首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Information on the combining ability, heterotic patterns and genetic diversity of maize (Zea mays L.) inbreds is crucial for the success of a hybrid program targeting the stress environments of West Africa (WA). Studies were conducted in 2011 at four locations in Nigeria to (i) determine the combining ability of 20 extra-early yellow inbred lines, (ii) classify the inbred lines into heterotic groups, and (iii) determine the genetic diversity among the lines. General combining ability (GCA) effects were greater than specific combining ability (SCA) effects across test environments suggesting that additive gene action was more important than the nonadditive in the set of inbred lines. The lines were classified into four heterotic groups based on SCA effects, and three groups based on heterotic groups’ specific and GCA, the GCA effects of multiple traits of inbred lines and molecular markers. TZEEI 79, TZEEI 67, and TZEEI 81 were the best inbred testers while TZEEI 95 × TZEEI 79 was the best single-cross tester. TZEEI 88 × TZEEI 66 and TZEEI 96 × TZEEI 73 were identified as ideal hybrids for further testing, promotion for adoption and commercialization in WA.  相似文献   

2.
如何有效利用杂种优势已成为水稻增产的关键。本研究按照NCII遗传交配设计,将三系野败型杂交水稻的恢复系和微核心种质构成的115份优异籼稻品种,分别与4个两系不育系及1个三系不育系测交,分析各农艺性状配合力、遗传力及相互关系。结果表明,除单株有效穗数、主穗实粒数外,其他农艺性状一般配合力差异均达到极显著水平;除单株有效穗数外,其他各农艺性状特殊配合力差异也均达到极显著水平。同一组合的不同性状、同一亲本的不同组合所表现出的特殊配合力效应都有所不同,表明亲本的一般配合力水平与特殊配合力间没有固定的联系。在育种实践中,选取一般配合力高的亲本,同时兼具较高特殊配合力是获取高产杂交稻组合的关键。  相似文献   

3.
Ga糯玉米自交系的配合力分析与评价   总被引:1,自引:0,他引:1  
摘要:利用不完全双列杂交NCⅡ设计,以3个经遗传改良的Ga糯玉米自交系为父本,与8个糯玉米自交系进行杂交。对24个杂交组合进行农艺性状鉴定,分析Ga糯玉米自交系主要农艺性状的配合力效应。结果表明,父、母本各性状的一般配合力和特殊配合力效应均达极显著差异。Ga糯玉米自交系具有良好的配合力,其中,CM327的一般配合力效应比较高,其组配的杂交种在产量、穗长、行粒数等性状上具有明显优势,具有很好的杂优利用潜力。Ga糯玉米自交系的选育利用,有助于糯玉米种质的扩增与杂种优势的利用。  相似文献   

4.
以10个普通玉米自交系及其90个杂交组合在北京和山西2个地点的试验数据,分析了蛋白质、淀粉和油分含量的配合力效应。结果表明:(1) 各性状的一般配合力(GCA和特殊配合力(SCA) 均方极显著,且GCA均方大于SCA均方,说明它们在遗传上主要受加性基因效应的影响。(2) 杂交种的3个品质性状与亲本GCA平均值和SCA极显著正相关,但与亲本GCA均值间的相关性相对较强,其相关系数(r)分别为0.708**(蛋白质)、0.756**(淀粉)和0.772**(油分),表明提高亲本GCA对改良杂交种品质具有更大的作用。(3) 自交系BT1和E28的蛋白质含量GCA较高,掖478、昌7-2、掖107和48-2的淀粉含量GCA较高,E28、黄C和P138的油分含量GCA较高。  相似文献   

5.
Drought and low soil fertility are considered the most important abiotic stresses limiting maize production in sub-Saharan Africa. Knowledge of the combining ability and diversity of inbred lines with tolerance to the two stresses and for those used as testers would be beneficial in setting breeding strategies for stress and nonstress environments. We used 15 tropical maize inbred lines to (i) evaluate the combining ability for grain yield (GY), (ii) assess the genetic diversity of this set of inbred lines using RFLP, SSR, and AFLP markers, (iii) estimate heterosis and assess the relationship between F1 hybrid performance, genetic diversity and heterosis, and (iv) assess genotype × environment interaction of inbred lines and their hybrids. The F1 diallel hybrids and parental inbreds were evaluated under drought stress, low N stress, and well-watered conditions at six locations in three countries. General combining ability (GCA) effects were highly significant (P < 0.01) for GY across stresses and well-watered environments. Inbred lines CML258, CML339, CML341, and CML343 had the best GCA effects for GY across environments. Additive genetic effects were more important for GY under drought stress and well-watered conditions but not under low N stress, suggesting different gene action in control of GY. Clustering based on genetic distance (GD) calculated using combined marker data grouped lines according to pedigree. Positive correlation was found between midparent heterosis (MPH) and specific combining ability (SCA), GD and GY. Hybrid breeding program targeting stress environments would benefit from the accumulation of favorable alleles for drought tolerance in both parental lines.  相似文献   

6.
春玉米主要穗部性状配合力及遗传参数分析   总被引:5,自引:0,他引:5  
选育具有高配合力的优良自交系是育种工作的基础,为更好的了解北方早熟春玉米区玉米(Zea mays L.)自交系的配合力表现和性状遗传规律,为杂交种组配和种质改良提供亲本和育种策略,选用在生产及种质改良中常用的12个玉米自交系,按双列杂交模式设计组配杂交组合, 以完全随机区组设计进行试验,对主要穗部性状进行鉴定,按照改良griffingⅣ 双列杂交分析方法对数据进行处理。试验表明一般配合力和特殊配合力效应在亲本间存在显著差异。穗粗、容重、籽粒行数等性状遗传力较高,主要受加性效应控制。而产量、穗重主要受非加性基因控制,易受环境因素影响。K12、丹340和黑选169对提高产量的效应明显,P138在提高后代容重方面优势显著,含有地方种质的早熟材料龙抗118、大粒黄可以显著提高后代穗部长度。  相似文献   

7.
水稻广亲和品种农艺性状的配合力分析   总被引:12,自引:1,他引:12  
用9个水稻不育系与3个广亲和品种进行不完全双列杂交,对其杂交组合10个性状的配合力效应分析结果表明,就杂种F1主要农艺性状而言,亲本的一般配合力效应比组合特殊配合力效应更为重要;株高、单株有效穗数、穗长、每穗实粒数、结实率、单株粒重、千粒重等性状,以一般配合力作用为主,而每穗总粒数、生育期、着粒密度等性状虽以一般配合力作用为主,但特殊配合力的作用也不可忽视;株高、单株有效穗数、穗长、每穗实粒数。结实率、单株粒重等性状以广亲和品种的一般配合力作用为主;生育期、每穗总粒数、千粒重、着粒密度等性状以不育系的一般配合力作用为主。  相似文献   

8.
Maize (Zea mays L.) is an important source of carbohydrates and protein in the diet in sub-Saharan Africa. The objectives of this study were to (i) estimate general (GCA) and specific combining abilities (SCA) of 13 new quality protein maize (QPM) lines in a diallel under stress and non-stress conditions, (ii) compare observed and predicted performance of QPM hybrids, (iii) characterize genetic diversity among the 13 QPM lines using single nucleotide polymorphism (SNP) markers and assess the relationship between genetic distance and hybrid performance, and (iv) assess diversity and population structure in 116 new QPM inbred lines as compared to eight older tropical QPM lines and 15 non-QPM lines. The GCA and SCA effects were significant for most traits under optimal conditions, indicating that both additive and non-additive genetic effects were important for inheritance of the traits. Additive genetic effects appeared to govern inheritance of most traits under optimal conditions and across environments. Non-additive genetic effects were more important for inheritance of grain yield but additive effects controlled most agronomic traits under drought stress conditions. Inbred lines CKL08056, CKL07292, and CKL07001 had desirable GCA effects for grain yield across drought stress and non-stress conditions. Prediction efficiency for grain yield was highest under optimal conditions. The classification of 139 inbred lines with 95 SNPs generated six clusters, four of which contained 10 or fewer lines, and 16 lines of mixed co-ancestry. There was good agreement between Neighbor Joining dendrogram and Structure classification. The QPM lines used in the diallel were nearly uniformly spread throughout the dendrogram. There was no relationship between genetic distance and grain yield in either the optimal or stressed environments in this study. The genetic diversity in mid-altitude maize germplasm is ample, and the addition of the QPM germplasm did not increase it measurably.  相似文献   

9.
Maize hybrids that are tolerant to drought at the seedling stage are needed to boost productivity in the rainforest agro-ecology of West Africa. Genetics of tolerance of maize seedling to drought stress is not well understood and is poorly documented. The objectives of this study were to screen early-maturing maize lines for seedling drought tolerance, determine the inheritance and the combining ability of selected inbred lines, and evaluate the performance of seedling drought-tolerant hybrids under field conditions. Forty-nine early maize lines were screened for drought tolerance at the seedling stage. Ten drought-tolerant and two susceptible inbred lines were selected and used in diallel crosses to generate 66 hybrids. The twelve inbred lines and their hybrids were evaluated under induced drought at seedling stage in the screen house and under marginal growing conditions on the field for two seasons. Data collected were subjected to analysis of variance using the DIALLEL-SAS program. Mean squares for both GCA and SCA were significant for most traits in all research environments, indicating that additive and non-additive gene actions are controlling seedling traits under stress conditions. However, for most traits, SCA was preponderant over GCA in all environments, indicating overdominating effect of non-additive gene action. Which in turn implied that the best improvement method for the traits is hybridization. Inbred TZEI 7 had the best GCA effect for seedling traits under screenhouse conditions and for grain yield and other agronomic traits under drought conditions in the field. Hybrids TZEI 357?×?TZEI 411 and TZEI 380?×?TZEI 410 showed superior SCA effects under screen house conditions. In conclusion, the study established wide genetic variability for drought tolerance at seedling stage among tropical early-maturing maize germplasm however, the non-additive gene action was more important for most seedling traits.  相似文献   

10.
The incidence and severity of northern leaf blight (NLB) disease has increased in Southern Africa in the past years with previously resistant cultivars being affected; implying more resistant sources have to be identified and inheritance of NLB resistance investigated. Therefore, 45 F1 hybrids generated in a half diallel mating of ten elite maize inbred lines were evaluated in six environments for combining ability, genotype × environment interaction and effect of NLB disease on grain yield. General and specific combining ability (GCA and SCA) were highly significant (P < 0.001) for both NLB disease and grain yield. The GCA/SCA ratio was close to unity for both NLB (0.96) and grain yield (0.89), indicating predominance of additive over non-additive gene action for the traits in these inbred lines. Parent P2 and P7 had good GCA for both NLB disease resistance and high grain yield. The NLB disease ratings on the maize hybrids and inbreds ranged from 1.0 to 8.5 (approximately 0–75 % severity). Negative slope coefficients of the linear regression indicated maize yield decrease of 280–610 kg ha?1 for NLB final disease severity of about 25–75 %, respectively, stressing the need for resistant cultivars to manage the disease. Genotype and (genotype × environment) (GGE) biplots indicated absence of crossover interaction and revealed positive associations among environments, signifying the suitability of all the environments for disease screening. Therefore, the significant additive effects for NLB disease and grain yield entail that breeding progress would be made through selection and a few disease ‘hot-spot’ sites, such as Cedara (South Africa) and Mpongwe (Zambia) can be used for disease screening.  相似文献   

11.
Low soil phosphorus (P) has been singled out as a major constraint leading to perpetually low bean (Phaseolus vulgaris L.) grain yield far below the expected yield potential. In developing countries beans are mainly produced by small-scale farmers who have little capacity to use inorganic fertilizers to replenish their soils. Yet bean production contributes significantly to their income and provides a cheap source of protein to rural and urban populations. The genetics of inheritance of the traits conferring low soil P tolerance is not well understood. The identification and understanding of the mode of inheritance of the traits for P-efficiency in bean will go along way in boosting bean yields through development of varieties adapted to low soil P. The objective of this study was to determine the inheritance of the traits conferring adaptation to low soil P, for the important large seeded red mottled bean market class. Three parents with known tolerance to low soil P were crossed with five adapted but non-tolerant genotypes in an 8 × 8 half diallel mating scheme. The resulting F1 seeds were evaluated under medium and low soil P conditions at two locations. Both general combining ability (GCA) and specific combining ability (SCA) variances were highly significant (P ≤ 0.01) for all five characters studied except SCA variance for root dry weight at one location. The magnitude of GCA variance was up to twelve times higher than the SCA variance. The GCA:SCA ratio varied from 0.62 to 0.96 for the characters studied. The additive genetic variance was more important than the dominance variance for tolerance to low soil P.  相似文献   

12.
Combining ability is one of the most important information breeders use to identify superior inbred lines on the basis of their performance in hybrid combinations. The objectives of our study were (i) to quantify the importance of general combining ability (GCA) and specific combining ability (SCA) variances for seed yield, oil content and oil yield; and (ii) estimate GCA and SCA effects of seed yield, oil content and oil yield of inbred lines developed from advanced cycle pedigree breeding populations in sunflower. A total of 109 female S3 cytoplasmic male sterile (CMS) lines from four bi-parental populations in advanced cycle pedigree breeding were crossed with two testers to form 218 testcross hybrids (TCHs). The TCHs were then evaluated in three environments. Variance component analysis results showed predominance of σ2gca over σ2sca for seed yield and oil yield indicating that superior TCHs can be identified based on positive and significant GCA effects of the female lines. For oil content σ2sca was predominant over σ2gca indicating that selecting for TCHs with high oil content would be best among line × tester combinations and not among female S3CMS lines per se. The proportion of GCA and SCA effects in the best five TCHs in each breeding population also confirmed the predominance of GCA effects over SCA effects for seed yield and oil yield while for oil content both GCA and SCA effects appear to be important, with SCA effects having more influence than GCA. The best selection strategy would therefore be to capture the GCA in the early stages of inbreeding and then SCA for the few unique combinations when lines are almost fixed.  相似文献   

13.
Low soil nitrogen (Low N), Striga hermonthica and recurrent drought are major constraints to maize production and productivity in sub-Saharan Africa (SSA). Only a few extra-early maturing hybrids with combined tolerance to drought, Striga and low N have been commercialized in SSA. The objectives of the study were to determine the general combining ability (GCA) and specific combining ability (SCA) effects of grain yield and other traits, classify the inbreds into heterotic groups using the SCA effects of grain yield, and the heterotic group’s SCA and GCA of grain yield (HSGCA) methods, and examine the performance of hybrids under contrasting environments. Sixty-three extra-early white maize inbred lines containing genes from Zea diploperennis were crossed to four elite testers to obtain 252 single-cross hybrids and evaluated together with four checks at four locations for 2 years under drought, Striga-infested, low N and optimal environments in Nigeria. The GCA and SCA effects were significant (P ≤ 0.01) with preponderance of GCA over SCA effects for all measured traits indicating that additive genetic effects were predominant in the lines under all the contrasting environments. The HSGCA was more efficient than the SCA method in the classification of the inbreds into heterotic groups. The hybrids TZdEEI 74 × TZEEI 13 and TZdEEI 74 × TZEEI 29 were high yielding and most stable across research environments. These hybrids should be further evaluated in on-farm trials to confirm the consistency of performance for commercialization in SSA.  相似文献   

14.
The improvement of sugar-related factors is associated with root traits in sugar beet. The objectives of the present study were to assess variations of sugar- and root yield (RY)-related traits and to estimate general (GCA) and specific (SCA) combining abilities of several lines, testers and hybrids under various environmental conditions. A line × tester mating design was used to develop 28 hybrids from seven lines × four testers. Presently, root- and sugar-related traits were recorded in parental lines, hybrids and five local ('Pars', 'Torbat' and 'Ekbatan') and international ('Kermit' and 'Tous') check varieties in the eight combinations of location and growing season. Mean RY and sugar yield (SY) were 44.81 t/ha and 7.57 t/ha, respectively. Genotypes tested had 16.91% sugar content (SC) and 13.64% white sugar content (WSC) across trials. No one genotype was found to have high levels for all traits, but several had above mean sugar-related or RY traits. L7T2 as the best hybrid for RY and SY yielded 37.0% and 34.4% more than the checks’ mean, whereas ratios for the best hybrid (L7T4) for SC and WSC were 8.2% and 4.3%, respectively. Additive variance was significant for all traits, whereas dominance component was only significant for RY. Several parental lines had stable GCA effects with respect to direction and magnitude for WSC, RY and SC in environments. L7 and T2 for RY and SY and L3 and T4 for SC and WSC were identified as the best combiners with high GCA effects, and their use might increase favourable alleles in further breeding programmes for traits tested. Estimated heritability for the combined environments was lower for sugar-related traits (54.01%–59.39%) compared with those for RY traits (73.68%–74.21%). Overall, given heritability and additive variances estimated the identification of environmentally stable GCA and SCA effects and might help to increase efficiency of selection of superior cultivars with respect to sugar traits.  相似文献   

15.
Flower bud thrips, Megalurothrips sjostedti is the most severe field pest of cowpea that causes massive flower abortion which eventually results to substantial yield reduction in Africa. There is paucity of information on the mode of gene actions controlling inheritance of resistance to flower bud thrips in cowpea in the literature. The objectives of study were to assess the genetic variability for thrips resistance among the cowpea germplasm, determined the mode of inheritance of genes that conferred resistance and both broad and narrow-sense heritability estimates for the inheritance of thrips resistance in cowpea. Twelve cowpea lines were used in crosses in the screen house at IITA, Ibadan. The mating was accomplished using North Carolina design II to generate 48F1 hybrids, which were eventually evaluated with the parents. Data on number of peduncles, number of pods and number of thrips per flower were recorded and subjected to analysis of variance using random model by SAS 9.2. Significant variability was observed for most agronomic and thrip-adaptive traits among the cowpea germplasm, parental-lines and F1 genotypes evaluated. General combining ability (GCA) and specific combining ability (SCA) mean squares were significant (P < 0.01) for number of pods per plant and other traits under the research environment. The GCA effect accounted for 68.82–80.07% of the total variation among hybrids for all traits except days to flowering; SCA explained less than 50% of the total variation. Narrow-sense heritability estimates ranged from 7.53 (days to flower) to 63.92% (number of peduncles per plant). Additive gene action largely controlled the inheritance of yield components and other traits under thrips infestation and these traits were moderately heritable.  相似文献   

16.
旨在研究玉米自交系单株产量等性状的配合力、遗传力及反交效应,为玉米自交系的选育和杂交种的组配提供依据。以11份玉米自交系为试材,按Griffing Ⅲ完全双列杂交法组配110个组合,观测杂交种的单株产量、株高、穗位高、雄穗分支数、雄穗主轴长、抽丝期和开花期等7个性状的表型数据,并对上述性状的一般配合力、特殊配合力、广义遗传力、狭义遗传力和反交效应进行估算。供试材料除雄穗主轴长的特殊配合力差异不显著外,其余性状的一般配合力和特殊配合力差异均达到极显著水平。JZ3和JZ6两个自交系单株产量的一般配合力为极显著正值,两对组合JZ9×JZ2和JZ2×JZ9、JZ6×JZ3和JZ3×JZ6的单株产量具有最大的正向SCA效应值,分别为40.68 g和35.24 g。单株产量的反交效应差异极显著,部分自交系的反交效应方差较大。7个性状的广义遗传力从大到小依次为,雄穗分支数、株高、开花期、穗位高、抽丝期、单株产量和雄穗主轴长;狭义遗传力从大到小依次为,雄穗分支数、株高、穗位高、开花期、雄穗主轴长、抽丝期和单株产量。试验结果表明单株产量性状的显性遗传方差占比最大,狭义遗传力最小,易受环境条件的影响,对该性状的选择适宜在晚代进行;单株产量性状具有显著的反交效应,故部分自交系需严格控制正反交方式。  相似文献   

17.
Major advancement in canola breeding depends on heterotic hybrids that require high general combining ability (GCA) and specific combining ability (SCA) inbred lines. In order to estimate heritability, gene action type, GCA, SCA and heterosis and to identify superior hybrids with wider adaptation to cold, one hundred canola hybrids were produced by crossing 10 lines and 10 testers in a Line?×?Tester mating design. The F1 and F2 generations were sown in α-lattice design in 2012 and 2013 growing seasons under optimum (early October) and late sowing (early November) conditions to be evaluated for days to flowering, days to physiological maturity, number of pods per plant, number of seeds per pod, thousand seed weight, seed yield and leaf electrical conductivity. The combined analysis indicated sufficient genetic diversity in the population and significant difference between two sowing date. The Line?×?Tester analysis presented significant GCA and SCA effects for all studied traits across optimum and late sowing conditions. The main gene action type was found to be non-additive, especially incomplete dominance and over-dominance in both conditions. Narrow-sense heritability ranged from low to moderate whereas broad-sense heritability was recorded more than 60% for all of the studied traits in both generations and conditions. The average heterosis in F2 population for all studied traits was lower than that in F1 representing this fact that heterosis is generally related to the heterozygosity at the population level and poorly correlated with heterozygosity at the individual level.  相似文献   

18.
For a better understanding of the inheritance of seed yield traits in Quinoa (Chenopodium quinoa) Willd., a half-diallelic crossing experiment with six diverse but uniform breeding lines was conducted. True hybrid plants were detected by means of differences in panicle colour in 14 out of the 15 crosses performed. The agronomic performance of 14 F2 populations and six parental lines was evaluated in field trials on fertile clay soil. General and specific combining ability of the lines (GCA and SCA) were estimated. Highly significant differences in GCA effects were found between the lines for plant height at maturity, early flowering, early maturity, seed yield and thousand seed weight. Significant SCA effects were only found for plant height at maturity. However, SCA effects were rather small and accounted for 7% of the total variance. The finding of large GCA effects and low SCA effects suggests that best selection results could be expected from crosses between the agronomic best performing genotypes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Aflatoxin accumulation in maize (Zea mays L.) kernels is a serious economic and health problem that reduces grain quality and nutritional values and causes death to livestock and humans. Understanding the genetic parameters and heterotic responses of exotic maize inbred lines can facilitate their use for developing aflatoxin resistant parents of hybrids in Africa. This study was designed to (1) determine the heterotic affinities of aflatoxin resistant exotic lines, (2) identify exotic inbreds with good combining ability, and (3) determine the mode of inheritance of resistance to aflatoxin contamination in these lines. A line?×?tester mating design was used to determine combining ability of 12 yellow and 13 white inbreds and classify them into heterotic groups. The inbreds were crossed to two adapted testers representing two African heterotic groups and the resulting testcrosses along with hybrid checks were evaluated in separate trials at two locations for 2 years in Nigeria. General combining ability (GCA) effects were more important than specific combining ability effects for aflatoxin and grain yield. Among 15 exotic inbred lines having negative GCA effects for aflatoxin and 13 with positive GCA effects for grain yield, six combined the two desired traits. Five white and six yellow endosperm testcrosses were found to be good specific combiners for the two desired traits. The exotic lines with negative GCA effects for aflatoxin accumulation will be used as donor parents to develop backcross populations for generating new inbred lines with much higher levels of resistance to aflatoxin accumulation.  相似文献   

20.
Maize is the most important staple crop worldwide. Many of its agronomic traits present with a high level of heterosis. Combining ability was proposed to exploit the rule of heterosis, and general combining ability (GCA) is a crucial measure of parental performance. In this study, a recombinant inbred line population was used to construct testcross populations by crossing with four testers based on North Carolina design II. Six yield-relevant traits were investigated as phenotypic data. GCA effects were estimated for three scenarios based on the heterotic group and the number of tester lines. These estimates were then used to identify quantitative trait loci (QTL) and dissect genetic basis of GCA. A higher heritability of GCA was obtained for each trait. Thus, testing in early generation of breeding may effectively select candidate lines with relatively superior GCA performance. The GCA QTL detected in each scenario was slightly different according to the linkage mapping. Most of the GCA-relevant loci were simultaneously detected in all three datasets. Therefore, the genetic basis of GCA was nearly constant although discrepant inbred lines were appointed as testers. In addition, favorable alleles corresponding to GCA could be pyramided via marker-assisted selection and made available for maize hybrid breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号