首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 293 毫秒
1.
This study evaluated cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) sorption characteristics of three tropical soils. Data obtained conformed to Freundlich sorption model and the S-shaped isotherm curve. Sorption efficiency of Zn and Pb were highest in alkaline soil while slightly acid soil had the highest Cd and Cu sorption efficiency for monometal sorption. In competitive sorption, metals were more sorbed in slightly acid soil while the least efficiency was recorded in acid soil. Distribution coefficient; Kd (average across soil types) in monometal sorption followed the order: Pb > Zn > Cd > Cu. For competitive sorption, the order was Zn > Pb > Cu > Cd. When in competition, Cd was preferentially sorbed in slightly acid and alkaline soils and Zn for acid soil. Conclusively, lead is more in equilibrium solution when in competition with Cd, Zn and Cu making it potential agent of soil and groundwater pollution.  相似文献   

2.
The adsorption and ion-exchange behavior of Co, Cu, Zn, and Cd were studied in two soils of different genesis. The sorption parameters and selectivity coefficients of the Me-Ca ion exchange were determined using the Langmuir and Freundlich adsorption isotherms and two models of ion-exchange sorption based on the mass action law (a polyfunctional ion exchanger and a mixture of two ideal exchangers) for describing the relationships between the dissolved and sorbed metal forms. It was shown that simple models provided information for better understanding of the behavior of metals in sorption and ion-exchange processes, but the conclusions about the sorption of different metals in a specific soil or a specific metal in different soils based on these models can be different.  相似文献   

3.
We conducted batch experiments for ten metals [Mg, Cr(III), Fe(III), Co, Ni, Cu, Zn, Sr, Cd, Pb] and four soil samples of different composition to determine the relation of the soluble fraction (’intensity’︁) to an adsorbed or precipitated metal pool (’quantity’︁) and, thus, to investigate the buffer function of soils. The soil samples were spiked with 6 to 12 exponentially increasing metal doses added as metal nitrates. The native metal pool involved in sorption processes was characterized by an extraction with 0.025 M (NH4)2EDTA (pH 4.6). The quantity-intensity (Q/I) relations of eight metals [except Cr(III) and Fe(III)] were governed by sorption and complexation processes and can be fitted by Freundlich isotherms. Q/I relations for Cr(III) and two soils indicate a sorption maximum, which can be approximated with the Langmuir isotherm. In a calcareous soil high Cr doses induced the precipitation of a Cr oxide. The solution concentrations of Fe are primarily a function of the pH-dependent solubility of ferrihydrite. For all metals pH was the predominant factor controlling the partitioning between the solid and the liquid phase. Drastic losses in the buffer function of soils primarily occurred in the slightly acidic range. Furthermore, adsorption was also metal specific. On the basis of median Freundlich K values, adsorption increased in the order [median KF values and KF range (mg kg—1) in brackets]: Mg (2.9: 0.9—19) < Sr (4.7: 0.6—21) << Co (17.7: 1.1—143) < Zn (26.7: 1.8—301) = Ni (27.6: 2.4—120) < Cd (71: 2.5—405) << Cr(III) (329: 45—746) < Cu (352: 30—1200) < Pb (1730: 76—4110).  相似文献   

4.
The mobility, bioavailability, and environmental fate of heavy metals in soil are controlled by their adsorption onto soil minerals and solid organic matter. The adsorption is strongly affected by the presence of various low-molecular-weight organic acids. In this study, effect of hydroxamate siderophore desferrioxamine B (DFOB) on cadmium (Cd) and zinc (Zn) adsorption onto two micaceous clay minerals, muscovite and phlogopite, was evaluated in batch experiments. Results showed that the presence of DFOB diminished the adsorption of Cd and Zn onto both minerals, particularly under neutral to alkaline pH conditions. For instance, at pH 8.2, the presence of DFOB caused a decrease in the adsorption of Zn onto phlogopite by nearly 50%. The equilibrium adsorption of Cd and Zn was satisfactorily described using Freundlich isotherm. The adsorption isotherms showed that the affinity of Cd and Zn onto the minerals decreased in the presence of DFOB. For example, at pH 8.0, the presence of siderophore caused a decrease in the Freundlich adsorption isotherm coefficient KF for Zn adsorption onto muscovite and phlogopite from 4.60 to 0.07 L g-1 and from 3.56 to 0.36 L g-1, respectively. These findings confirm the potential influence of siderophore on the fate of Cd and Zn in arid soils containing substantial contributions of micaceous silicate minerals.  相似文献   

5.
Yang  Zhaoxue  Liang  Jie  Tang  Lin  Zeng  Guangming  Yu  Man  Li  Xiaodong  Li  Xuemei  Qian  Yingying  Wu  Haipeng  Luo  Yuan  Mo  Dan 《Journal of Soils and Sediments》2018,18(4):1530-1539
Purpose

Heavy metal pollution in soils has become a global environmental concern. The combination of biochar and compost has already been proved to be an attractive method in contaminated soil. The objective was to study the sorption-desorption characteristics of Cd, Cu, and Zn onto soil amended with combined biochar-compost.

Materials and methods

In this study, the soil was amended with combinations of biochar and compost with different ratios at 10% (w/w). To determine the sorption-desorption behaviors of heavy metals by biochar-compost amendment with different ratios, we determine the effects of different ratios on soil properties and use batch experiments to investigate sorption-desorption behaviors of Cd, Cu, and Zn.

Results and discussion

The results show that the Langmuir and Freundlich model can well describe the adsorption isotherm of Cd, Cu, and Zn in the soils with or without biochar-compost combinations. The incorporation of amendment combinations into soil significantly promotes the sorption affinity of soil on metals. The sorption capacity of Cd and Zn was improved as the compost percentage rose in biochar-compost more likely due to the increase of organic matter and available phosphorus, while that of Cu was stronger with 10 and 20% biochar addition in biochar-compost combinations likely as the result of the formation of new specific adsorption sites and the mobile Cu adsorption in compost after adding a certain amount of biochar in amendment mixtures. Additionally, a certain proportion of biochar applied into amendment mixtures could suppress desorption of Cd and Cu by pH change, and the Zn desorption rate gradually decreased as the compost ratio increased in amendment mixtures.

Conclusions

The results indicated that the various ratios between biochar and compost have a significant effect on sorption-desorption of metals in soil, which helps us consider the effective combination of biochar and compost in soil.

  相似文献   

6.
The present study investigated the impact of long‐term soil management on the metal retention capacity of soil. We examined the sorption behaviour of Cu, Cd and Zn in soils and in the various particle‐size fractions of these soils, which had been amended with farmyard manure, mineral fertilizers or were fallow for 38 years in a long‐term field experiment. The soils investigated contained different amounts and origins of organic matter and differed in soil pH, but the mineral phase showed less response to the different soil managements. Batch adsorption and desorption experiments as well as a sequential fractionation schema, which defines seven geochemical fractions, were used to investigate the retention properties of soil. Sequential extraction was conducted with original as well as with metal‐spiked soils. Results showed that amounts of Cu, Cd and Zn retained differed by a factor of more than 3 among the treatments in the long‐term field experiment, when a massive concentration of metal was added to soil. An increased sorption on smaller particle size fractions occurred (clay ≫ silt > fine sand ≥ coarse sand) due to the larger surface area as well as the greater carbon content in the smaller fractions. Soil sorption behaviour in another long‐term field experiment was estimated based on the present particle‐sorption data. Differences in the sorption behaviour were related to differences in soil mineralogy and amounts of Fe‐ and Mn‐oxides. Fractionation of the original and the metal‐spiked soil underlined the contribution of organic matter to sorption capacity (sequence: Cu ≫ Cd > Zn). Different organic matter contents and a different soil pH considerably changed the amounts of metals in the defined geochemical fractions. Freshly added Cu, Cd and Zn ions were found mainly in more mobile fractions. In contrast, metals in non‐spiked soils appeared in less‐mobile fractions reflecting their long‐term sorption behaviour.  相似文献   

7.
Abstract

The effect of bacterial inoculation of Rhizobium fredii HN01 on the immobilization and speciation of Cu, Zn, and Cd was studied in Red and Cinnamon soil which are typical Chinese soils. The soil was mixed with bacterial suspension for one week followed by an immobilization of each heavy metal for another week. The total binding and fractionation of heavy metals in soils were analyzed. As compared with the control, the retention of total Cu, Zn, and Cd in Red soil increased by 28, 16, and 28%, respectively, in the presence of rhizobia. The amount of exchangeable, NH4OAc-extractable, Mn oxides-bound and organic matter-bound Cu increased by 23–123%. There were significant decrease of exchangeable Cu and marked increases of NH4OAc-extractable and Mn oxide-bound Cu in Cinnamon soil with the presence of rhizobial cells, although no changes for the total retention of Cu were observed. The amount of exchangeable Zn in Red soil-rhizobia composite was 20% greater than that of the no-rhizobia soil. Addition of rhizobia also increased exchangeable Cd and specifically-adsorbed Cd by 25 and 93%, respectively, in Red soil. No considerable differences were found for the total immobilization of Zn and Cd as well as their distribution in various solid fractions of Cinnamon soil in the absence and presence of rhizobial cells. In terms of soil components, it is assumed that bacterial biomass had a relatively less impact on the species of heavy metals bound with Fe oxides. Results suggested that the retention and speciation of heavy metals in soil are governed largely by the interactions of bacteria with various inorganic and organic soil constituents. The data are useful in understanding the impact of microorganisms on the behavior, mobility and transformation of heavy metals in soil environments.  相似文献   

8.
Abstract

The simultaneous incorporation of heavy metals into the soil is still a matter of great concern. Interaction (competitive sorption) between these metals and the soil solid phase may result in a deterioration of soil quality which relies basically on amounts of alkaline cations saturating soils sorptive complex. Results of this study indicate that Pb, Cu, C d, and Zn have induced solution pH decreases which were more intensive at highest metal loading rates. Partition parameters (Kd)-based sequences showed that Pb and Cu were more competitive than Cd and Zn and the overall selectivity sequence followed: Pb > Cu > Cd > Zn. Metal loadings and their competitive sorption have led to a strengthened displacement of alkaline cations (i.e. Ca2+, Mg2+, K+, Na+), especially of Ca2+ as a factor “stabilizing” soil sorptive complex. Such metals impact jointly with soils acidification are of great environmental concern since tremendous amounts of alkaline cations (especially Ca2+) may be potentially leached out, irrespective of the degree of soil contamination, as evidenced in the current study. High and positive ΔG values implied that the studied soils were characterized by generally low concentrations of exchangeable potassium which required high energy to get displaced (desorbed). Further studies on heavy metal uncontaminated or contaminated areas should be undertaken to provide with data which should be used for predictions on changes related to soil buffering capacity as impacted by heavy metal inputs.  相似文献   

9.
Cadmium, Ni and Zn ions in aqueous solution were allowed to react with clay fractions (< 2 μm) separated from soils with a wide range of mineralogical composition and properties. Sorbed metals were separated into two components, termed specifically and non-specifically bound, by a controlled washing procedure using 10?2M Ca(NO3)2.Sorption reactions were characterized by Δ pH50 values, by shapes of adsorption curves, and by measuring separation factors and distribution coefficients under prescribed conditions. Three reaction types were identified, viz., (i) those associated with soil adsorbing surfaces dominated by iron oxides; these appear to be controlled by mechanisms which involve metal-ion hydrolysis and result accordingly in relative sorption affinities of Zn > Ni > Cd; (ii) those associated with organic surfaces for which metal-ion hydrolysis was of little significance and little difference in metal-ion affinity was evident; at lower pH-values, Cd and Ni were somewhat preferred over Zn, with the converse at higher pH-values; (iii) those associated with 2:1 layer lattice silicates which exhibit greater preference for Zn, i.e., Zn >> Ni, Cd and higher affinities for each metal at lower pH-values (< 5) than is shown by clays dominated by iron oxides. There was also evidence of greater relative affinity for Ni shown by clay fractions dominated by fine kaolinites when compared with other clays.This investigation has shown that a range of sorption processes are involved in reactions of heavy metals with soils. We caution against undue emphasis on any particular sorption process in developing theoretical sorption models as a basis of understanding and solving problems connected with pollution and plant nutrition; we also stress the need for studies with colloids separated from soils in conjunction with those using synthetic adsorbents as models for soil constituents.  相似文献   

10.
为探讨有机种植与常规种植两种不同种植方式对土壤重金属含量和污染特性的影响,本文在华北5个地区选取典型的有机蔬菜和有机小麦种植基地及附近相似条件的常规种植地块,比较了土壤中Cu、Zn、Pb、Cr、Cd、As共6种重金属含量的差异,并采用不同评价方法对不同种植方式下土壤中重金属的污染程度进行了评价。结果表明:与常规种植相比,有机种植减轻了土壤酸化和盐渍化,提高了土壤有机质含量和阳离子交换量,在一定程度上有利于降低土壤中重金属的生物有效性。与土壤背景值相比,所有调查地区的土壤重金属均有不同程度的增加和积累。与常规种植相比,有机种植模式能有效降低土壤中Cd、Cr含量,有机小麦种植地块因长期施用大量有机肥导致土壤中Cu、Zn、As大量富集;而常规温室菜田同时施用大量的有机肥、化肥及农药,土壤中Cu、Zn、As富集的风险比有机种植模式高;露天蔬菜有机种植地块土壤中Cu、Zn、As含量与常规地块差异不明显。综合污染指数评价结果显示,调查地区土壤均属于轻污染程度,主要贡献因子为Cd、Cu、Zn,有机种植降低了土壤中重金属的综合污染水平;地累积指数法评价结果表明,调查地区处于无污染到中等污染水平,最明显的污染元素是Cd,有机种植降低了土壤中重金属污染的程度和风险;潜在生态危害指数评价结果表明,所调查地块存在轻微潜在生态风险,其中产生较大生态危害的是Cd,表现出轻微生态危害程度。本研究表明,有机种植减轻了土壤中重金属综合污染水平和污染风险,并减轻了土壤重金属的潜在生态危害。  相似文献   

11.
Abstract

Laboratory experiments were carried out to evaluate lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) sorption‐desorption by three soils of contrasting characteristics. Talamanca (silt loam, montmorillonite, Calcic Haploxeralfs), Mazowe (clay, kaolinite, Rhodic Kandiustalf), and Realejos (sandy silt loam, allophane, Typic Hapludands). A second objective was to study the effect of nitriloacetic acid (NTA) on the sorption process. The Talamanca soil, which had a native pH of 6.4 and presented the highest effective cation exchange capacity (ECEC), sorbed more of each of the metal tested than did the other two soils. When the other two soils were compared metal sorption was also related to pH and ECEC. The very low sorption capacity showed by Realejos may be attributed to the low net surface negative charge density of this soil, arising from its allophanic nature. A common feature of the three soils was the relative strong sorption of both Pb and Cu relative to Cd and Zn with Pb showing the highest sorption levels. The selectivity sequences of metals retention were Pb>Cu>Zn>Cd for Talamanca soil, Pb>Cu>Zn≈Cd for Mazowe, and Pb>Cu>Cd>Zn for Realejos. Metal desorption values were low. The order of metal desorption (Cd≈Zn>Cu>Pb) was the same for the three soils studied. Quantitative differences observed in the extractability of the sorbed metals between the soils (Realejos>Mazowe>Talamanca) indicated that soil properties which enhanced metal sorption contributed at the same time to slow down the backward reaction. The addition of NTA to the soil suspension significantly depressed metal sorption by the three soils investigated. Compared with the free ligand system Pb, Cu, Zn, and Cd sorption in the presence of NTA decreased roughly 50%.  相似文献   

12.
Recently, application of sewage sludge or effluents resulted in raising the concentrations of some heavy metals in some agricultural soils of Iran. Experiments were conducted to evaluate the competitive adsorption of lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) on six calcareous soils. Adsorption characteristics were evaluated by equilibration of 1 g of each soil sample with 20 ml of 0, 10, 20, 30, 40, 50, 100, or 200 mg L?1 of their nitrate solutions and 0.01 M NaNO3 as background electrolyte. Furthermore, solid/liquid distribution coefficients (Kd) of studied metals, as an index of soil capacity to resist a change of the soil solution concentration, were calculated. Results indicated that amounts of adsorbed Pb, Cu, Zn, and Cd increased with increase in their concentrations in the contact solutions, but this trend was more pronounced for Pb and Cu than the others. For all studied soils and metals, Langmuir equation described the adsorption behavior fairly well. Furthermore, Langmuir and Freundlich equation parameters were positively correlated to cation exchange capacity (CEC) and smectite contents; whereas, they were negatively correlated to sand content. Considering Kd values, the selectivity sequence of the metal adsorption was Pb > Cu > Zn > Cd. Therefore, the risk of leaching and also plant uptake of Zn and Cd will be higher as compared to those of the other elements.  相似文献   

13.
Background, aim, and scope  Ongoing industrialization has resulted in an accumulation of metals like Cd, Cu, Cr, Ni, Zn, and Pb in paddy fields across Southeast Asia. Risks of metals in soils depend on soil properties and the availability of metals in soil. At present, however, limited information is available on how to measure or predict the directly available fraction of metals in paddy soils. Here, the distribution of Cd, Cu, Cr, Ni, Zn, and Pb in 19 paddy fields among the total, reactive, and directly available pools was measured using recently developed concepts for aerated soils. Solid-solution partitioning models have been derived to predict the directly available metal pool. Such models are proven to be useful for risk assessment and to derive soil quality standards for aerated soils. Material and methods  Soil samples (0–25 cm) were taken from 19 paddy fields from five different communities in Taiwan in 2005 and 2006. Each field was subdivided into 60 to 108 plots resulting in a database of approximately 3,200 individual soil samples. Total (Aqua Regia (AR)), reactive (0.43 M HNO3, 0.1 M HCl, and 0.05 M EDTA), and directly available metal pools (0.01 M CaCl2) were determined. Solid-solution partitioning models were derived by multiple linear regressions using an extended Freundlich equation using the reactive metal pool, pH, and the cation exchange capacity (CEC). The influence of Zn on metal partitioning and differences between both sampling events (May/November) were evaluated. Results  Total metals contents range from background levels to levels in excess of current soil quality standards for arable land. Between 3% (Cr) and 30% (Cd) of all samples exceed present soil quality standards based on extraction with AR. Total metal levels decreased with an increasing distance from the irrigation water inlet. The reactive metal pool relative to the total metal content is increased in the order Cr << Ni = Zn < Pb < Cu < Cd and ranged from less than 10% for Cr to more than 70% for Cd. Despite frequent redox cycles, Cd, Pb, and Cu appear to remain rather reactive. The methods to determine the reactive metal pool in soils yield comparable results, although the 0.43 M HNO3 extraction is slightly stronger than HCl and EDTA. The close correlation between these methods suggests that they release similar fractions from soils, probably those reversibly sorbed to soil organic matter (SOM) and clay. The average directly available pool ranged from less than 1% for Cu, Pb, and Cr to 10% for Ni, Zn, and Cd when compared to the reactive metal pool. For Cd, Ni, Zn, and to a lesser extent for Cu and Pb, solid-solution partitioning models were able to explain up to 93% (Cd) of the observed variation in the directly available metal pool. CaCl2 extractable Zn increased the directly available pool for Ni, Cd, and Cu but not that of Pb and Cr. In the polluted soils, the directly available pool was higher in November compared to that in May. Differences in temperature, rainfall, and changes in soil properties such as pH are likely to contribute to the differences observed within the year. The solid-solution partitioning model failed to explain the variation in the directly available Cr pool, probably because Cr is present in precipitates rather than being adsorbed onto SOM and clay. Despite obvious differences in parent material, source of pollution, climate, and land use, solid-solution partitioning of Cd in paddy fields studied here was similar to that in soils from Belgium and the Netherlands. Discussion  To assess risks of metals in soils, both analytical procedures as well as models are needed. The three methods tested here to determine the reactive metal pool are highly correlated and either of these can be used. The directly available pool was predicted most accurately by the 0.43 M HNO3 method. The similarity of metal partitioning in paddy soils compared to well-drained soils suggests that changing redox conditions in paddy fields have a limited effect on the geochemical behavior of metals like Cd, Ni, and Zn. Small but significant differences in the directly available metal pool during the year suggest that redox cycles as well as differences in rainfall and temperature affect the size of the directly available metal pool. The large observed spatial heterogeneity of contaminant levels requires ample attention in the setup of soil monitoring programs. Conclusions  The directly available pool (0.01 M CaCl2) of Cd, Zn, and Ni in paddy fields can be described well by an extended Freundlich model. For Cu and Pb, more information on dissolved organic carbon is needed to obtain a more accurate estimate of the directly available pool. Recommendations and perspectives  Soil testing protocols and models used in risk assessment consider the availability of pollutants rather than the total metal content. Results from extensive testing indicate that approaches developed for nontropical regions can be applied in paddy fields as well for metals like Cd, Ni, and Zn. This study shows that the chemical behavior under drained conditions in paddy fields is comparable to that observed in soils across the European Union, which allows regions with large scale soil pollution including Taiwan to apply such concepts to derive meaningful experimental protocols and models to assess risks of metals in soils.  相似文献   

14.
The influence of a humic deposit (Gyttja, G) alone (applied at 25 kg ha−1) and in combination with mineral fertilizer (G + NP) on soil organic matter content, pH, electrical conductivity, total N content, calcium carbonate content, enzyme activities (urease, β-glucosidase, arylsulphatase, and alkaline phosphatase), microbial biomass C, soil respiration, and availability of Cd, Pb, Ni, and Zn was examined through a 180-day incubation period and compared with the behavior of no treatment (control) and NP treatment. A significant increase in organic matter content was observed in soils treated with G + NP. Compared with G and NP alone, the G + NP-amended soils showed higher values of the selected microbiological properties.Diethylenetriaminepentaacetic-acid-extractable Cd, Pb, Ni, Cu, and Zn increased significantly with increasing rates of NP, but the addition of G + NP resulted in a considerable decrease in the amount of extractable metals during the incubation period (P<0.05). Based on these results, it can be concluded that the organic matter applied in the gyttja led to an increase in the metal adsorption capacity of the amended soils. This material can be used to reduce the availability and mobility of heavy metals in the soils intensively amended with mineral fertilizers. A combination of G with NP can, therefore, be considered as an alternative approach in the applications of organomineral fertilization.  相似文献   

15.
Abstract

Environmental changes and management practices which alter soil properties may affect the capacity of soils to sorb trace metals, such as copper (Cu), zinc (Zn), and cadmium (Cd), and thus influence the bioavailability and leach ability of the metals. Two agricultural soils were treated to partially oxidize organic matter and to decrease soil pH for evaluating the effects of acidification and organic matter oxidation on trace metal sorption onto soils. For the one soil with a pH value of 6.74 and organic carbon (C) content of 46.9 g‐kg‐1, loss of 11% of its organic matter reduced by 97, 72, and 62% the original sorption capacity for Cu, Zn, and Cd, respectively, while the corresponding values caused by acidifying the soil one pH‐unit were 32, 16, and 29%. For the another soil with a pH of 4.69 and organic C content of 16.3 g‐kg‐1, a decrease in pH by one unit resulted in a loss of 43, 21, and 52% of the sorption capacity for Cu, Zn, and Cd, respectively.  相似文献   

16.
We assessed cadmium (Cd) and zinc (Zn) availability when applying reactive phosphate rock (RPR) in combination with lime and chicken manure on Indonesian acidic upland soils. Maize plants were grown on unamended soil and soils treated with several combinations of 2 tons dolomite ha–1, 2 tons of chicken manure ha–1, 1 ton ha–1 of RPRL (reactive phosphate rock containing 4 mg Cd kg–1 and 224 mg Zn kg–1), and 1 ton ha–1 of RPRH (RPR containing 69 mg Cd kg–1 and 745 mg Zn kg–1). In addition to its positive effect on plant yield, application of RPR in combination with chicken manure did not result in toxic Cd concentrations. Although liming is effective to reduce plant Cd concentrations, it results in more soil Cd accumulation and more plant Zn deficiency. Cadmium and Zn concentrations in shoots and grains can be predicted well from amounts extracted from the soil by 0.5 M ammonium (NH4) acetate + 0.02 M ethylenediaminetetraacetic acid (EDTA) at pH 4.65.  相似文献   

17.
The assessment of heavy metals in spinach (Spinacia oleracea) grown in sewage sludge–amended soil was investigated. The results revealed that sewage sludge significantly (P < 0.01) increased the nutrients and heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn) in the soil. The contents of metals were found to be below the maximum levels permitted for soils in India. The most agronomic performance and biochemical components of S. oleracea were found at 50% concentrations of sewage sludge in both seasons. The contents of Cd, Cr, Cu, Mn, and Zn in S. oleracea were increased from 5% to 100% concentrations of sewage sludge in both seasons. The order of contamination factor (Cf) of different heavy metals was Mn > Cd > Cr > Zn > Cu for soil and Cr > Cd > Mn > Zn > Cu for S. oleracea plants after application of sewage sludge. Therefore, use of sewage sludge increased concentrations of heavy metals in soil and S. oleracea.  相似文献   

18.
Abstract

To evaluate contributions of organic matter, oxides, and clay fraction to copper (Cu) adsorption in six characterized soils, adsorption isotherms and distribution coefficients were obtained by a batch experimental method. Copper adsorption isotherms from untreated soil, organic matter removed from samples, and organic‐matter‐ and oxide‐removed samples were compared with curve patterns and correlated to Langmuir and Freundlich models. Copper sorption data on untreated soils described L or H‐curves, whereas in soils deprived of any component, their curves were S‐type. Distribution coefficients allowed knowing Cu adsorption capacity of untreated soil and of organic matter, oxides, and clay fraction. Soil organic matter is the main component that affects Cu adsorption as long as soil pH is near neutrality. At acid pH, oxides are the main component that affects Cu adsorption, although to a much smaller extent than organic matter near neutral conditions. Soil pH is the main soil factor that determines Cu adsorption.  相似文献   

19.
Background  Regional soil environmental quality is a hotspot and difficulty in the environmental sciences for the spatial variability of pollutants and the relationship between them. Beijing, the capital of China, has been undergoing a rapid economical development during the past three decades, and thus might encounter the same issues as the developed countries. However, there is little information about the soil environmental quality of Beijing, especially at the regional scale. The real soil environmental situation of heavy metals remains unknown, even less the sources of possible pollutants. Objectives  The main objectives were to identify the spatial variability and main sources of heavy metals in Beijing soils by conducting multivariate statistical analyses, including geostatistical analysis assisted with GIS tools. These results will contribute to the establishment of the soil quality baseline and the management of regional environment. Materials and Methods  Seven hundred and seventy-three samples of topsoils (0–20 cm) were collected from all over Beijing, China. The samples were digested with HNO3 and H2O2. The concentrations of Cr, Cu, Ni, Pb and Zn were analyzed with a FL-AAS and those of Cd with a GF-AAS. The concentrations of As were determined with AFS-2202. Principal component analysis (PCA) and partial correlation analysis (CA) were used and geostatistics was conducted for the data processing. Results  Concentrations of topsoil As, Cd, Cr, Cu, Ni, Pb and Zn in the Beijing area were measured and contour maps were constructed to describe the metals’ spatial distribution. Except for the background effect of the soils, anthropogenic factors made the soil heavy metal concentrations increase, especially in the center of the city. Combined with the PCA results, it was found that vehicle exhaust and smelters were the main sources of soil heavy metals. Pedogenic factors were also controlling the spatial features of metals. Discussion  Combined with the results of PCA, 7 heavy metals could be divided into 4 factors. F1 was the metals, i.e., Cu, Pb, Zn, mainly controlled by the human activities. Cr and Ni was in F2, Cd in F3 and As in F4. These 3 factors might be controlled by the soil parent materials. Concentrations of 7 heavy metals were comparable with the first level of environmental quality standard for soils of China and much lower than the second level of national standard for soils. Conclusion  The heavy metal concentrations in the topsoil of Beijing are mostly comparable with the background values, especially for As, Cr and Ni. In the city center of Beijing, Cu, Pb and Zn had a high concentration of distribution. The spatial features of As, Cr and Ni are mainly controlled by pedogenic factors, whereas Cd, Cu, Pb and Zn are controlled by anthropogenic and parent factors. Traffic and smelting contribute greatly to the increase of Pb, Zn and Cu in the soil, especially in the center of the city. Landfill may have also affected the soil quality around it. Recommendation  Different factors were controlled by parent materials, which might be related to the different soil minerals. Further research should be conducted in Beijing to elucidate the relationship between heavy metals and soil minerals. ESS-Submission Editor: Chengron Chen, PhD (c.chen@griffith.edu.au)  相似文献   

20.
Soil contamination by heavy metals is a problem in agricultural irrigation systems.To assess the accumulation and sources of heavy metals in the Yongji irrigation district of the Hetao area,Inner Mongolia,China,195 soil samples from 39 sites(0–100 cm)were collected,and Zn,Cu,Pb,Cr,and Cd concentrations were analyzed.The mean concentrations were 107.17,32.48,12.31,53.53,and 0.22 mg kg-1,respectively,with no significant differences between soil depths(P>0.05).Concentrations of Zn,Cu,and Cd were higher than the background levels,with moderate accumulation;the contamination factor(CF)values were 1.9,1.7,and 1.9,respectively,and the geoaccumulation index(Igeo)was>0.Concentrations of Pb and Cr were lower than,or close to,the background levels(CF<1,Igeo<0),indicating that they originated from a natural source.The monomial potential ecological risk index(Eri)for Zn,Cu,Pb,and Cr was low;Eri for Cd was 55.73,implying a moderate risk.The grade of potential ecological risk index of the five heavy metals(RI)was low,declining from south to north.The studied soils were contaminated with Zn,Cu,and Cd;principal component(PC)analysis implicated the enrichment of Cd and partial Cu(high loading in PC 2)was related to agricultural activities;Zn and partial Cu,closely associated with PC 3,may have originated from irrigation water from the Yellow River.Future agricultural development should focus on fertilizer and pesticide application and the quality of irrigation water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号