首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 370 毫秒
1.
普通野生稻稻米加工品质和外观品质性状QTL定位   总被引:5,自引:0,他引:5  
本研究利用一套以籼稻品种“特青”为遗传背景的云南元江普通野生稻(Oryza rufipogon Griff.)渗入系为材料,采用单标记回归分析和渗入片段叠代法,对出糙率、整精米率、垩白粒率、垩白度、长宽比等5个品质性状的QTL进行了分析,初步定位了16个QTL,有10个QTL来自野生稻的等位基因能改良群体的品质性状。在第5染色体RM289附近检测到了同时影响长宽比、垩白粒率QTL,来自野生稻的等位基因能增加长宽比、降低垩白粒率,贡献率也较高。在第8染色体RM152附近检测到降低垩白粒率和垩白度的QTL,其贡献率分别为14%和9%。本研究结果不仅为品质性状分子标记辅助选择提供参考,而且充分显示了利用野生稻的优异基因改良栽培稻品质性状的巨大潜力。  相似文献   

2.
水稻籼粳交DH群体耐热性的QTLs定位   总被引:15,自引:1,他引:15  
耐热性是水稻(Oryza sativaL.)抗逆研究中最重要的性状之一.应用典型的籼(Oryza sativa L.spop.indica)、粳(Oryzasativa L.spp.japonica)交组合IR64×Azucena花药培养的DH群体及其已构建的分子连锁图谱,在田间及温室高温条件下对该DH群体的结实率性状进行考查.采用QTL mapper1.0软件检测控制结实率的加性和上位性效应的数量性状位点(QTL),在第1、3、4、8和11等5条染色体上,共检测到6个具有加性效应的QTLs.其中位于第1、3染色体的2个加性效应QTLs来自父本Azucena的等位基因,是耐热的QTL,能提高结实率9.50%和6.46%,其贡献率为19.15%和2.86%.位于其余3条染色体的4个加性效应的QTLs来自母本IR64的等位基因,能提高结实率4.33%~10.37%.在第1、2、3、4、5、7、8、11等8条染色体之间还检测到8对加性×加性上位性效应,其贡献率为2.27%~8.13%.讨论了应用分子标记辅助育种选育耐热性水稻的可能性.  相似文献   

3.
用Unispec光谱仪测定水稻颖壳反射光谱,筛选对水稻颖壳色素敏感的色素指数,用筛选出的最佳植被指数NDVI作为检测颖壳颜色的指标,测定106个家系的颖壳颜色用于QTL定位分析.共检测到12个与颖壳颜色相关的QTL,其中有4个来源于栽培稻特青,分别位于第1染色体RM243附近,贡献率为5%;第7染色体RM295、RM481和RM82附近,贡献率分别为4%、7%和4%.另外8个QTL位点来源于野生稻,分别位于第1染色体RM5和RM212附近,贡献率分别为5%和6%,第2染色体RM233A附近,贡献率为6%;第4染色体RM273附近,贡献率为38%;第6染色体RM204和RM3附近,贡献率分别为17%和5%;第8染色体RM38附近,贡献率为6%,以及位于第12染色体RM235附近,贡献率为5%.在检测到的12个QTL中,来源于野生稻的位于第4染色体RM273附近,以及位于第6染色体RM204附近的QTL的加性效应及贡献率较大,分析是主效QTL.  相似文献   

4.
不同环境条件下水稻结实率的QTL定位分析   总被引:5,自引:0,他引:5  
摘要:为了揭示水稻结实率的遗传机理并为优良基因的利用以及分子标记辅助选择提供理论依据,本研究以环境敏感的籼稻品种T219和不敏感的籼稻品种T226为亲本构建的202个株系的重组自交系(RILs)为作图群体,利用8种不同环境条件的试验结果,对RIL的结实率进行了基因型与环境互作分析和QTL的定位分析。结果表明:水稻结实率受环境的影响很大,存在着显著的基因型与环境互作效应;同时,8种环境共检测到分布在9条染色体上的17个QTL,贡献率变幅为4.6~35.7%。其中大部分QTL均只在一个或两个特定的环境中发现,表现为QTL与环境的互作、贡献率较小,且它们的增效等位基因大都来自T226。而位于第3染色体MRG5959-MRG2180区间的qSS3-1,共在6个环境中一致检测到,贡献率分别在各环境中均为最大(15.6~35.7%)、其增效的等位基因来源于亲本T226。另外位于第5染色体上的RM592-RM169区间的qSS5-3,也在同一年份的5个不同的试验条件下同时发现,贡献率为6.9~17.9%,其增效的等位基因来源于亲本T219。  相似文献   

5.
协青早B//协青早B/东乡野生稻BC1F5群体产量性状QTL分析   总被引:1,自引:0,他引:1  
两年同地种植协青早B//协青早B/东乡野生稻BC1F5群体的202个株系,利用含149个DNA标记的连锁图谱,检测到23个产量性状QTLs,包括每株穗数2个、每穗实粒数4个、每穗总粒数6个、结实率5个、千粒重4个和单株产量2个;有9个QTLs的增效等位基因来自东乡野生稻,包括每株穗数2个、每穗实粒数1个、每穗总粒数5个和千粒重1个,其中6个与前人应用野栽群体检测到的产量性状QTLs位于相似区间。这23个QTLs分布于除第11染色体外的所有水稻染色体中,其中18个形成8个QTL簇,含增效等位基因来自野生稻的2个、来自协青早B的4个,以及效应方向发生变化的2个。这些结果为东乡野生稻增产等位基因的发掘提供了基础。  相似文献   

6.
以我国高产籼稻特青和美国优质粳稻Lemont为亲本培育的双向回交导入系为材料,采用单核苷酸多态性标记定位源相关性状(剑叶长、剑叶宽、剑叶面积、叶干重和比叶重)和库相关性状(穗总粒数、千粒重和穗实粒重)的QTL.特青剑叶长、穗总粒数和穗实粒重显著大于Lemont,剑叶宽则显著小于Lemont.双向导入系群体检测到影响源、库相关性状的QTL 62个,平均每个QTL解释群体表型变异的9.0%,变幅为3.0% ~27.9%.Lemont背景导入系在第2、3、4、6、9和11等6个染色体的区段同时定位到影响源、库相关性状QTL 17个,占Lemont背景导入系定位QTL总数的50%.特青背景导入系在第1、3、4、8和12等5个染色体区段同时定位到影响源、库相关性状的QTL 13个,占特青背景导入系定位QTL总数的28.3%.Lemont背景下绝大多数位点导入特青等位基因均增加性状值,而特青背景绝大多数位点导入Lemont等位基因都减小性状值.两个背景共同检测到影响源、库相关性状的QTL有18个,占定位到62个QTL的29.0%,表明源、库相关性状QTL定位存在明显的遗传背景效应.发现第3染色体影响剑叶长、剑叶面积、叶片干重、每穗总粒数和穗实粒重的35576704 ~36341768区间和第4染色体影响比叶重、穗总粒数和穗实粒重的4560663 ~13503095区间,在以往不同群体中均被检测到,是影响水稻源、库相关性状的重要染色体区域,对标记辅助选择培育源、库协调的超高产水稻品种具有重要的应用价值.  相似文献   

7.
以小麦(Triticum aestivum L.)光温敏不育系BS20×Fu3 DH群体的289个系为材料,于2005-2006年度种植于北京海淀和安徽阜阳,进行了育性(结实率和结实小穗率)的调查.利用SSR标记和分离群体分组分析法(BSA)分析该群体中与育性相关的分子标记,用128对SSR引物,初步构建BS20×Fu3群体的分子标记遗传连锁框架图.BSA的结果表明,与育性连锁的3个标记是Xgwm294、Xgwm374和Xgwm44,分别位于染色体2AL、2BS和7DS;采用混合线性复合区间作图法对小麦育性进行QTL分析,检测到6个QTL,分布在1AS、2BS、2DL、6AL、6BL和7DS染色体,贡献率为1.1%~12.5%,其中7DS上的QTL与2BS、6AL和6BL上的QTL存在显著的互作效应.综合BSA和QTL分析结果,确定染色体7DS和2BS上的QTL重复性较好、贡献率和互作效应较大,为小麦光温敏核雄性不育性状的重要QTL,标记区间分别为Xgum44-Xcfd14和Xgwm148-Xgwm374,贡献率分别为7.2%~12.5%和2.1%~2.5%.  相似文献   

8.
抽穗期(headingdata,HD)和株高(plantheight,PH)是水稻(Oryza sativaL.)非常重要的农艺性状。本研究利用金23B(Jin23B)和青谷矮1号(QGA-1)构建的BC3F1群体及其衍生的BC3F2群体通过分子标记定位水稻抽穗期和株高的QTL(quantitativetraitlocus)。构建的遗传连锁图包含105对SSR标记和8对InDel标记,图谱较好地覆盖了水稻12条染色体。两年来共定位到了9个抽穗期相关QTLs,6个株高相关的QTLs,其中抽穗期和株高最大效应都来源于第7染色体。抽穗期QTLqHD7-3在2011年LOD为37.07,可以解释的表型贡献率为41.05%,加性效应为11.68;株高QTLqPH7-2在2011年LOD为43.73,可以解释的表型贡献率为54.17%,加性效应为21.60;2012年LOD为42.66,可以解释的表型贡献率为54.39%,加性效应为19.95。qHD7-3和qPH7-2位于同一区域RM214-RM5543之间,Ghd7也位于这一区间,该QTL可能是Ghd7的等位基因。抽穗期QTLqHD2定位于第2染色体上标记ZH282和RM71之间,在两年内都能检测到,其LOD值分别为4.56和4.99,可解释的表型贡献率分别为4.31%和7.99%。株高QTLqPH4定位于第4染色体上标记RM241和RM317之间,其两年内的LOD分别为2.89和2.67,解释的表型贡献率为9.42%和8.78%。抽穗期QTL qHD2和株高QTL qPH4所定位的区间没有相关的基因或QTL报道,这两个QTL可能含有控制抽穗期和株高的新基因。本研究通过遗传定位证明了株高和抽穗期是由主效QTL和微效QTL共同控制的,并发掘了新的抽穗期和株高的QTL,为育种家利用分子标记辅助选择培育新品种提供更多的选择。  相似文献   

9.
非洲栽培稻作为重要的水稻种质资源,其基因渗入系可以为普通栽培稻的遗传背景提供新的有利基因,如果能将这些优良基因引入普通栽培稻中,可为水稻分子设计育种提供新的基因资源。本研究以非洲栽培稻基因渗入系YIL60与轮回亲本中9B(Z9B)杂交衍生的包含188个株系的F2和F2:3群体为材料,对粒形性状包括粒长、粒宽、籽粒长宽比、千粒重,剑叶形态性状包括剑叶长、剑叶宽进行数量性状点位(QTL)检测。结果共检测到16个QTL,包括2个粒长QTL、3个粒宽QTL、2个籽粒长宽比QTL、2个千粒重QTL、1个剑叶长QTL、6个剑叶宽QTL,分布于第1、第6、第7、第10和第11号染色体上,贡献率为2.25%~25.64%;有4个多效性QTL区间,有4个QTL qGW7-1、qFLL10、qFLW10、qTGW7在F2和F2:3群体中被重复检测到,其中在第7号染色体RM3859-RM3394区间检测到同时控制粒长、粒宽、籽粒长宽比和千粒重的QTL,贡献率最高达17.10%,是一个来源于非洲栽培稻的新粒形QTL。本研究为进一步开展粒形、剑叶形态性状基因的精细定位、克隆和分子标记辅助育种工作奠定了一定的理论基础。  相似文献   

10.
小麦苗期耐盐相关性状的QTL分析   总被引:2,自引:2,他引:2  
以小麦敏盐品种太空6号和耐盐品种德抗961杂交形成的F2和F2:3家系为试验材料,选取小麦8条染色体上的321对SSR引物进行亲本间多态性的筛选,在太空6号和德抗961之间表现多态性的SSR引物为52个,位点为54个,其中barc172和cfa2121两个引物分别有两个多态性位点。对这54个位点进行连锁分析,构建了包含42个SSR标记、覆盖小麦基因组8条染色体的遗传连锁图,共704.5cM,标记间平均间距为16.8 cM。采用复合区间法进行耐盐QTL分析。对于4个性状共定位到6个QTL,分别位于5A,5B,5D染色体。对于发芽率,检测到1个QTL,位于染色体5D上,在标记cfd40~gwm182之间,贡献率为7.68%,表现加性效应;对于苗高,检测到2个QTL,分别位于染色体5D和5A上,在标记gwm182~wmc215及barc141~wmc415之间,贡献率分别为9.3%和8.14%,分别表现为显性和部分显性;对于根长,检测到2个QTL,均位于染色体5B上,在标记gwm234与wmc326及barc140与barc142之间,贡献率分别为8.74%和8.40%,分别表现为部分显性和超显性;对于鲜重,检测到1个QTL,位于染色体5D上,在标记wmc215~cfd29之间,贡献率为12.60%,表现超显性。与所得的QTL位点距离较近的SSR标记,如barc141等,可望为耐盐小麦品种的分子标记辅助选择提供参考信息。  相似文献   

11.
以超级杂交稻协优9308(协青早B/中恢9308)衍生的234个重组自交系(RIL)为材料,在正常水分和20%聚乙二醇(PEG-6000)模拟水分胁迫处理下对水稻苗期最长根长、总根长、根表面积、根体积、根平均直径、根尖数、根鲜重和根冠比进行QTL定位分析。采用复合区间作图法,共检测到影响8个根部性状的21个QTL,单个QTL可解释的表型变异介于4.80%~11.35%。其中,正常水分条件下检测到7个QTL,分布在第2、3、9、10、11染色体上;水分胁迫条件下检测到14个QTL,分布在第2、3、5、6、9染色体上。不同水分条件下检测到的QTL位点差异很大,表明不同水分条件下的遗传机制不同。在第3和第6染色体上各检测到1个根部性状的QTL簇,尤其在第3染色体RM6283-RM7370区间发现苗期根系性状与抗旱性及产量相关性状之间存在连锁关系,利用这些QTL紧密连锁的分子标记进行辅助选择,可望同时对多个相关性状进行遗传改良。  相似文献   

12.
水稻加工品质直接影响水稻的商品价值。为解析水稻加工品质的遗传基础,以粳稻秀水09和籼稻IR2061构建的2套双向导入系和1套重组自交系为材料,在温州和三亚环境下考察了稻米加工品质,并进行了加工品质性状的数量性状位点(QTL)定位。本研究构建了一张包含145个简单重复序列(SSR)分子标记的遗传连锁图,该连锁图总长1 567.8 cM,秀水09和IR2061背景导入系的平均背景回复率分别为90.15%和85.82%。双亲的糙米率和精米率无显著差异,秀水09整精米率显著高于IR2061。3套群体的加工品质均表现为连续分布,且糙米率、精米率和整精米率3个性状间彼此均呈显著正相关。在两个环境下共定位到影响糙米率、精米率和整精米率的29个主效QTL和20对上位性QTL,其中6个QTL在其中的两套群体中被重复定位到,2个QTL在两个环境下稳定表达,10个QTL与环境互作,说明遗传背景和环境显著影响加工品质QTL的表达。此外,在第7号染色体RM432~RM11区间、第8号染色体RM80~RM458区间和第9号染色体RM257~RM278区间均同时定位到影响糙米率、精米率和整精米率的QTL,秀水09等位基因在这些QTL处均提高加工品质。研究结果可为分子改良水稻加工品质提供重要基因资源的参考依据。  相似文献   

13.
为了定位与发掘水稻产量性状高配合力数量性状座位(QTL),本研究按照不完全双列杂交(NCⅡ)设计,以泸恢8285与扬恢34杂交构建的重组自交系群体(RIL),分别与泸98A、Ⅱ-32A、冈46A杂交构建的双列杂交群体作为试验材料,在德阳、遂宁和泸州3种环境下对单株生物量、收获指数、单株产量、有效穗数、每穗颖花数、每穗实粒数、结实率和千粒重等性状的一般配合力进行QTL定位。结果表明,3种环境下共检测到50个QTL,单个QTL对表型的贡献率变幅在3.26%~34.26%之间,其中qEP2-2、qSP2-2、qFGP2-2、qTGW1和qTGW2 5个QTL在3种环境下均有检出,qHI3、qEP7、qSP7、qSSR12-1和qTGW3-2 5个QTL在2种环境下检出,其他的QTL仅在其中1种环境下检出。此外,有27个QTL增效等位基因来自泸恢8258。本研究结果为进一步开展相关基因的精细定位、克隆和分子辅助选择育种奠定了基础。  相似文献   

14.
水稻苗期不同阶段与低氮耐性相关的QTL分析   总被引:2,自引:1,他引:1  
以超级杂交稻协优9308(协青早B/中恢9308)的重组自交系(R IL)为材料,通过溶液培养试验检测苗期不同阶段与低氮耐性相关的数量性状基因座(QTL)。结果共检测到14个QTLs,单个QTL可解释的表型变异为7.13%1~3.03%。其中,处理后15 d检测到6个QTLs,分别位于第1、7、1、7、10和11染色体上;处理后30 d检测到8个QTLs,分别位于第3、8、3、10、3、8、10和4染色体上。处理后15 d,在第1染色体RM297-RM212区间检测到同时控制相对冠干重和相对总干重的QTL,与氮循环有关,此染色体区域可能富含关键的氮代谢基因。定位结果表明,两个时间检测出的低氮耐性QTL的差异表达与水稻不同发育阶段基因的时空表达密切相关,从而反映在低氮耐性位点的差异上。  相似文献   

15.
水稻是世界上重要的粮食作物之一,低温胁迫影响水稻芽期生长,导致减产。为挖掘影响水稻芽期耐冷的基因,本研究以9311(受体)/日本晴(供体)染色体片段置换系群体为材料,将萌发的种子分别在7℃和15℃低温条件下处理7 d,再在28℃恢复生长3 d,测定种子存活率并定位其中影响芽期耐低温数量性状位点(QTL)。7℃低温胁迫下,共检测到2个芽期耐低温主效QTL:qCS7T10和qCS7T11;两者分别位于水稻第10和第11号染色体上,LOD值分别为7.26和5.87,贡献率分别为18.85%和14.92%。15℃低温胁迫下,共检测到1个芽期耐低温主效QTL:qCS15T5,其位于水稻第5号染色体上,LOD值为7.61,贡献率为25.69%。结果表明不同低温处理下,控制水稻芽期耐低温QTL不同。本研究为今后育种聚合更多的耐低温QTL来提高水稻对不同低温的适应能力,降低低温胁迫对水稻芽期的影响奠定了一定的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号