首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sixty Angus (n = 29) and Angus-Sim-mental cross (n = 31) steers, averaging 9 mo of age and 277 kg of initial BW, were used in a 148-d study to determine the bioavailability of copper glycinate (CuGly) relative to feed-grade copper sulfate (CuSO(4)) when supplemented to diets high in S and Mo. Steers were blocked by weight within breed and randomly assigned to 1 of 5 treatments: 1) control (no supplemental Cu), 2) 5 mg of Cu/kg of DM from CuSO(4), 3) 10 mg of Cu/kg of DM from CuSO(4), 4) 5 mg of Cu/kg of DM from CuGly, and 5) 10 mg of Cu/kg of DM from CuGly. Steers were individually fed a corn silage-based diet (analyzed 8.2 mg of Cu/kg of DM), and supplemented with 2 mg of Mo/kg of diet DM and 0.15% S for 120 d (phase 1). Steers were then supplemented with 6 mg of Mo/kg of diet DM and 0.15% S for an additional 28 d (phase 2). Average daily gain and G:F were improved by Cu supplementation regardless of source (P = 0.01). Final ceruloplasmin, plasma Cu, and liver Cu values were greater (P < 0.05) in steers fed supplemental Cu compared with controls. Plasma Cu, liver Cu, and ceruloplasmin values were greater (P < 0.05) in steers supplemented with 10 mg of Cu/kg of DM vs. those supplemented with 5 mg of Cu/kg of DM. Based on multiple linear regression of final plasma Cu, liver Cu, and ceruloplasmin values on dietary Cu intake in phase 1 (2 mg of Mo/kg of DM), bioavailability of Cu from CuGly relative to CuSO(4) (100%) was 140 (P = 0.10), 131 (P = 0.12), and 140% (P = 0.01), respectively. Relative bio-availability of Cu from CuGly was greater than from CuSO(4) (P = 0.01; 144, 150, and 157%, based on plasma Cu, liver Cu, and ceruloplasmin, respectively) after supplementation of 6 mg of Mo/kg of DM for 28 d. Results of this study suggest that Cu from CuGly may be more available than CuSO(4) when supplemented to diets high in S and Mo.  相似文献   

2.
The objective of this study was to investigate the effect of supplemental tribasic copper chloride (Cu(2)(OH(3))Cl; TBCC) vs. Cu sulfate (CuSO(4)) on Cu status and voluntary forage DMI in growing heifers. Two 90-d experiments were conducted using 48 non-pregnant, crossbred heifers (24 heifers/experiment; 355 +/- 10.7 and 309 +/- 9.9 kg for Exp. 1 and 2, respectively). In each experiment, 3 supplemental Cu treatments were randomly allocated to heifers in individual pens consisting of (1) 100 mg of Cu/d from CuSO(4), (2) 100 mg of Cu/d from TBCC, or (3) 0 mg of Cu/d. The 2 experiments differed by the form of supplement used to deliver the Cu treatments (corn- vs. molasses-based supplements for Exp. 1 and 2, respectively). Supplements were formulated and fed to provide equivalent amounts of CP and TDN daily but differed in their concentration of the Cu antagonists, Mo (0.70 vs. 1.44 mg/kg), Fe (113 vs. 189 mg/kg), and S (0.18 vs. 0.37%) for corn- and molasses-based supplements, respectively. All heifers were provided free-choice access to ground stargrass (Cynodon spp.) hay. Jugular blood and liver biopsy samples were collected on d 0, 30, 60, and 90 of each experiment. Heifer BW was collected on d 0 and 90. Heifer ADG was not affected by Cu treatment (average = 0.22 +/- 0.11 and 0.44 +/- 0.05 kg for Exp. 1 and 2, respectively; P > 0.20). In Exp. 1, heifers provided supplemental Cu, independent of source, had greater (P < 0.05) liver Cu concentrations on d 60 and 90 compared with heifers provided no supplemental Cu. In Exp. 2, average liver Cu concentrations were greater (P = 0.04) for heifers receiving supplemental Cu compared with heifers receiving no Cu; however, all treatments experienced a decrease in liver Cu concentration over the 90-d treatment period. Plasma ceruloplasmin concentrations did not differ in Exp. 1 (P = 0.83) but were greater (P = 0.04) in Exp. 2 for heifers receiving supplemental Cu compared with heifers receiving no Cu. In Exp. 1, voluntary forage DMI was greater (P < 0.05) for heifers provided supplemental Cu, independent of source, compared with heifers provided no Cu. In contrast, voluntary forage DMI was not affected (P > 0.10) by Cu supplementation in Exp. 2. These data imply that CuSO(4) and TBCC are of similar availability when offered to growing beef heifers in both corn- and molasses-based supplements. However, corn- and molasses-based supplements appear to affect Cu metabolism differently. These impacts may affect voluntary forage DMI in growing beef heifers.  相似文献   

3.
An experiment was conducted to determine the effects of Cu supplementation on performance, subcutaneous adipose tissue mRNA expression of acetyl CoA carboxylase (ACC), stearoyl CoA desaturase (SCD), uncoupling protein 2 (UCP2), and leptin in growing and finishing steers. Forty-eight purebred Angus steers were allotted to one of five treatments: 1) control (no supplemental Cu); 2) 10 mg Cu/kg DM from CuSO4; 3) 10 mg Cu/kg DM from a Cu amino acid complex (Availa Cu); 4) 20 mg Cu/kg DM from CuSO4; 5) 20 mg Cu/kg DM from Availa Cu. Steers were fed an alfalfa hay corn-based diet for 56 d (basal diet contained 7.1 mg Cu/kg DM) and switched to a high-concentrate diet for 144 d (basal diet contained 6.1 mg Cu/kg DM). Blood samples were obtained every 28 d throughout the entire experiment. On d 112 of the finishing period, subcutaneous adipose tissue biopsies were obtained from the tailhead of three animals per treatment and analyzed for ACC, SCD, UCP2, and leptin mRNA expression. Animal performance was not affected by Cu supplementation during the growing phase. Steers receiving 10 mg Cu/kg DM from Availa Cu had higher (P < 0.05) ending body weights and tended (P < 0.10) to have higher ADG than steers receiving 10 mg Cu/kg DM from CuSO4 during the finishing phase. Serum concentrations of nonesterified fatty acid and insulin were not affected by Cu supplementation. Steers receiving supplemental Cu tended (P < 0.11) to have less backfat relative to controls. However, dietary Cu did not influence the level of subcutaneous adipose tissue ACC and SCD mRNA. Neither UCP2 nor leptin gene expression was affected by Cu supplementation. These results indicate that dietary Cu supplementation (10 to 20 mg Cu/kg DM diet) may alter lipid metabolism of subcutaneous adipose tissue; however, it does not seem to affect expression of certain lipogenic genes.  相似文献   

4.
Performance and Cu status were measured in growing and finishing steers supplemented with different copper (Cu) concentrations and sources. Sixty Angus (n = 36) and Angus x Hereford (n = 24) steers were stratified by weight and initial liver Cu concentration within a breed and randomly assigned to treatments. Treatments consisted of 1) control (no supplemental Cu); 2) 20 mg Cu/kg DM from Cu sulfate (CuSO4); 3) 40 mg Cu/kg DM from CuSO4; 4) 20 mg Cu/ kg DM from Cu citrate (C6H4Cu2O7); 5) 20 mg Cu/kg DM from Cu proteinate; and 6) 20 mg Cu/kg DM from tribasic Cu chloride (Cu2(OH)3Cl). A corn silage-soybean meal-based diet that was analyzed to contain 10.2 mg of Cu/kg DM was fed for 56 d. Steers were then switched to a high-concentrate diet that was analyzed to contain 4.9 mg of Cu/kg DM. Equal numbers of steers per treatment were slaughtered after receiving the finishing diets for either 101 or 121 d. Performance was not affected by Cu level or source during the growing phase. Gain, feed intake, and feed efficiency were reduced (P < .05) by Cu supplementation during the finishing phase. Plasma and liver Cu concentrations were higher in steers receiving supplemental Cu at the end of both the growing and finishing phases. Steers supplemented with 40 mg Cu/kg DM from CuSO4 had higher (P < .05) liver Cu concentrations than those supplemented with 20 mg Cu/kg DM from CuSO4. Liver Cu concentrations did not increase over the finishing phase relative to liver Cu concentrations at the end of the growing phase. These results indicate that as little as 20 mg/kg of supplemental Cu can reduce performance in finishing steers.  相似文献   

5.
Estimated copper requirements of angus and simmental heifers   总被引:7,自引:0,他引:7  
In Exp. 1, Simmental (n = 21) and Angus (n = 21) heifers, approximately 9 mo of age, were used in a 160-d study to determine the effect of dietary Cu on growth and Cu status. Two- or three-yr-old first-calf heifers (21 Angus and 21 Simmental) entering into their last trimester of pregnancy were used in Exp. 2 to estimate Cu requirements of the two breeds during gestation and early lactation. Treatments in both studies consisted of 0 (control), 7, or 14 mg of supplemental Cu (as CuSO4)/kg of DM. The control corn silage-based diets contained 6.4 and 4.4 mg of Cu/kg of DM in Exp. 1 and 2, respectively, and 1.2 mg of Mo/kg. Dietary Cu did not affect performance in either breed in Exp. 1. Copper supplementation generally did not affect plasma Cu concentrations in Angus heifers, but increased (P < 0.05) plasma Cu in Simmental heifers from d 37 until the end of Exp. 1. Final liver Cu concentrations were lower (P < 0.05) than initial concentrations in control Angus and Simmental heifers; however, liver Cu increased (P < 0.01) in Cu-supplemented heifers. In Exp. 2, Cu supplementation of the control diet increased (P < 0.05) plasma Cu during gestation and greatly increased (P < 0.01) liver Cu in both breeds. Calves born to cows not supplemented with Cu also had lower plasma Cu concentrations than Cu-supplemented calves by 73 d of age. In both studies, control Simmental heifers had lower (P < 0.05) plasma Cu concentrations than Angus on most sampling dates. When Cu was supplemented at 7 or 14 mg/kg of DM,few differences in plasma Cu concentrations were observed between breeds. Results suggest that Angus heifers have a lower minimal Cu requirement than Simmental. Based on liver Cu, the control diets containing 4.4 or 6.4 mg of Cu/kg of DM did not meet the Cu requirement of either breed during gestation and lactation or growth. Addition of 7 mg of Cu/kg of DM to the control diets met Cu requirements of both breeds.  相似文献   

6.
We conducted an experiment to determine the effects of dietary copper (Cu) source and level on carcass characteristics, longissimus muscle fatty acid composition, and serum and muscle cholesterol concentrations in steers. Sixty Angus and Angus x Hereford steers were stratified by weight and initial liver Cu concentration within a breed and randomly assigned to treatments. Treatments consisted of: 1) control (no supplemental Cu); 2) 20 mg Cu/kg DM from Cu sulfate (CuSO4); 3) 40 mg Cu/kg DM from CuSO4; 4) 20 mg Cu/kg DM from Cu citrate; 5) 20 mg Cu/kg DM from Cu proteinate; and 6) 20 mg Cu/kg DM from tribasic Cu chloride. A corn silage-soybean meal-based diet was fed for 56 d. Steers were then switched to a high-concentrate diet. Equal numbers (n = 5) of steers per treatment were slaughtered after receiving the finishing diets for either 101 or 121 d. Serum cholesterol was not affected by treatment during the growing phase but was decreased (P < .05) in steers supplemented with Cu by d 84 of the finishing period and remained lower (P < . 05) at subsequent sampling periods. Longissimus muscle cholesterol concentration tended to be reduced (P < .11) by Cu supplementation. Hot carcass weight and backfat were lower (P < .05) in animals receiving supplemental Cu. However, Cu-supplemented and control steers had similar marbling scores. Longissimus muscle polyunsaturated fatty acid concentrations (18:2 and 18:3) were increased (P < .07) and saturated fatty acid concentrations tended (P < . 11) to be reduced by Cu supplementation. These results indicate that as little as 20 mg of supplemental Cu/kg diet can reduce backfat and serum cholesterol and increase muscle polyunsaturated fatty acids in steers fed high-concentrate diets.  相似文献   

7.
Forty-four Angus (n = 24) and Simmental (n = 20) steers, averaging 301 kg initially, were used to determine the effects of breed and Cu and Zn source (SO4 or proteinate (Prot) form) on Cu and Zn status of steers fed high dietary iron (Fe). Steers were stratified by weight within breed and randomly assigned to treatments. Treatments consisted of: 1) CuSO4 + ZnSO4 ,2) CuSO4 + ZnProt, 3) CuProt + ZnSO4, and 4) CuProt + ZnProt. Copper and Zn sources were added to provide 5 mg Cu and 25 mg supplemental Zn/kg DM. All steers were individually fed a corn silage-based diet supplemented with 1,000 mg Fe (from FeSO4)/kg DM. Liver biopsy samples were obtained at the beginning and end of the 149-d study. Serum samples were collected initially and at 28-d intervals for determination of ceruloplasmin activity and Zn and Cu concentrations. Copper and Zn source did not affect performance, serum or liver Cu and Zn concentrations, or ceruloplasmin activity. Copper status decreased (P < 0.01) in all steers with time, and increasing the level of supplemental Cu from 5 to 10 mg/kg DM on d 84 did not prevent further drops in serum Cu and ceruloplasmin. Simmental steers had lower (P < 0.05) serum and liver Cu concentrations, and serum ceruloplasmin activity throughout the study. These results indicate that neither CuSO4 nor CuProt were effective at the supplemental concentrations evaluated in alleviating the adverse effect of high Fe on Cu status. Simmental steers had lower Cu status than Angus, suggesting a higher Cu requirement.  相似文献   

8.
Angus x Hereford heifers (n = 50) were randomly assigned to bahiagrass pastures treated with biosolids varying in mineral content and evaluated for mineral status, with special attention to Cu. Biosolids and NH4NO3 were all applied at the rate of either 179 kg N/ha (X) or twice this (2X). Fertilizer was applied to .81-ha pastures for the following treatments: 1) Baltimore biosolids (1X = 179 kg N/ha); 2) Baltimore biosolids (2X = 358 kg N/ha); 3) Tampa biosolids (1X = 179 kg N/ha); 4) Tampa biosolids (2X = 358 kg N/ha); or 5) control NH4NO3 (1X = 179 kg N/ha) applied at two times. Pastures were divided into five blocks with each treatment represented once in each block. Copper loads varied from 8.8 to 42.2 kg/ha, and Mo loads varied from .27 to 1.11 kg/ha. Heifers (two per pasture) grazed their assigned pastures exclusively for 176 d. Liver biopsies were taken from all animals at d 1, 99, and 176, and blood samples on d 1, 50, 99, 135, and 176. Liver and plasma were analyzed for selected mineral contents, and blood was analyzed for hemoglobin and hematocrit. Experimental animals were generally low in mineral status when assigned to pastures and deficient in Se and P. By d 50, plasma Ca, Mg, Se, P, and Zn were adequate for all treatments. Plasma Cu declined (P < .03) for all treatments from d 50 to 176. Plasma Cu reflected depleted liver Cu storage, with the two Tampa and highest Baltimore treatment means lower in plasma Cu than the control at 176 d. Liver Fe concentrations were adequate for all treatments, and Mo concentrations (< 2.18 mg/kg) did not approach levels indicative of toxicity. Liver Cu declined (P < .05) with time for all treatments. By d 99, animals receiving the two Baltimore treatments and the lowest Tampa application rate had lower (P < .05) liver Cu than the control, and all treatments were lower at 176 d. The decline of animal Cu status (liver and plasma) reflects the low Cu status of bahiagrass and the possibility of high forage S (.30 to .47%) interfering with Cu metabolism. Forage Mo was low but was slightly higher in biosolids-treated pastures. High levels of biosolids applications to bahiagrass pastures were not detrimental to mineral status except Cu, which had a tendency to decline in plasma and for all biosolids treatments declined in liver.  相似文献   

9.
Two experiments were conducted to determine whether the supplementation of Cu in the organic or inorganic form to 2-yr-old cows, before and after calving, affects reproduction rate, calf health and performance, passive transfer of immunoglobulin, or liver and serum Cu concentrations compared with unsupplemented controls. Cows (n = 75 in 1997; n = 120 in 1998) were randomly assigned by estimated calving date and body condition score to one of three treatments: 1) Control, control; 2) Inorganic, inorganic Cu supplement (200 mg Cu from CuSO4); 3) Organic, organic Cu supplement (100 mg Cu from AvailaCu). In 1998, a fourth treatment was added; 4) CU-ZN, organic Cu and Zn (400 mg Zn from AvailaZn in the Organic diet). Cows were fed a hay-based diet and individually fed supplements for approximately 45 d before and 60 d after calving (approximately January 15 to May 15 each year). Liver biopsies were obtained from cows before supplementation began, and from cows and calves at 10 and 30 d after calving. Blood samples were obtained from both cows and calves at calving, and colostrum samples were collected for IgG and mineral content. Cow liver Cu concentrations before supplementation began were 58 mg/kg in 1997 and 40 mg/kg (DM basis) in 1998. By 10 d after calving, liver Cu concentrations of Control cows had decreased (P < 0.05) to 24 mg/kg (Cu deficient) in both years, whereas liver Cu concentrations of Cu-supplemented cows increased (P < 0.05) in both years. Calf liver Cu concentrations at 10 d of age were similar (P > 0.10) for all treatment groups. No differences (P > 0.10) were found in colostrum Cu concentrations, or in calf health among treatments. No differences (P > 0.10) were found in cow BW change, calf serum Cu concentrations, calf weaning weights, or in cow 60-d pregnancy rates among treatments in either year. In 1998, cows in the Organic group had higher (P < 0.05) 30-d pregnancy rate than Control cows. Neither serum samples nor placental tissue were reliable indicators of Cu status in cows. Feeding supplemental Cu (either inorganic, organic, or organic with extra Zn) to cows with liver Cu concentrations of approximately 50 mg/kg before calving did not improve cow 60-d pregnancy rates or the health and performance of their calves when compared with unsupplemented cows.  相似文献   

10.
Three experiments were conducted to evaluate the effects of increasing dietary Cu and Zn on weanling pig performance. Diets were fed in 2 phases: phase 1 from d 0 to 14 postweaning and phase 2 from d 14 to 28 in Exp. 1 and 2 and d 14 to 42 in Exp. 3. The trace mineral premix, included in all diets, provided 165 mg/kg of Zn from ZnSO(4) and 16.5 mg/kg of Cu from CuSO(4). In Exp. 1, treatments were arranged in a 2 × 3 factorial with main effects of added Cu from tri-basic copper chloride (TBCC; 0 or 150 mg/kg) and added Zn from ZnO (0, 1,500, or 3,000 mg/kg from d 0 to 14 and 0, 1,000, or 2,000 mg/kg from d 14 to 28). No Cu × Zn interactions were observed (P > 0.10). Adding TBCC or Zn increased (P < 0.05) ADG and ADFI during each phase. In Exp. 2, treatments were arranged in a 2 × 3 factorial with main effects of added Zn from ZnO (0 or 3,000 mg/kg from d 0 to 14 and 0 or 2,000 mg/kg from d 14 to 28) and Cu (control, 125 mg/kg of Cu from TBCC, or 125 mg/kg of Cu from CuSO(4)). No Cu × Zn interactions (P > 0.10) were observed for any performance data. Adding ZnO improved (P < 0.02) ADG and ADFI from d 0 to 14 and overall. From d 0 to 28, supplementing CuSO(4) increased (P < 0.02) ADG, ADFI, and G:F, and TBCC improved (P = 0.006) ADG. In Exp. 3, the 6 dietary treatments were arranged in a 2 × 2 factorial with main effects of added Cu from CuSO(4) (0 or 125 mg/kg) and added Zn from ZnO (0 or 3,000 mg/kg from d 0 to 14 and 0 or 2,000 mg/kg from d 14 to 42). The final 2 treatments were feeding added ZnO alone or in combination with CuSO(4) from d 0 to 14 and adding CuSO(4) from d 14 to 42. Adding ZnO increased (P < 0.04) ADG, ADFI, and G:F from d 0 to 14 and ADG from d 0 to 42. Dietary CuSO(4) increased (P < 0.004) ADG and ADFI from d 14 to 42 and d 0 to 42. From d 28 to 42, a trend for a Cu × Zn interaction was observed (P = 0.06) for ADG. This interaction was reflective of the numeric decrease in ADG for pigs when Cu and Zn were used in combination compared with each used alone. Also, numerical advantages were observed when supplementing Zn from d 0 to 14 and Cu from d 14 to 42 compared with all other Cu and Zn regimens. These 3 experiments show the advantages of including both Cu and Zn in the diet for 28 d postweaning; however, as evident in Exp. 3, when 3,000 mg/kg of Zn was added early and 125 mg/kg of Cu was added late, performance was similar or numerically greater than when both were used for 42 d.  相似文献   

11.
The effect of Cu status, supplementation, and source on pituitary responsiveness to exogenous GnRH was evaluated using nine multiparous, nonpregnant, nonsuckling, ovariectomized Angus cows (7.1 +/- 3.3 yr; 622.9 +/- 49.8 kg; BCS = 6.0 +/- 0.5). Cows were considered Cu-deficient based on liver Cu concentrations (< 30 mg of Cu/kg of DM) after receiving a low-Cu, forage-based diet supplemented (DM basis) with 5 mg of Mo/kg and 0.3% S for 216 d. Copper-deficient cows were stratified based on age, BW, BCS, and liver Cu concentration and assigned randomly to repletion-phase treatments. Treatments included 1) control (no supplemental Cu); 2) organic (ORG; 100% organic Cu); and 3) inorganic (ING; 100% inorganic CuSO4). Treatments were formulated to meet all NRC recommendations, except for Cu, which was supplemented to ORG and ING cows at 10 mg of Cu/kg of dietary DM. During the 159-d repletion phase, Cu status was monitored via liver biopsy samples, and all cows received exogenous progesterone. A controlled intravaginal drug-release device (replaced every 14 d) was used to maintain luteal phase progesterone as a means to provide negative feedback on the hypothalamic-pituitary axis. During the repletion phase, liver Cu concentrations did not differ between ORG and ING cows at any time. By d 77 of the repletion phase, all supplemented cows were considered adequate in Cu, and liver Cu concentrations were greater in supplemented than in nonsupplemented control cows on d 77 (P < 0.05) and throughout (P < 0.01) the repletion phase. Beginning on d 99, exogenous GnRH was administered to all cows at low (0, 3, and 9 microg; Exp. 1) and high doses (0, 27, and 81 microg; Exp. 2) at six different times. Cows were catheterized every fifth day, and blood samples were collected every 15 min for 1 h before and 4 h after GnRH administration and analyzed for LH concentration. In Exp. 1, Cu status and supplementation did not affect basal or peak LH concentrations, but total LH released tended (P < 0.07) to be greater in Cu-supplemented vs. control cows when 3 microg of GnRH was administered. In Exp. 2, there was no effect of Cu supplementation or source on basal, peak, or total LH released, regardless of GnRH dose. Pituitary LH concentrations did not differ across treatments. In conclusion, Cu status, supplementation, and source did not affect GnRH-induced LH secretion or pituitary LH stores in ovariectomized, progesterone-supplemented cows in this experiment.  相似文献   

12.
Two experiments were conducted to evaluate the effects of Cu and Zn source on performance, morbidity, and humoral immune response in lightweight, newly received beef heifers. A 2 x 2 factorial arrangement of treatments was used in both experiments, with either a sulfate or a polysaccharide mineral complex (SQM) source of both Cu and Zn as the factors. Supplemental Cu and Zn were included in the receiving diet at concentrations designed to provide 10 mg of Cu/kg and 75 mg of Zn/kg (DM basis). In Exp. 1, 219 newly received beef heifers (British x Continental, average initial BW = 208 kg) were given ad libitum access to a 65% concentrate diet for 35 d to determine treatment effects on DMI, ADG, G:F, and bovine respiratory disease (BRD) morbidity. In Exp. 2, 24 heifers (average initial BW = 272 kg) were fed a diet with no supplemental Cu or Zn for 35 d, followed by fasting-refeeding-fasting stress, after which the same treatment diets used in Exp. 1 were fed for 21 d to examine the effects on humoral immune response (plasma IgG titer determined by ELISA on d 7, 14, and 21) to an ovalbumin (OVA) vaccine given on d 0 and 14. Copper source x Zn source interactions were not detected in either experiment. In Exp. 1, neither Cu nor Zn source affected (P > 0.10) DMI, ADG, G:F, or BRD morbidity. In Exp. 2, d 14 (P = 0.02) and 21 (P = 0.06) OVA titers were greater for heifers that received SQM Zn compared with heifers receiving ZnSO4, but heifers receiving CuSO4 had greater OVA titers than did heifers on the SQM Cu treatment on d 14 (P = 0.01) and 21 (P = 0.001). In summary, neither supplemental Cu nor Zn source affected performance or morbidity of lightweight, newly received heifers; however, source of both Cu or Zn affected the humoral immune response to OVA, although source effects were not consistent for the two minerals.  相似文献   

13.
AIM: To determine changes in serum and liver copper concentrations in postnatal, weaner, yearling, and mature deer after grazing pasture topdressed with copper (Cu) at two rates of application of copper sulphate (CuSO4(.)5H2O), and following oral administration of copper oxide (CuO) wire particles to some of the deer. METHODS: In mid-March 2000 (Year 1), 1.1-ha paddocks (two/treatment) of ryegrass/white clover pasture received either 0 (Control), 6 (Low) or 12 (High) kg CuSO4(.)5H2O /ha applied with 250 kg potash superphosphate/ha. They were grazed by 4-month-old red deer hinds (n=11/treatment) from mid-April 2000 until early March 2001. In mid-March 2001 (Year 2), the pastures were topdressed again as for Year 1, and the original hinds, now yearlings which had grazed as a single group between studies, were returned to their respective treatments in mid-April 2001 and remained on the trial until mid-March 2002. They were mated during April/May. The pastures were also grazed by pregnant mature hinds (n=8/treatment) from mid-May 2001. As the Cu status (i.e. liver Cu concentration) of the yearling hinds on the pasture treated with 6 kg CuSO4(.)5H2O/ha was not significantly different from the untreated animals, in late July 2001 the yearling and mature deer on this treatment were treated orally with 10 g CuO wire particles. The mature hinds calved in November and the yearling hinds in December. Pasture samples were collected at about monthly intervals to determine concentrations of Cu and other minerals. In Year 1, liver biopsies and blood samples were collected at 4-6-weekly intervals for determination of Cu concentrations. In Year 2, samples were collected similarly at 6-12-weekly intervals. Liver biopsies and blood were also collected from progeny, along with milk from their dams. Liveweights were determined at 3-7-monthly intervals, as well as data on calving/mortality rates. RESULTS: Pasture Cu concentrations before the application of CuSO4(.)5H2O were 6-9 mg Cu/kg dry matter (DM) and remained at this level in the untreated Control paddocks throughout the study. In Year 1, 28 days after treatment, pasture Cu concentration was 25 and 35 mg Cu/kg DM for the Low and High treatments, respectively; while at the same time for the same treatments in Year 2 it was 20 and 60 mg/kg DM, respectively. A second 60 mg Cu/kg DM peak also occurred on Day 85 in Year 2 with the High treatment. The pasture Cu concentration returned to 6-9 mg/kg DM, and there were no differences between treatments at Days 80 and 150 in Years 1 and 2, respectively. In Years 1 and 2, the Low treatment had no significant effect on the Cu status of the weaner and yearling hinds, respectively, when compared with that of animals grazing the untreated Control pastures. Weaner (Year 1) and yearling (Year 2) deer on the High treatment had significantly higher mean serum and liver Cu concentrations in the late winter and spring period when compared with those on untreated Control pastures. CuO wire particles increased the mean serum Cu concentration at Days 60 and 180, and liver Cu concentration at Day 60, in yearling hinds. A similar effect was observed in mature hinds. Regardless of Cu treatment, the liver Cu concentration of the 1-4-week-old progeny was markedly greater (p<0.001) than that of their dams, and then decreased significantly until weaning in March. In progeny of treated yearling hinds, but not mature hinds, serum and liver Cu concentrations were significantly higher (p=0.013) than progeny of untreated dams. CONCLUSION: Topdressing pastures with CuSO4(.)5H2O at a rate of 12 kg/ha, but not 6 kg/ha, in mid-March was effective in increasing the Cu status of weanling hinds; while pastures topdressed with 12 kg CuSO4(.)5H2O /ha in mid-March and dosing hinds with 10 g CuO in late July were effective in increasing the Cu status of pregnant hinds, and in the case of the yearling hinds, significantly improved the Cu status of their progeny from birth to weaning.  相似文献   

14.
The effects of 3 supplemental Cu concentrations on feedlot performance, mineral absorption, carcass characteristics, and ruminal S metabolism of cattle fed diets containing 60% dried distillers grains with solubles (DDGS) were evaluated in 2 experiments. Experiment 1 was conducted with 84 Angus-cross yearling steers and heifers (initial BW = 238 ± 36 kg), which were blocked by gender and allocated to 12 pens. Supplemental dietary Cu (tribasic copper chloride) treatments were: 1) 0 mg Cu/kg diet DM, 2) 100 mg Cu/kg diet DM, 3) 200 mg Cu/kg diet DM. The remainder of the diet was DDGS (60%), grass hay (10%), pelleted soy hulls (15%), and a vitamin-mineral supplement (15%). Diets were offered ad libitum throughout the finishing phase (168 d). Three cattle from each pen (n = 36) were harvested on d 168 and carcass data and liver samples were collected. Copper supplementation did not affect ADG (P = 0.22). However, the nonsignificant trend for increased ADG and decreased DMI led to a linear increase (P = 0.02) feed efficiency (G:F = 0.167, 0.177, and 0.177 for 0, 100, and 200 mg Cu/kg diet DM, respectively). The apparent absorption of Cu decreased quadratically (P = 0.07) and the apparent absorption of Mn and Zn were decreased linearly (P = 0.03 and P = 0.05, respectively) with increased Cu supplementation. Cattle supplemented with 100 or 200 mg Cu/kg diet DM had greater liver Cu concentrations (P < 0.01) than cattle that were not supplemented with Cu. There were no treatment effects (P > 0.10) on HCW, LM area, USDA yield grade, backfat, or marbling score. Experiment 2 was conducted with 6 ruminally fistulated steers that were fed the same diets as in Exp 1 in a replicated 3 × 3 Latin Square design. Copper supplementation did not affect (P > 0.10) ruminal pH or liquid S(2-) concentrations in steers consuming 60% DDGS diets (total dietary S = 0.55%). From 3 to 9 h after feeding, H(2)S gas concentration was decreased in those cattle supplemented with 100 mg Cu/kg diet. Concentration of H(2)S gas did not differ among cattle supplemented with 0 or 200 mg Cu/kg diet DM on 60% DDGS diets. Supplemental Cu improved feed efficiency in cattle consuming diets containing 60% DDGS; however, effects of Cu on rumen S metabolism were minimal even when supplemented at twice the maximum tolerable limit for beef cattle (NRC, 2000).  相似文献   

15.
Oxidized copper wire, commonly referred to as copper oxide needles (CuON), was evaluated using purebred Hereford cows and their calves. Thirty-seven cows were allocated to Cu treatments of 0, 25 or 50 g CuON (79.9% Cu in CuON) with 12, 12 and 13 cows per treatment, respectively; calves within cow treatments were allocated to treatment of 0 and 20 g CuON. Single oral doses of CuON were given at the start of a grazing trial that lasted 92 d. Cows and calves were weighed and blood samples were taken on d 0, 28, 63 and 92; liver biopsies were taken on d 0, 28 and 92 of the grazing trial. Cattle were consuming grass forage with mean concentrations on d 0, 28, 63 and 92 of the grazing trial ranging from 1.6 to 5.5 mg/kg DM for Cu, 2.5 to 5.5 mg/kg DM for Mo and 1.3 to 1.5 g/kg DM for total S. The water consumed by cattle contained 947 mg sulfate per liter (SE = 13.2, n = 4). Body weight of cows and calves was not influenced (P greater than .05) by CuON. Liver Cu was higher (P less than .01) in treated cows and calves but was not different (P greater than .05) between cows dosed with 25 or 50 g CuON. Treatment of cows and calves with CuON had no influence (P greater than .05) on the concentration of Fe or Mo in liver or plasma, the concentration of Cu and ceruloplasmin activity in plasma, or the concentration of Zn in liver. Plasma Zn did not differ (P greater than .05) in cows, but it was higher (P less than .05) in the calves suckling cows treated with CuON. It was concluded that dosing cows and calves with CuON resulted in a higher Cu content of liver but did not adversely influence the metabolism of Fe or Zn or modify the concentration of Mo in the plasma or liver of cows or calves.  相似文献   

16.
The Cu status of mature, crossbred ewes fed two sources (CuSO4 vs. Cu proteinate) and three levels (10, 20, or 30 mg/kg) of dietary Cu was determined in a 73-d feeding trial. Ewes (n = 30) were fed a basal diet containing rice meal feed, cottonseed hulls, cottonseed meal, meat and bone meal, cracked corn, and vitamin-mineral supplements at 2.5% of BW to meet NRC requirements for protein, energy, macrominerals, and microminerals, excluding Cu. The basal diet contained 5 mg/kg Cu, 113 mg/kg Fe, .1 mg/kg Mo, and .17% S. Copper sulfate or Cu proteinate was added to the basal diet to supply 10, 20, or 30 mg/kg of dietary copper in a 2x3 factorial arrangement of treatments. Ewes were housed in 3.7- x 9.1-m pens in an open-sided barn. Blood samples were collected on d 28 and 73. Ewes were slaughtered on d 74, and liver and other tissues were collected to determine Cu concentrations. An interaction (P = .08) occurred between source and level for liver Cu. The interaction existed due to an increase in liver Cu concentrations when ewes were fed increasing dietary Cu from CuSO4 but not when fed Cu proteinate diets. There was no source x level interaction (P>.10) for the blood constituents measured. On d 73, plasma ceruloplasmin activity was greater (P<.05) in ewes fed Cu proteinate than in those fed CuSO4 (33.1 vs. 26.8 microM x min(-1) x L(-1)). Increasing the concentration of dietary Cu did not affect (P>.10) plasma ceruloplasmin. Packed cell volume (PCV), red blood cell count (RBC), white blood cell count, whole blood hemoglobin (wHb), plasma hemoglobin, and plasma Cu were similar between sources of Cu. Ewes fed 20 mg/kg Cu had lower (P<.05) PCV, RBC, and wHb than those fed 10 or 30 mg/kg Cu diets. Feeding up to 30 mg/kg Cu from these sources did not cause an observable Cu toxicity during the 73-d period.  相似文献   

17.
Sixty Angus steers (391.1+/-6.1 kg) were used to determine the effects of dietary Cu concentration on lipid metabolism and ruminal fermentation. Steers were stratified by weight and randomly assigned to treatments. Treatments consisted of 0 (control), 10, or 20 mg of supplemental Cu (as CuSO4)/kg diet DM. Steers were housed in pens equipped with individual electronic Calan gate feeders. On d 86 and 92, ruminal fluid was collected from two steers/treatment for IVDMD determination. Equal numbers of steers per treatment were slaughtered after receiving the finishing diets for 96 or 112 d. Gain, feed intake, feed efficiency, IVDMD, and ruminal VFA molar proportions were not affected by Cu supplementation. Copper supplementation increased (P < .05) liver Cu concentrations, and steers supplemented with 20 mg Cu/kg DM had higher (P < .05) liver Cu concentrations than steers supplemented with 10 mg Cu/kg DM. Serum total cholesterol concentrations were reduced by d 56 and at subsequent sampling dates in steers receiving supplemental Cu. Longissimus muscle cholesterol concentrations were lower (P < .10) in steers supplemented with Cu. Backfat depth was less (P < .05) in steers receiving supplemental Cu, but marbling scores were similar across treatments. Unsaturated fatty acid composition of longissimus muscle was increased (P < .05) and saturated fatty acid composition tended (P < .12) to be reduced in Cu-supplemented steers. Polyunsaturated fatty acid concentrations were higher (P < .05) in steers receiving Cu. These results indicate that addition of 10 or 20 mg Cu/kg to a high-concentrate diet containing 4.9 mg Cu/kg DM alters lipid and cholesterol metabolism in steers but does not affect ruminal fermentation.  相似文献   

18.
Two studies were conducted to evaluate the availability of dietary Cu offered to growing beef cattle consuming molasses-based supplements. In Exp. 1, 24 Braford heifers were assigned randomly to bahiagrass (Paspalum notatum) pastures (two heifers/pasture). Heifers were provided 1.5 kg of TDN and 0.3 kg of supplemental CP/heifer daily using a molasses-cottonseed meal slurry. Three treatments were randomly assigned to pastures (four pastures/treatment), providing 100 mg of supplemental Cu daily in the form of either CuSO4 (inorganic Cu) or organic-Cu. A third treatment offered no supplemental Cu (negative control). Heifer BW was collected at the start and end of the study. Jugular blood and liver samples were collected on d 0, 29, 56, and 84. In Exp. 2, 24 Brahman-crossbred steers were fed the same molasses-cottonseed meal supplement at the same rates used in Exp. 1. Steers were housed in individual pens (15 m2) with free-choice access to stargrass (Cynodon spp.) hay. Four Cu treatments were assigned to individual steers (six pens/treatment) providing 1) 10 ppm of Cu from an organic source; 2) 10 ppm Cu from Tri-basic Cu chloride (TBCC); 3) 30 ppm of Cu from TBCC; or 4) 30 ppm of Cu, a 50:50 ratio of TBCC and organic Cu. Body weights and jugular blood and liver samples were collected on d 0, 24, 48, and 72. In Exp. 1, liver Cu concentrations did not differ between heifers supplemented with inorganic and organic Cu. Each source resulted in increased (P < 0.05) liver Cu concentrations compared with the unsupplemented control. Plasma ceruloplasmin concentrations were higher (P < 0.05) for Cu-supplemented heifers, independent of Cu source. Heifer ADG tended (P = 0.11) to increase with Cu supplementation compared with the unsupplemented control. In Exp. 2, liver Cu was greater (P < 0.05) on d 24, 48, and 72 for steers consuming 30 vs. 10 ppm of Cu. Steers supplemented with organic Cu had lower DMI than steers supplemented with 10 or 30 ppm of TBCC. These data suggest that the inorganic and organic Cu sources evaluated in these studies were of similar availability when offered in molasses supplements. A dietary Cu concentration greater than 10 ppm might be necessary to ensure absorption in beef cattle fed molasses-based supplements.  相似文献   

19.
Two experiments were conducted to study effects of high-level Cu supplementation on measures of Cu status and forage utilization in beef cattle. In Exp. 1, eight steers randomly received an intraruminal bolus containing 12.5 g of CuO needles (n = 4) or no bolus (n = 4). Steers were individually offered free-choice ground limpograss (Hemarthria altissima) hay. On d 12 (Period 1) and d 33 (Period 2) steers were placed in metabolism crates, and total forage refused and feces produced were collected for 7 d. Daily samples of forage offered and refused and of feces excreted for each steer within period were analyzed for DM, ash, NDF, ADF, and CP. Liver biopsies were collected on d 0, 12, and 33. Copper oxide bolus administration resulted in greater (P < 0.03) liver Cu (DM basis) accumulation in Period 1 (556 vs. 296 mg/kg) and Period 2 (640 vs. 327 ppm). Apparent digestibilities of NDF and CP were greater (P < 0.04) for steers receiving no bolus in Period 2 (62.2 vs. 57.1% and 50.2 vs. 43.4% for NDF and CP digestibility, respectively). In Exp. 2, 24 crossbred heifers were assigned to individual pens and received a molasses-cottonseed meal supplement fortified with 0, 15, 60, or 120 ppm of supplemental Cu (Cu sulfate; six pens per treatment). All heifers were offered free-choice access to ground stargrass (Cynodon spp.) hay. Heifer BW and liver biopsies were collected on d 0, 42, and 84. Forage refusal was determined daily, and diet DM digestibility was estimated over a 21-d period beginning on d 42. Heifers consuming 120 ppm of supplemental Cu gained less (P < 0.05; 0.04 kg/d) than heifers consuming 15 (0.19 kg/d) and 60 ppm of Cu (0.22 kg/d), but their ADG did not differ from that by heifers consuming no supplemental Cu (0.14 kg/d; pooled SEM = 0.07). Heifers supplemented with 15 ppm of Cu had greater (P < 0.05) liver Cu concentrations on d 84 than those on the 0-ppm treatment and the high-Cu treatments (60 and 120 ppm). Forage intake was less (P = 0.07) by heifers receiving no supplemental Cu than by heifers on all other treatments (6.6 vs. 5.8 +/- 0.37 kg/d). Apparent forage digestibility was not affected by Cu treatment. These data suggest that high rates of Cu supplementation (Cu sulfate; > 60 ppm of total Cu) resulted in less liver Cu accumulation by beef heifers compared with heifers consuming diets supplemented with moderate dietary Cu concentrations (i.e., 15 ppm). As well, the administration of CuO boluses might depress the digestibility of forage nutrient fractions in steers.  相似文献   

20.
为了比较肉用仔鸡日粮中添加不同有机微量元素后粪便中铜、锰、锌、排放的影响,试验选择1日龄AA肉仔鸡,分为7个处理,对照组添加无机硫酸盐(锌50mg/kg;铜10mg/kg;锰50 mg/kg),试验组分别用Mintrex-Cu替代5 mg/kg或全部替代硫酸铜;以Min-trex-Zn代替20 mg/kg硫酸锌,以Mintrex-Mn代替20 mg/kg硫酸锰,或在对照组基础上添加20mg/kg的Mintrex-Mn或Mintrex-Zn。42日龄时,采用全收粪法收集粪样72h,用原子吸收分光光度计测定粪样中铜、锰、锌的含量。结果表明:Mintrex-Cu代替50%或100%硫酸铜,对粪便中铜、锌和锰的排泄量没有显著影响(P〉0.05),Mintrex-Zn/Mn替代40%无机锌、锰对锌、锰排泄量没有显著影响(P〉0.05)。在基础日粮中额外添加20mg/kgMintrex-Zn/Mn显著提高了粪便中锌、锰的排泄量(P〈0.05),但添加20mg/kgMintrex-Mn降低铜排泄量20%以上(P〈0.05)。研究说明,在基础日粮微量元素水平低于需要量的情况下,采用有机微量元素替代无机微量元素对粪便中微量元素排泄量的影响很小,额外添加有机微量元素则提高粪便微量元素的排泄。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号