首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To identify hybrid-specific differences in developmental response to mechanical perturbation (MP), we compared the effects of stem flexure on several morphological and mechanical properties of two Populus trichocarpa Torr. & A. Gray x P. deltoides Bartr. ex Marsh. hybrids, 47-174 and 11-11. In response to the MP treatment, both hybrids exhibited a significant increase in radial growth, especially in the direction of the MP (47-174, P = 0.0001; 11-11, P = 0.002), and a significant decrease in height to diameter growth ratio (P = 0.0001 for both hybrids), suggesting that MP-treated stems are more tapered than control stems. A direct consequence of the MP-induced increase in radial growth was a significant increase in flexural rigidity (EI, N mm(2)) in stems of both hybrids (47-174, P = 0.0001; 11-11, P = 0.009). Both control and MP-treated stems of Hybrid 47-174 had significantly greater height to diameter ratios and EI values than the corresponding stems of Hybrid 11-11 (11-11 stem ratios and EI values were 85 and 76%, respectively, of those of 47-174). In Hybrid 47-174, Young's modulus of elasticity (E, N mm(-2)), a measure of stem flexibility, for MP-treated stems was only 80% of the control value (P = 0.0034), whereas MP had no significant effect on E of stems of Hybrid 11-11 (P = 0.2720). Differences in flexure response between the hybrids suggest that Hybrid 47-174 can produce a stem that is more tolerant of wind-induced flexure by altering both stem allometry and material properties, whereas Hybrid 11-11 relies solely on changes in stem allometry for enhanced stability under MP conditions.  相似文献   

2.
We tested the effects of growth characteristics and basic density on hydraulic and mechanical properties of mature Norway spruce (Picea abies (L.) Karst.) wood from six 24-year-old clones, grown on two sites in southern Sweden differing in water availability. Hydraulic parameters assessed were specific hydraulic conductivity at full saturation (ks100) and vulnerability to cavitation (Psi50), mechanical parameters included bending strength (sigma b), modulus of elasticity (MOE), compression strength (sigma a) and Young's modulus (E). Basic density, diameter at breast height, tree height, and hydraulic and mechanical parameters varied considerably among clones. Clonal means of hydraulic and mechanical properties were strongly related to basic density and to growth parameters across sites, especially to diameter at breast height. Compared with stem wood of slower growing clones, stem wood of rapidly growing clones had significantly lower basic density, lower sigma b, MOE, sigma a and E, was more vulnerable to cavitation, but had higher ks100. Basic density was negatively correlated to Psi50 and ks100. We therefore found a tradeoff between Psi50 and ks100. Clones with high basic density had significantly lower hydraulic vulnerability, but also lower hydraulic conductivity at full saturation and thus less rapid growth than clones with low basic density. This tradeoff involved a negative relationship between Psi50 and sigma b as well as MOE, and between ks100 and sigma b, MOE and sigma a. Basic density and Psi50 showed no site-specific differences, but tree height, diameter at breast height, ks100 and mechanical strength and stiffness were significantly lower at the drier site. Basic density had no influence on the site-dependent differences in hydraulic and mechanical properties, but was strongly negatively related to diameter at breast height. Selecting for growth may thus lead not only to a reduction in mechanical strength and stiffness but also to a reduction in hydraulic safety.  相似文献   

3.
Stem segments of eight five-year-old Norway spruce (Picea abies (L.) Karst.) clones differing in growth characteristics were tested for maximum specific hydraulic conductivity (k(s100)), vulnerability to cavitation and behavior under mechanical stress. The vulnerability of the clones to cavitation was assessed by measuring the applied air pressure required to cause 12 and 50% loss of conductivity (Psi(12), Psi(50)) and the percent loss of conductivity at 4 MPa applied air pressure (PLC(4MPa)). The bending strength and stiffness and the axial compression strength and stiffness of the same stem segments were measured to characterize wood mechanical properties. Growth ring width, wood density, latewood percentage, lumen diameter, cell wall thickness, tracheid length and pit dimensions of earlywood cells, spiral grain and microfibril angles were examined to identify structure-function relationships. High k(s100) was strongly and positively related to spiral grain angle, which corresponded positively to tracheid length and pit dimensions. Spiral grain may reduce flow resistance of the bordered pits of the first earlywood tracheids, which are characterized by rounded tips and an equal distribution of pits along the entire length. Wood density was unrelated to hydraulic vulnerability parameters. Traits associated with higher hydraulic vulnerability were long tracheids, high latewood percentage and thick earlywood cell walls. The positive relationship between earlywood cell wall thickness and vulnerability to cavitation suggest that air seeding through the margo of bordered pits may occur in earlywood. There was a positive phenotypic and genotypic relationship between k(s100) and PLC(4MPa), and both parameters were positively related to tree growth rate. Variability in mechanical properties depended mostly on wood density, but also on the amount of compression wood. Accordingly, hydraulic conductivity and mechanical strength or stiffness showed no tradeoff.  相似文献   

4.
32个杉木无性系木材密度和力学性质的变异*   总被引:10,自引:3,他引:10       下载免费PDF全文
32个杉木无性系间,木材密度和抗弯弹性模量、抗弯强度、顺纹抗压强度均有较大差异,无性系内株间亦存在一定差异。木材密度与抗弯弹性模量、抗弯强度、顺纹抗压强度间的相关极显著,相关系数分别为0.3957、0.8368和0.9020;木材密度与生长速度呈负的遗传相关。  相似文献   

5.
To provide data and methods for analyzing stem mechanics, we investigated bending, density and growth characteristics of 207 specimens of fresh wood from different heights and radial positions of the stem of one mature Norway spruce (Picea abies L. Karst.) tree. From the shape of each stress-strain curve, which was calculated from bending tests that accounted for shear deformation, we determined the modulus of elasticity (MOE), the modulus of rupture (MOR), the completeness of the material, an idealized stress-strain curve and the work involved in bending. In general, all mechanical properties increased with distance from the pith, with values in the ranges of 5.7-18 GPa for MOE, 23-90 MPa for MOR and 370-630 and 430-1100 kg m(-3) for dry and fresh wood densities, respectively. The first three properties generally decreased with stem height, whereas fresh wood density increased. Multiple regression equations were calculated, relating MOR, MOE and dry wood density to growth properties. We applied these equations to the growth of the entire stem and considered the annual rings as superimposed cylindrical shells, resulting in stem-section values of MOE, MOR and dry and fresh densities as a function of stem height and cambial age. The standing tree exhibits an inner stem structure that is well designed for bending, especially at a mature stage.  相似文献   

6.
Genetic parameters for wood stiffness and strength properties were estimated in a 29-year-old hybrid larch stand (Larix gmelinii var. japonica × Larix kaempferi). The study included 19 full-sib larch families from Hokkaido, northern Japan. Implications of these genetic parameters in wood quality improvement are subsequently discussed. Traits included in the analyses were the dynamic modulus of elasticity of green logs (E log), the modulus of elasticity (MOE), the modulus of rupture (MOR), compression strength parallel to the grain (CS) in small clear specimens, wood density (DEN), and diameter at breast height (DBH). DEN had the lowest coefficients of variation and MOE the highest. The narrow-sense heritability estimates of E log, MOE, MOR, and CS were 0.61, 0.44, 0.60, and 0.43, respectively, and those of DEN and all mechanical properties increased from an inner to outer position within the stem. E log and DEN had high positive phenotypic (0.52–0.83) and genetic (0.70–0.92) correlations with MOE, MOR, and CS. The mechanical properties of the inner position of the stem had rather high phenotypic and genetic correlations with those of the outer position and overall mean. The predicted gains in wood stiffness (E log and MOE) were higher than those of the strength properties (MOR and CS). The predicted correlated responses in MOE, MOR, and CS when selecting for E log and DEN were 72.6%–97.8% of a gain achievable from direct selection of these traits. DBH showed an insignificant correlation with all mechanical properties, although selection of this trait had a slightly negative effect on the mechanical properties.  相似文献   

7.
Development of optimal ways to predict juvenile wood stiffness, strength, and stability using wood properties that can be measured with relative ease and low cost is a priority for tree breeding and silviculture. Wood static modulus of elasticity (MOE), modulus of rupture (MOR), radial, tangential, and longitudinal shrinkage (RS, TS, LS), wood density (DEN), sound wave velocity (SWV), spiral grain (SLG), and microfibril angle (MFA) were measured on juvenile wood samples from lower stem sections in two radiata pine test plantations. Variation between inner (rings 1–2 from pith) and outer (rings 3–6 from pith) rings was generally larger than that among trees. MOE and MOR were lower (50%) in inner-rings than in outer-rings. RS and TS were higher (30–50%) for outer-rings than inner-rings, but LS decreased rapidly (>200%) from inner-rings to outer-rings. DEN had a higher correlation with MOR than with MOE, while MFA had a higher correlation with dry wood MOE than with MOR. SLG had higher significant correlation with MOE than with MOR. DEN and MOE had a weak, significant linear relationship with RS and TS, while MOE had a strong negative non-linear relationship with LS. Multiple regressions had a good potential as a method for predicting billet stiffness (R 2 > 0.42), but had only a weak potential to predict wood strength and shrinkage (R 2 < 0.22). For wood stiffness acoustic velocity measurements seemed to be the most practical, and for wood strength and stability acoustic velocity plus core density seemed to be the most practical measurements for predicting lower stem average in young trees.  相似文献   

8.
Thirty Norway spruce trees (Picea abies (L.) Karst.) from the forest district of the ETH Zurich were tested for bending MOR, static MOE of bending and dynamic MOE (calculated from eigenfrequency and sound velocity). The specimens were clear and were sampled from the whole of the stem. Their correlations to density, annual ring width, height in the tree, distribution over the stem diameter and the percentage of compression wood were statistically analysed. All three elasticity modules and the maximal stress can be very well predicted from a linear function of the sample density with a common gradient across the compression wood values but with different intercepts that decrease with increasing compression wood content. The other variables have highly significant impacts on the response variables too, however, this is largely irrelevant for the goodness of fit. Further, a clear increase of density, of MOE and of bending MOR was measured from pith to bark and similarly with decreasing annual ring width. Concerning the height of the stem, no distinct trend for the mechanical properties could be found.  相似文献   

9.
The visible and near infrared (NIR) (350-2500 nm) spectra and the MOE of 438 small clear wood samples from Chinese fir, eucalyptus and poplar 72 were measured. Using partial least-square (PLS) modeling, the NIR spectra could be used to predict MOE and MOR of the clear-wood samples from Chinese fir and eucalyptus solid wood. NIR spectra could only be used to Predict MOE but not MOR of poplar clear-wood samples. With the exception of MoR of poplar clear-wood samples, the correlations between NIR and the mechanical properties are very strong, and the calibration and test correlation coefficients are both above 0.80.  相似文献   

10.
杉木材性株内变异的研究Ⅰ.木材力学性质和木材密度   总被引:2,自引:0,他引:2  
对15株浙江产杉木株内不同高度和圆周不同方位上木材的抗弯强度、抗弯弹性模量、顺纹抗压强度和木材密度的差异,木材密度的径向变异模式和木材力学性质与木材密度的相关关系进行了测定和分析。主要结果是:抗弯强度和抗弯弹性模量在株内不同高度上差异特别显著;顺纹抗压强度和木材密度未表现出显著差异;在圆周不同方位上,三项力学性质和木材密度均为南北向高于东西向,差异不显著;木材密度径向变异模式在不同高度和不同方位上均为接近水平有一定波动的直线;三项力学性质与木材密度的相关关系在不同高度和不同方位上均特别显著,但不同力学性质与木材密度的相关系数有明显差异,不同高度上和圆周不同方位上,亦有差异。  相似文献   

11.
Variations of certain anatomical and mechanical indices within tree stems of aged sugi (Cryptomeria japonica) trees planted in Akita prefecture were studied. The determination of the juvenile/mature wood boundary was also discussed, and the effects of wood structure on mechanical properties were investigated. On the basis of radial and vertical variation of the anatomical and mechanical indices, modulus of elasticity (MOE)/ shear modulus (G) was chosen as the index for determining the juvenile/mature wood boundary. The increase rates of MOE/G at the points of 1%, 2%, and 3% were discussed. It was found that for aged trees, all three points were thought to be effective for dividing juvenile and mature wood. However, for younger trees, the point of 2% was recommended, which was mostly consistent with the result obtained by the increase rate of 1% for tracheid length (TL). Among mechanical properties, the MOE showed more significant juvenile/mature wood differences than did modulus of rupture (MOR) and . By correlation analysis, it was suggested that microfibril angle largely contributed to the indices of MOE and G, and specific gravity largely contributed to the indices of MOR and .Part of this report was presented at the 53rd Annual Meeting of the Japan Wood Research Society, Fukuoka, March 2003  相似文献   

12.
Genetic- and environmental variation and correlation patterns were characterized for modulus of elasticity (MOE), modulus of rupture (MOR) and related wood traits: latewood proportion, wood density, spiral grain, microfibril angle and lignin content in five full-sib families of Norway spruce. The families were evaluated on the basis of clearwood specimens from the juvenile -mature wood transition zone of 93 sampled trees at age 30 year from seed. Family-means varied significantly (p < 0.05) for all wood traits studied except lignin content. MOE varied between 7.9–14.1 GPa among trees and 9.4–11.0 GPa among families. MOR varied between 47–87 MPa among trees and 61–71 MPa among families. Families remained significantly different in an analysis of specific MOE (MOE/density) and MOR (MOR/density). Hence, solely relying on wood density as a wood quality trait in tree breeding would not fully yield the potential genetic gain for MOE and MOR. Correlations between wood structural traits and specific MOE and MOR are presented and discussed.  相似文献   

13.
The bending and growth characteristics of large fresh stems from four silver fir (Abies alba Mill.) and three Norway spruce (Picea abies (L.) Karst.) trees were studied. Twenty logs taken from different stem heights were subjected to four-point bending tests. From the bending test records, we calculated stress-strain curves, which accounted for detailed log taper, shear deformation and self weight. From these curves we determined, among other parameters, the modulus of elasticity (MOE), the modulus of rupture (MOR) and the work absorbed in bending (W). No significant differences were found between species for the wood properties examined. Values of MOE, MOR and W generally decreased with stem height, with MOR in the range of 43 to 59 MPa and MOE ranging from 10.6 to 15.6 GPa. These MOE values are twice or more those reported for stems of young Sitka spruce (Picea sitchensis (Bong.) Carr.) trees. Based on the radial growth properties measured in discs from the logs, we calculated predicted values of MOE and MOR for the stem cross section. The predictions of MOE were precise, whereas those of MOR were approximate because of a complex combination of different failure mechanisms. Methods to test and calculate MOE, MOR and W for the stems of living trees are discussed with the aim of improving analyses of tree biomechanics and assessments of forest stability protection.  相似文献   

14.
红松幼龄材与成熟材力学性质的差异   总被引:3,自引:0,他引:3  
本文研究了人工林和天然林红松幼龄材与成熟材力学性质的差异.结果显示,成熟材的所有力学性质均高于幼龄材.幼龄材与成熟材的抗弯弹性模量差异在人工林红松中达0.01水平显著,天然林红松也达到0.01水平显著;人工林红松抗弯强度和弦向横纹抗压强度差异达0.05水平显著.抗弯强度、顺纹抗压强度、横切面硬度和弦向横纹抗压强度4项指标的差异达0.05水平显著.  相似文献   

15.
对江汉平原水杉、池杉、落羽杉人工林物理力学性能进行了研究,结果表明:落羽杉的密度和硬度最大;落羽杉、水杉、池杉的抗弯强度差异不大;水杉的弹性模量最大,约为落羽杉的2.3倍,落羽杉的弹性模量与池杉的比较接近。南北方向对水杉、池杉、落羽杉的密度、顺纹抗压强度在5%水平上差异均不显著,对池杉、水杉抗弯强度在5%水平上差异不显著,对落羽杉抗弯强度在1%水平上差异显著,对落羽杉、池杉的弹性模量在1%水平上差异显著,对水杉的弹性模量在5%水平上差异不显著。三杉南北面近树皮处木材的密度、抗弯强度、弹性模量、顺纹抗压强度均大于髓心处。对水杉、池杉、落羽杉物理力学性能比较研究,旨在为其培育及合理利用提供依据。  相似文献   

16.
人工林杉木和杨树木材物理力学性质的株内变异研究   总被引:4,自引:0,他引:4  
按照中国国家标准研究杉木和I-214杨树木材的抗弯弹性模量、抗弯强度、顺纹抗压强度和密度,同时按照日本国家标准研究2个树种的顺纹抗剪强度.结果表明:杉木的抗弯强度、顺纹抗压强度和密度由胸高直径处向上呈波浪形增加,抗弯弹性模量则稳定降低,但不同高度间杉木的物理力学性质没有显著差异;近树皮处木材的物理力学性质高于近髓心处木材,并有极显著差异.对于I-214杨树,只有抗弯弹性模量从髓心到树皮逐渐增加,其他的物理力学性质,最小值在从髓心到树皮的过渡区,最大值在近树皮处,从髓心到树皮,杨树的物理力学性质有极显著的差异.杉木和杨树的径面顺纹抗剪强度从髓心到树皮有极显著差异,并且近树皮的高于近髓心的木材,而弦面顺纹抗剪强度从髓心到树皮没有显著差异.木材密度与力学性质有很好的线性相关关系,木材密度是一个很好的力学强度的预测手段.  相似文献   

17.
This study presents three-point bending test results of Norway spruce clear wood specimens loaded on the radial-longitudinal plane in two different load cases. The tested samples were graded as resonance wood for instrument making and were characterised by narrow annual rings and relatively low density. The modulus of elasticity (MOE) and the corresponding modulus of rupture (MOR) are illustrated separately for the samples with straight grain and the group showing the specific growth pattern of indented rings (‘hazel growth’). With the longitudinal wood anatomical direction parallel to span width, the fibre deviation caused by the indents reduces MOE and MOR values, whereas a ‘reinforcing’ effect of the indents could be observed for the load case with span width parallel to the radial direction. Both aspects lead to a reduction in anisotropy for hazel-growth Norway spruce (anisotropy MOE: indented rings 11.6, straight grain 14.7, anisotropy MOR: indented rings 6.9, straight grain 8.9), which partly explains the exceptional position of this growth pattern for the construction of high-class musical instruments with outstanding mechanical and acoustical performance.  相似文献   

18.
采用慈竹为原料制造竹帘胶合板,以三种不同的方式进行组坯,研究组坯方式对慈竹竹帘胶合板纵横方向静曲强度、弹性模量、压缩强度与水平剪切强度的影响。结果表明:组坯方式对胶合板的弹性模量与静曲强度影响较为显著。Ⅲ型板纵向各项力学性能最优,Ⅲ型板横向各项力学性能最弱。Ⅰ型板和Ⅱ型板的静曲强度和弹性模量均达到了汽车车厢用竹篾胶合板的A类标准。三种方式组坯板件的主要力学性能均达到了结构用竹木复合板国家A级标准与混凝土模板用胶合板主要物理力学性能指标。  相似文献   

19.
杉木热处理材结晶度及力学性能的研究   总被引:1,自引:0,他引:1  
热处理对木材力学性能的影响是多样的,这与热处理条件下木材的物理化学变化密切相关。本次研究将杉木板材在160℃、180℃和220℃常压蒸汽条件下进行热处理,考察处理材的结晶度、抗弯弹性模量、抗弯强度及相互可能的关联。结果表明,热处理使试材结晶度增加,有助于提高木材的刚性,使热处理材的抗弯弹性模量高于常规对照材;结晶度的提高对抗弯强度没有改善作用,热处理后试材的抗弯强度明显下降。  相似文献   

20.
广宁县竹香骨下脚料制备竹碎料刨花板及其复合改性研究   总被引:1,自引:0,他引:1  
采用竹香骨下脚料为原料,以脲醛树脂和三聚氰胺改性脲醛树脂胶粘剂制备竹碎料刨花板,并与木纤维复合改性,检测并分析了内结合强度、静曲强度、弹性模量和吸水性。结果表明,在热压温度为160℃时,竹碎料板和竹木复合碎料板的物理力学性能均满足国标规定在干燥状态下使用的普通用板要求。当木纤维与竹碎料复合后,复合板材的静曲强度和弹性模量有一定程度提高,但内结合强度降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号