microbial community in different surface soil layers. Consequently, soil was sampled from depths of 0-5 cm, 5-10 cm and 10-20 cm. Plots with highest leaf litter diversity had the largest total amounts of fatty acids, but only PLFA 16:1ω5, which is a common marker for arbuscular mycorrhizal fungi, was significantly increased. In the uppermost soil layer, the pH explained most of the variance in microbial composition. In the deeper surface soil layers, nutrients such as carbon, nitrogen and phosphorus determined the microbial abundances and composition. Our results suggest that the soil microbial community is mainly indirectly influenced by aboveground diversity. Changes in soil pH or the soil nutrient status that are driven by specific plant traits like leave litter quality drive these indirect changes. Specific direct interactions are most reasonable for mycorrhizal fungi.  相似文献   

7.
Microbial‐derived phospholipid fatty acids (PLFAs) can be used to characterize the microbial communities in soil without the need to isolate individual fungi and bacteria. They have been used to assess microbial communities of humus layers under coniferous forest, but nothing is known of their distribution in the deeper soil. To investigate the vertical distribution we sampled nine Podzol profiles on a 100‐m‐long transect in a coniferous forest and analysed for their microbial biomass and PLFA pattern to a depth of 0.4 m. The transect covered a fertility gradient from Vaccinium vitis‐idaea forest site type to Vaccinium myrtillus forest site type. The cores were divided into humus (O) and eluvial (E) layers and below that into 10‐cm sections and designated as either illuvial (B) or parent material (C), or as a combination (BC). Two measures of microbial biomass analyses were applied: substrate‐induced respiration (SIR) to determine microbial biomass C (Cmic), and the sum of the extracted microbial‐derived phospholipid fatty acids (totPLFA). The soil fertility had no effect on the results. The Cmic correlated well with totPLFA (r= 0.86). The microbial biomass decreased with increasing depth. In addition the PLFA pattern changed with increased depth as assessed with principal component analysis, indicating a change in the microbial community structure. The composition of the PLFAs in the O layer differed from that in the E layer and both differed from the upper part of the B layer and from the rest of the BC layers. The deeper parts of the B layer (BC1, BC2 and BC3) were similar to one other. The O layer had more 18:2ω6, a PLFA indicator of fungi, whereas the E layer contained relatively more of the PLFAs 16:1ω9, 18:1ω7 and cy19:0 common in gram‐negative bacteria. With increased depth the relative amount of 10Me18:0, the PLFA indicator for actinomycetes, increased. We conclude that the PLFA method is a promising discriminator between the microbial community structures of the horizons in Podzols.  相似文献   

8.
通过在石河子大学农学院试验站开展加工番茄连作定点微区试验,采用氯仿熏蒸和磷脂脂肪酸(PLFA)法相结合,研究了不同连作处理(种植1 a、连作3 a、5 a和7 a)对新疆加工番茄花果期和成熟期根际土壤微生物群落结构及土壤微生物量的影响。结果表明,连作导致土壤微生物量碳(SMBC)、微生物量氮(SMBN)和微生物熵(q MB)下降,SMBC/SMBN升高,而微生物量磷(SMBP)随连作年限和生育期的变化而不同。连作显著增加了真菌PLFAs含量,降低了细菌PLFAs含量、土壤PLFAs总量及细菌/真菌PLFAs的比值,而放线菌PLFAs含量变化无规律。连作7 a时,成熟期的细菌PLFAs含量、土壤PLFAs总量较对照分别减少62.9%、50.3%(P0.05),而真菌PLFAs含量较对照升高60.2%(P0.05)。从多样性指数分析看,Shannon-Wiener指数、Simpson指数、Brillouin指数和Pielou指数均随连作年限的延长呈先升后降的变化,其中连作3 a时各项指数最大,连作7 a时最小,表明在本试验年限范围内,连作使得微生物群落多样性与均匀程度皆出现了一定程度的降低。相关性分析表明,土壤微生物各类群PLFAs量、微生物量及土壤肥力之间存在相关性,说明土壤微生物量与土壤肥沃程度相关,可作为评价土壤肥力的生物学指标。可见,加工番茄连作改变了土壤微生物群落结构,降低了土壤微生物量,最终在根际土壤微生态系统和环境因子等因素的综合作用下产生连作障碍。  相似文献   

9.
Agricultural practices have strong impacts on soil microbes including both the indices related to biomass and activity as well as those related to community composition. In a grassland restoration project in California, where native perennial bunchgrasses were introduced into non-native annual grassland after a period of intensive tillage, weeding, and herbicide use to reduce the annual seed bank, microbial community composition was investigated. Three treatments were compared: annual grassland, bare soil fallow, and restored perennial grassland. Soil profiles down to 80 cm in depth were investigated in four separate layers (0-15, 15-30, 30-60, and 60-80 cm) using both phospholipid ester-linked fatty acid (PLFAs) and ergosterol as biomarkers in addition to microbial biomass C by fumigation extraction. PLFA fingerprinting showed much stronger differences between the tilled bare fallow treatment vs. grasslands, compared to fewer differences between restored perennial grassland and annual grassland. The presence or absence of plants over several years clearly distinguished microbial communities. Microbial communities in lower soil layers were little affected by management practices. Regardless of treatment, soil depth caused a strong gradient of changing habitat conditions, which was reflected in Canonical Correspondence Analysis of PLFAs. Fungal organisms were associated with the presence of plants and/or litter since the total amount and the relative proportion of fungal markers were reduced in the tilled bare fallow and in lower layers of the grassland treatments. Total PLFA and soil microbial biomass were highly correlated, and fungal PLFA biomarkers showed strong correlations to ergosterol content. In conclusion, microbial communities are resilient to the grassland restoration process, but do not reflect the change in plant species composition that occurred after planting native bunchgrasses.  相似文献   

10.

Purpose

For an alkaline?Csaline region in Northwest China, we examined the responses of soil microbial communities to flue gas desulfurization gypsum by-products (FGDB), a new ameliorant for alkaline?Csaline soils. In 2009 and 2010, we collected soils from 0?C20?cm and 20?C40?cm depths along an experimental FGDB gradient (0, 0.74, 1.49, 2.25, and 3.00?kg FGDB m?2).

Materials and methods

As a measure of microbial community composition and biomass, we analyzed phospholipid fatty acids (PLFAs). We used real-time quantitative polymerase chain reaction (qPCR) to measure abundance of bacterial 16?S rRNA copy numbers. Additionally, physicochemical soil parameters were measured by common laboratory methods.

Results and discussion

Microbial community composition differed along the FGDB gradient; however, the microbial parameters did not follow a linear response. We found that, in 2009, total PLFA concentrations, and concentrations of total bacterial and Gram-negative bacterial PLFAs were slightly higher at intermediate FGDB concentrations. In 2010, total PLFA concentrations, and concentrations of total bacterial, Gram-positive bacterial, Gram-negative bacterial, and fungal PLFAs as well as the fungal:bacterial PLFA ratio were highest at 1.49?kg FGDB m?2 and 3.00?kg FGDB m?2. PLFA concentrations often differed between 2009 and 2010; however, the patterns varied across the gradient and across microbial groups. For both years, PLFA concentrations were generally higher at 0?C20?cm depth than at 20?C40?cm depth. Similar results were obtained for the 16?S rRNA copy numbers of bacteria at 0?C20?cm depth. FGDB addition resulted in an increase in soil Ca2+ and NO 3 ? ?CN and a decrease in pH and electrical conductivity (EC). Shifts in PLFA-based microbial community composition and biomass could partly be explained by pH, soil organic carbon, total nitrogen (TN), soil moisture, EC, inorganic nitrogen, C/N, and Ca2+. Indirect effects via shifts in abiotic soil properties, therefore, seem to be an important pathway through which FGDB affect soil microbial communities.

Conclusions

Our results demonstrate that addition of FGDB leads to significant changes in soil physicochemical and microbial parameters. As such, addition of FGDB can have large impacts on the functioning of soil ecosystems, such as carbon and nitrogen cycling processes.  相似文献   

11.
Fast‐growing tree species are widely used as pioneers for reforestation. These plantations strongly affect the ecosystem productivity and nutrient cycling, whereas their effect on the soil microbial community is still unclear. In a reforestation chronosequence in subtropical China consisting of Eucalyptus plantation with ages of 1, 2, 4 or 5 years, we examined the response of the soil microbial community and its function. The results showed that soil bulk density and dissolved organic carbon decreased significantly along the chronosequence. Soil pH was highest in the 5‐year‐old plantation. The amount of bacterial phospholipid fatty acids (PLFAs) and arbuscular mycorrhizal fungal PLFAs increased, but the ratio of fungal‐to‐bacterial PLFAs decreased with increasing forest age. The composition of the soil microbial community obviously changed after 5 years' development. Redundancy analysis showed that dissolved organic carbon was the major factor associated with the changes of soil microbial community composition. The short‐rotation Eucalyptus plantation could affect the composition of soil microbial communities through changing soil available carbon when planted in subtropical region at the early developmental stage. We suggest that soil microbial community composition should be taken into consideration in the large‐scale reforestation activities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
《Applied soil ecology》2006,31(1-2):53-61
Two soils from a secondary tropical forest at La Union, Philippines, predominantly vegetated with Swietenia marcrophylla and Gmelina arborea were amended with different leaf litter types (Eucalyptus camaldulensis, S. macrophylla, G. arborea, and Calliandra calothyrsus) and incubated in the laboratory for 49 days at 25 °C. The experiment was carried out to elucidate the reasons for a low ATP-to-microbial biomass C ratio and a high microbial biomass C-to-N ratio. This has been measured repeatedly in tropical forest soils. In the non-amended soils, the microbial biomass C-to-N ratio of 12.1 exceeded the soil organic C-to-total N ratio of 11, while the ergosterol-to-microbial biomass C ratio of 0.14% and the ATP-to-microbial biomass C ratio of 4.1 μmol g−1 were both low. At the end of the incubation, the addition of the different leaf litter types led generally to a decrease in the microbial biomass C-to-N ratio and to an increase in the ATP-to-microbial biomass C ratio, adenylate energy charge (AEC) and especially to an increase in the ergosterol-to-microbial biomass C ratio. The increase in the ATP-to-microbial biomass C ratio and the decrease in the microbial biomass C-to-N ratio were positively related to the N concentration in the leaf litter, the increase in the ergosterol-to-microbial biomass ratio negatively. The reasons for a low ATP-to-microbial biomass C ratio and a high microbial biomass C-to-N ratio are P deficiency and probably a reduced access of soil microorganisms to N containing organic components at low soil organic C levels.  相似文献   

13.
土壤有机质含量和施肥是影响黑土微生物群落结构的重要因素,但是受气候影响,很难单独明确有机质含量或施肥对土壤微生物群落的影响.本研究利用黑土生产力长期定位试验,将有机质含量不同的5个黑土(SOM1.7、SOM3、SOM5、SOM6、SOM11)置于相同气候条件下,通过分析磷脂脂肪酸,系统地研究了施肥与有机质含量对农田黑土...  相似文献   

14.
Soil incubations are often used to investigate soil organic matter (SOM) decomposition and its response to increased temperature, but changes in the activity and community composition of the decomposers have rarely been included. As part of an integrated investigation into the responses of SOM components in laboratory incubations at elevated temperatures, fungal and bacterial phospholipid fatty acids (PLFAs) were measured in two grassland soils contrasting in SOM quality (i.e. SOM composition), and changes in the microbial biomass and community composition were monitored. Whilst easily-degradable SOM and necromass released from soil preparation may have fuelled microbial activity at the start of the incubation, the overall activity and biomass of soil microorganisms were relatively constant during the subsequent one-year soil incubation, as indicated by the abundance of soil PLFAs, microbial respiration rate (r), and metabolic quotient (qCO2). PLFAs relating to fungi and Gram-negative bacteria declined relative to Gram-positive bacteria in soils incubated at higher temperatures, presumably due to their vulnerability to disturbance and substrate constraints induced by faster exhaustion of available nutrient sources at higher temperatures. A linear correlation was found between incubation temperatures and the microbial stress ratios of cyclopropane PLFA-to-monoenoic precursor (cy17:0/16:1ω7c and cy19:0/18:1ω7c) and monoenoic-to-saturated PLFAs (mono/sat), as a combined effect of temperature and temperature-induced substrate constraints. The microbial PLFA decay patterns and ratios suggest that SOM quality intimately controls microbial responses to global warming.  相似文献   

15.
The response of soil microbial communities following changes in land-use is governed by multiple factors. The objectives of this study were to investigate (i) whether soil microbial communities track the changes in aboveground vegetation during succession; and (ii) whether microbial communities return to their native state over time. Two successional gradients with different vegetation were studied at the W. K. Kellogg Biological Station, Michigan. The first gradient comprised a conventionally tilled cropland (CT), mid-succession forest (SF) abandoned from cultivation prior to 1951, and native deciduous forest (DF). The second gradient comprised the CT cropland, early-succession grassland (ES) restored in 1989, and long-term mowed grassland (MG). With succession, the total microbial PLFAs and soil microbial biomass C consistently increased in both gradients. While bacterial rRNA gene diversity remained unchanged, the abundance and composition of many bacterial phyla changed significantly. Moreover, microbial communities in the relatively pristine DF and MG soils were very similar despite major differences in soil properties and vegetation. After >50 years of succession, and despite different vegetation, microbial communities in SF were more similar to those in mature DF than in CT. In contrast, even after 17 years of succession, microbial communities in ES were more similar to CT than endpoint MG despite very different vegetation between CT and ES. This result suggested a lasting impact of cultivation history on the soil microbial community. With conversion of deciduous to conifer forest (CF), there was a significant change in multiple soil properties that correlated with changes in microbial biomass, rRNA gene diversity and community composition. In conclusion, history of land-use was a stronger determinant of the composition of microbial communities than vegetation and soil properties. Further, microbial communities in disturbed soils apparently return to their native state with time.  相似文献   

16.
Exotic earthworms can profoundly alter soil carbon (C) and nitrogen (N) dynamics in northern temperate forests, but the mechanisms explaining these responses are not well understood. We compared the soil microbial community (SMC) composition (measured as PLFAs) and enzyme activity between paired earthworm-invaded and earthworm-free plots in northern hardwood forests of New York, USA. We hypothesized that differences in SMCs and enzyme activity between plots would correspond with differences in soil C content and C:N ratios. Relative abundance of several bacterial (mostly gram-positive) PLFAs was higher and that of two fungal PLFAs was lower in earthworm compared to reference plots, largely because of earthworm incorporation of the organic horizon into mineral soil. In surface mineral soil earthworms increased arbuscular mycorrhizal fungi (AMF) and gram-positive bacterial PLFAs, and decreased fungal (mostly saprotrophic) and several bacterial (gram-negative and non-specific) PLFAs. Earthworms also increased the activities of cellulolytic relative to lignolytic enzymes in surface mineral soil, and the relationships between enzyme activities and components of the SMC suggest a substrate-mediated effect on the SMC and its metabolism of C. A highly significant relationship between components of the SMC and soil C:N also suggests that earthworms reduce soil C:N through functional and compositional shifts in the SMC. Finally, changes in AMF abundances were linked to phosphatase activity, suggesting that earthworms do not necessarily inhibit P-acquisition by AMF-associated plants in our study system. We conclude that the combined influence of earthworm-related changes in physical structure, accessibility and chemistry of organic matter, and relative abundance of certain groups of fungi and bacteria promote C metabolism, in particular by increasing the activities of cellulolytic vs. lignolytic enzymes.  相似文献   

17.
In Eastern Spain, almond trees have been cultivated in terraced orchards for centuries, forming an integral part of the Mediterranean forest scene. In the last decades, orchards have been abandoned due to changes in society. This study investigates effects of changes in land use from forest to agricultural land and the posterior land abandonment on soil microbial community, and the influence of soil physico-chemical properties on the microbial community composition (assessed as abundances of phospholipids fatty acids, PLFA). For this purpose, three land uses (forest, agricultural and abandoned agricultural) at four locations in SE Spain were selected. Multivariate analysis showed a substantial level of differentiation in microbial community structure according to land use. The microbial communities of forest soils were highly associated with soil organic matter content. However, we have not found any physical or chemical soil property capable of explaining the differences between agricultural and abandoned agricultural soils. Thus, it was suggested that the cessation of the perturbation caused by agriculture and shifts in vegetation may have led to changes in the microbial community structure. PLFAs indicative of fungi and ratio of fungal to bacterial PLFAs were higher in abandoned agricultural soils, whereas the relative abundance of bacteria was higher in agricultural soils. Actinomycetes were generally lower in abandoned agricultural soils, while the proportions of vesicular–arbuscular mycorrhyzal fungi were, as a general trend, higher in agricultural and abandoned agricultural soils than in forests. Total microbial biomass and richness increased as agricultural < abandoned agricultural < forest soils.  相似文献   

18.
《Applied soil ecology》2006,31(1-2):73-82
A study was undertaken to determine if cattle grazing on managed grasslands had an impact on the microbial community composition of soils. Microbial community molecular profiles of bacteria, actinomycetes, pseudomonads and fungi were generated by polymerase chain reaction (PCR) amplification of rDNA sequences from community DNA isolated from soils. PCR products were profiled using denaturing gradient gel electrophoresis (DGGE) and analysed by principal co-ordinate analysis. PCR–DGGE profiles indicated that cattle grazing had an impact on the pseudomonad community structure only, and that the addition of inorganic nitrogen (N) fertiliser impacted on bacterial, actinomycete and pseudomonad community structure. There was no difference in the community profiles of fungi from grazed and N fertilised grassland plots. Analysis of phospholipid fatty acid (PLFA) profiles revealed that both cattle grazing and N fertiliser impacted on microbial community structure. The abundance of individual PLFAs differed between treatments, with bacterial (15:0), actinomycete (10Me18:0) and fungal (18:2ω6) PLFAs not affected directly by grazing cattle and N fertiliser, however, there were significant grazing–fertiliser interactions. Bacterial plate counts were highest in the N fertilised plots and fungal plate counts were highest in the cattle grazed plots. Analysis of molecular microbial community profiles with PLFA and background soil data revealed several significant correlations. Notably, soil pH was positively correlated with PCO1 of the pseudomonad community profiles and negatively correlated with the fungal PLFA 18:2ω6. Fungal DGGE profiles were negatively correlated with the fungal PLFA 18:2ω6, and bacterial and fungal plate counts positively correlated with each other. Correlation analysis using PC1 from PLFA profile data showed no significant relationship with soil organic matter, pH, total C and total N. The results indicate that cattle grazing and N fertiliser addition to grasslands impact on the community composition of specific groups of micro-organisms. The consequences of such changes in population structure may have implications regarding the dynamics of nutrient turnover in soils.  相似文献   

19.
A 13C natural abundance experiment including GC-c-IRMS analysis of phospholipid fatty acids (PLFAs) was conducted to assess the temporal dynamics of the soil microbial community and carbon incorporation during the mineralization of plant residues under the impact of heavy metals and acid rain. Maize straw was incorporated into (i) control soil, (ii) soil irrigated with acid rain, (iii) soil amended with heavy metal-polluted filter dust and (iv) soil with both, heavy metal and acid rain treatment, over a period of 74 weeks. The mineralization of maize straw carbon was significantly reduced by heavy metal impact. Reduced mineralization rate of the added carbon likely resulted from a reduction of the microbial biomass due to heavy metal stress, while the efficiency of 13C incorporation into microbial PLFAs was hardly affected. Since acid rain did not significantly change soil pH, little impact on soil microorganisms and mineralization rate was found. Temporal dynamics of labelling of microbial PLFAs were different between bacterial and fungal PLFA biomarkers. Utilization of maize straw by bacterial PLFAs peaked immediately after the application (2 weeks), while labelling of the fungal biomarker 18:2ω6,9 was most pronounced 5 weeks after the application. In general, 13C labelling of microbial PLFAs was closely linked to the amounts of maize carbon present in the soil. The distinct higher labelling of microbial PLFAs in the heavy metal-polluted soils 74 weeks after application indicated a large fraction of available maize straw carbon still present in the soil.  相似文献   

20.
Little is known about the collembolan community involved in the decomposition of fine root (≤2.0 mm in diameter) litter, which is largely different from leaves in both litter quality and position. The collembolan communities involved in root and leaf litter decomposition were compared in a litterbag experiment in a coniferous forest of Chamaecyparis obtusa. A two-factor experiment (litter type × litter position) was conducted to evaluate the relative effects of litter quality and position. Litterbags of roots and leaves were each placed at two positions (on the soil surface and in the soil), and were collected at seven different times over three years. Abundance and biomass of Collembola involved in root decomposition in the soil were higher than those involved in leaf decomposition on the soil surface, and the collembolan community composition largely differed between these two types of litterbag. Differences between root and leaf decomposition were mainly caused by litter position, but effects of litter type were also detected at species-level. Species that preferred roots were abundant at an early stage of litter decomposition in the soil. Because the early stage of decomposition in the soil is naturally achieved only by root litter initially deposited in the soil, root litter may function as an essential resource for certain species. The results of this study indicate that root litter contributes to collembolan community organization as a spatially and qualitatively different resource than leaf litter. This also suggests that root litter is decomposed via different soil faunal processes than leaf litter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号