首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Two experiments were conducted to evaluate the addition of astaxanthin from red yeast, Xanthophyllomyces dendrorhous, in the diets of goldfish, Carassius auratus. The first was designed to investigate the distribution of pigments in different tissues of goldfish and the effect of astaxanthin in the diet. The carotenoid concentration of tissues was not homogenous. The content of pigments in fish caudal fin was the highest followed by those of scales and head. Flesh had the least carotenoid deposition. Fish fed the diet containing 60 mg/kg astaxanthin had increased concentration of pigment in its head (22.6%), scales (45.5%), flesh (31.0%), and fin (21.2%), compared to fish fed basal diet (P < 0.05). Sixty parts per million astaxanthin had no effect on the weight gain and survival rate. High‐performance liquid chromatography analysis showed astaxanthin in its esterified form in goldfish. The second experiment was aimed at determining the dietary level of astaxanthin that improved color of goldfish. Goldfish were fed the same diet supplemented with 0, 10, 20, 40, 60, and 80 mg yeast astaxanthin/kg for 60 d. The deposition of carotenoids in goldfish fed diets supplemented with astaxanthin increased significantly (P < 0.05) after 15 d of feeding compared to that of the fish fed the diet without astaxanthin, but the effect of dosage of astaxanthin in the diets on the color of goldfish was not completely evident until Day 60 (P < 0.05). During the period of 15–45 d, the deposition of pigments in fish did not increase significantly (P > 0.05) in any treatment with the exception of the diet with 40 mg yeast astaxanthin/kg.  相似文献   

2.
This study aimed to evaluate the effect of lutein supplementation on growth, survival and skin pigmentation for goldfish juveniles. Four diets enriched with different carotenoid sources (lutein, astaxanthin, canthaxanthin and a combination of lutein and canthaxanthin) were compared to a control diet without carotenoid supplementation. The carotenoid inclusion level was standardized at 50 mg kg‐1 in all treatments. 240 goldfish juveniles (1.07?0.57 g) were cultivated in 30 aquariums (30L) during 84 days. The experimental design was completely randomized with five treatments and six replicates. The dietary inclusion of carotenoid pigments did not affect the growth and feeding efficiency of goldfish juveniles. Supplementation with lutein presented higher survival values when compared to the other treatments. Astaxanthin and canthaxanthin supplementation increased the concentration of carotenoids on the skin of goldfish juveniles in relation to the control treatment. For the fish fed with the diet containing lutein, the skin pigmentation was as efficient as astaxanthin and canthaxanthin, but did not differ from the control and combined treatment (canthaxanthin + lutein). The lutein supplementation (50 mg kg‐1) improved survival and promoted efficient carotenoid pigmentation on the skin of goldfish juveniles.  相似文献   

3.
Feeds formulated to contain 75 ppm astaxanthin or canthaxanthin were fed to Artic char (Salvelinus alpinus, Labrador strain) for 15 weeks. After 9-15 weeks of feeding, the level of carotenoids in fillets of fish exceeded 4 mg/kg, which is considered sufficient for visual colour impression on the fillets. Significant correlations were observed between length of time the cartenoid-containing diets were administered and total carotenoid content of both flesh and skin for both the astaxanthin and canthaxanthin-fed fish. The Hunter a, redness, colour values were correlated with total carotenoids content in the flesh for both astaxanthin-fed and canthaxanthin-fed Artic char.  相似文献   

4.
为探讨雨生红球藻(Haematococcus pluvialis)对七彩神仙鱼(Symphysodon haraldi)增色效果以及对机体抗氧化力的影响,分别用添加0(对照组)、3.33、6.66、9.99、13.32和16.65 g/kg雨生红球藻(折算成虾青素添加量分别为0、100、200、300、400和500 mg/kg饲料)的饲料饲喂七彩神仙鱼6周,测定七彩神仙鱼皮肤、鳍条、肌肉和肝脏中的虾青素含量、体表的三刺激值和肝脏总抗氧化能力(T-AOC)和谷胱甘肽(GSH)含量。结果显示:饲料中添加雨生红球藻可以显著提高七彩神仙鱼的增重率,当添加量为9.99 g/kg其增重率最大。七彩神仙鱼皮肤、鳍条、肌肉和肝脏虾青素含量随着雨生红球藻添加量的增加而升高,当雨生红球藻添加量超过6.66 g/kg,各组织中虾青素的含量趋于稳定。随着雨生红球藻添加量增加,皮肤L*值(亮度)下降、而a*值(红度)和b*值(黄度)升高,皮肤中虾青素含量与三刺激值间的相关性均达到高度相关,并与a*值的相关性最高。随着雨生红球藻添加量的增加,七彩神仙鱼肝脏的T-AOC和GSH的含量也逐渐升高。结果表明,在饲料中添加雨生红球藻可提高七彩神仙鱼的增重率,提高七彩神仙鱼皮肤虾青素含量,改善七彩神仙鱼体色,增强机体的抗氧化能力;雨生红球藻的添加量建议为6.66~9.99 g/kg(虾青素含量为200~300 mg/kg)。  相似文献   

5.
A 10‐week feeding trial was conducted to evaluate the effect of dietary vitamin E and astaxanthin on growth performance, skin colour and antioxidative capacity of large yellow croaker Larimichthys crocea. Six practical diets were formulated in a 2 × 3 factorial design to supplement with two levels of astaxanthin (25 and 50 mg/kg) and three levels of vitamin E (0, 120 and 800 mg/kg). The results showed that both the highest final body weight and specific growth rate were found in fish fed diets with 120 mg/kg vitamin E supplementation. No significant differences were found in survival rate, feed conversion ratio and protein efficiency ratio among all the treatments (> .05). Skin lightness (L*) was not significantly affected by dietary treatments (> .05). Ventral skin redness (a*) of fish fed diet with 25 mg/kg astaxanthin and 0 mg/kg vitamin E supplementation was significantly lower than that of fish fed with other diets. Yellowness (b*) and carotenoid contents both in the dorsal and in the ventral skin were found to be significantly increased with increasing dietary astaxanthin or vitamin E (< .05), but no significant interactions were found (> .05). The vitamin E content in liver reflected the dietary vitamin E content. Level of vitamin E content in fish fed diets with 800 mg/kg vitamin E supplementation was significantly higher than that in fish fed with the other diets (< .05). Liver superoxide dismutase activity and thiobarbituric acid reactive substance levels were found to be decreased with increasing dietary astaxanthin and vitamin E levels, respectively. Levels of reduced glutathione in the liver were found to be increased with increasing dietary vitamin E contents. The total antioxidative capacity in the liver was found to be decreased with increasing dietary vitamin E or astaxanthin contents. In conclusion, adequate dietary vitamin E can improve the growth of large yellow croaker, and the supplementation of astaxanthin and vitamin E benefited the skin coloration and antioxidative capacity of large yellow croaker.  相似文献   

6.
A feeding experiment was carried out to determine the efficiency of different commercial sources, chemical forms and levels, of dietary astaxanthin, to appropriately pigment the red porgy (Pagrus pagrus) skin. According to this, total carotenoid content, profiles and chemical forms present in the skin were determined. In order to establish the potential for antioxidant protecting role of astaxanthin supplemented diets, peroxide levels and lipid composition of skin were also determined.

Red porgy alevins were fed six dietary treatments in triplicate; a basal diet (B) without carotenoids; two diets (N25 and N50) formulated to supply either 25 or 50 mg kg− 1 of an esterified source of astaxanthin (Haematococcus pluvialis, NatuRose™); two diets (CP25 and CP50) with either 25 or 50 mg kg− 1 of unesterified astaxanthin (Carophyll® Pink); and a positive control diet (B + S) proved as a successful pigmenting-diet in previous experiences (B + S, 88% basal diet:12% frozen shrimp) [Cejas, J., Almansa, E., Tejera, N., Jerez, S., Bolaños, A., Lorenzo, A., 2003. Effect of dietary supplementation with shrimp on skin pigmentation and lipid composition of red porgy (P. pagrus) alevins. Aquaculture 218, 457–469].

All fish fed carotenoid supplemented diets displayed a pink-coloured skin after 4 months of feeding in contrast to the greyish appearance displayed by fish fed the basal diet not supplemented with carotenoids (B). Furthermore, astaxanthin diesters were the major carotenoid in the skin of pink fish. A second carotenoid, tentatively identified as tunaxanthin diester, was also detected. The best results in terms of skin natural reddish hue, total carotenoid and astaxanthin contents were found by using the esterified forms of dietary astaxanthin (N25, N50 and B + S). Interestingly, the lowest levels of lipid peroxides were found in the fish fed these three treatments. However, no effect of treatment on lipid composition was found. In conclusion, red porgy alevins are able to efficiently utilise dietary natural or synthetic astaxanthin, and deposit this pigment in its esterified form to acquire an acceptable pink-coloured skin compared to that of the wild fish.  相似文献   


7.
The aim of this work was to investigate the effect of different carotenoid sources/concentrations and temperature on goldfish (Carassius auratus) skin pigmentation. In the first trial (trial A), the effect of carotenoid source (natural – microalgae Chlorella vulgaris and synthetic – Carophyll Pink) and carotenoid concentration (45, 80 and 120 mg pigment kg?1 diet) was tested. Six homogeneous duplicate groups of juvenile goldfish (7.4 g) were fed, for 5 weeks, one of the diets containing 45, 80 or 120 mg of total pigments of C. vulgaris biomass or synthetic astaxanthin per kg of diet (Cv45, Cv80, Cv120, Ax45, Ax80, Ax120), respectively. In trial B, the effect of water temperature on skin pigmentation was studied. Five homogeneous duplicate groups of 25 goldfish each (5.2 g) were fed diet Ax45 over 9 weeks, to test the following temperatures: 22, 24, 26, 28 and 30 °C. At the end of both trials, samples of skin along the dorsal fin were withdrawn for subsequent analysis of total carotenoid content, intensity of colour, red and yellow hue and visual observation. The best carotenoid concentrations were achieved with astaxanthin diets. There was a tendency to an overall improvement of colour parameters (L and b) in fish fed diets with high levels of C. vulgaris. The results indicated that the best temperature range to maximize skin pigmentation was 26–30 °C.  相似文献   

8.
New cultured ornamental fish namely Lake Kurumoi rainbowfish Melanotaenia parva (Allen) run into reduced of colour performances when reared in the aquaria, consequently, fish feed must be added with carotenoids as a pigment source. The aim of this study was to evaluate the digestibility, growth and pigmentation of astaxanthin, canthaxanthin and lutein in diet. Apparent digestibility coefficients (ADC) of dry matter, lipid, protein, carotenoids, growth and pigmentation were studied in twenty fish after 14 and 56 days of observation. The single‐dose supplementation of 100 mg/kg of astaxanthin, canthaxanthin, or lutein diets on fish was fed by apparent satiation. The basal diet without carotenoids was used as control. The result showed that the ADC of carotenoids of test diets was higher compared to control. Fish fed astaxanthin diet had higher survival rate (96.67 ± 2.89%), colour measurements of lightness (57.60 ± 7.46%), a*‐values (4.66 ± 1.20), total carotenoids content in skin (33.75 ± 5.02 mg/kg) and muscle (2.16 ± 0.74 mg/kg). Astaxanthin also increased the growth after 14 days (2.00% ± 0.19%/days) but there was no significantly different at the end of experiment. The yellowish‐orange colour performance was more rapidly achieved by fish fed astaxanthin diet after 28 days experimentation. These values suggested that dietary carotenoids were required and astaxanthin diet was superior to other diets for skin pigmentation of Lake Kurumoi rainbowfish.  相似文献   

9.
The optimal concentration of a panel of individual and combined carotenoid sources on skin pigmentation in fancy carp was investigated by nine experimental diets that were formulated and supplemented with astaxanthin at 25 mg kg?1, lutein at 25 and 50 mg kg?1, β‐carotene at 25, 50 and 75 mg kg?1, and lutein combined with β‐carotene at 25 : 25 and 50 : 50 mg kg?1, while a diet without supplemented carotenoid served as a control. The results showed that serum TC of fish fed diets containing supplemented with lutein plus β‐carotene at 25 : 25; 50 : 50 mg kg?1 and lutein 50 mg kg?1 diet were higher than the other treatments (P ≤ 0.05). Serum TC of the respective treatments was 6.2 ± 2.0, 7.8 ± 3.3 and 7.3 ± 1.9 μg mL?1 serum, respectively. Fish fed diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg?1 and lutein 50 mg kg?1 diet had serum astaxanthin concentrations similar to fish fed the diet with astaxanthin alone at 25 mg kg?1. Serum astaxanthin concentrations was 0.7 ± 0.01, 0.9 ± 0.01, 0.4 ± 0.02 and 1.7 ± 0.18 μg mL?1 serum, respectively. The chromaticity of fish body skin of red and white position was assessed by colourimetry using the CIE L*a*b (CIELAB) system. Pigmentation response of skin redness of fancy carp fed with diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg?1 and lutein 50 mg kg?1 were higher than other treatments (P ≤ 0.05) but they were similar to fish fed with 25 mg kg?1 astaxanthin diet. The redness (a* values) of fish fed diets with diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg?1 and lutein 50 mg kg?1 were 28.3 ± 0.53, 29.9 ± 1.38, 28.8 ± 3.95 and 28.5 ± 2.49, respectively. After 3 weeks of feeding the experimental diets, the fish fed on a diet without carotenoid supplement for one week demonstrated that the same three groups still retained their redness and had an overall tendency to improve skin colouring. Finally, concentrations 50 mg kg?1 of lutein, or the combination of lutein and β‐carotene at 25 : 25 mg kg?1 showed the highest efficiency for improving skin pigmentation and redness of skin.  相似文献   

10.
This study examined the effects of dietary esterified astaxanthin concentration on coloration, accumulation of carotenoids, and the composition of carotenoids over time in the skin of Amphiprion ocellaris. Juveniles of 30 days-post-hatch were fed 40, 60, 80, or 160 mg esterified astaxanthin per kg diet (mg kg?1) for 90 days. Skin coloration was analyzed using the hue, saturation, and luminosity model. Increased astaxanthin concentrations and duration on diet lead to improvements in skin color, that is, lower hues (~27–29 to ~14–17; redder fish), higher saturation (~77 to ~87 %), and lower luminosity (~43 to ~35 %). Fish fed 80 and 160 mg kg?1 astaxanthin feed showed significant coloration improvements over fish fed lower astaxanthin feeds. Increasing both dietary astaxanthin concentration and time on the feed resulted in significant increases in total skin carotenoid concentration (0.033–0.099 μg mm?2). Furthermore, there was a significant linear relationship between hue and total skin carotenoid concentration. Compositionally, free astaxanthin and 4-hydroxyzeaxanthin were the major skin carotenoids. 4-hydroxyzeaxanthin was previously unreported for A. ocellaris. Carotenoid composition was affected by duration on diet. Fraction 4-hydroxyzeaxanthin increased by ~15 %, while free astaxanthin decreased equivalently. The transition from 4-hydroxyzeaxanthin to free astaxanthin appears to follow a reductive pathway. Results suggest that managing coloration in the production of A. ocellaris juveniles requires manipulation of both dietary astaxanthin concentration and period of exposure to astaxanthin containing diet. In order to achieve more orange–red-colored fish, feeding 80–160 mg kg?1 esterified astaxanthin for an extended duration is recommended.  相似文献   

11.
This study was undertaken to assess the impacts of dietary astaxanthin supplementation on growth performance, feed utilization, survival, and serum growth hormone (GH) availability of Asian seabass, Lates calcarifer, with special reference to dose–response relationships and variations during different feeding phases (short‐term, medium‐term and long‐term). Fish were fed the following diets in triplicate for 90 days: the control (CD), AX50 (50 mg astaxanthin/kg diet), AX100 (100 mg astaxanthin/kg diet) and AX150 (150 mg astaxanthin/kg diet). The findings revealed that fish exhibited significant linear increments (p < .05) in specific growth rate (SGR), weight gain, feed utilization efficiency and survival when fed various diets with escalating levels of astaxanthin. Supplementation with dietary astaxanthin significantly augmented (p < .05) GH levels in fish. Significant positive associations (p < .05) were observed between circulating serum GH levels and SGR of fish from all groups following three consecutive feeding phases, denoting a robust cause‐and‐effect relationship. Circulating GH concentrations were considered as a sensitive biomarker of growth performance in Asian seabass. This study illustrated that supplemental astaxanthin could be administered in culture protocols to improve the growth rate and commercial hatchery production of Asian seabass, and possibly other teleost species.  相似文献   

12.
A study was conducted to evaluate effects of various carotenoids on skin and fillet coloration and fillet carotenoid concentration in channel catfish, Ictalurus punctatus. For 12 wk, juvenile catfish were fed one of six experimental diets containing no supplemental carotenoid or 100 mg/kg of one of following carotenoid additions: β‐carotene (BCA), lutein (LUT), zeaxanthin (ZEA), canthaxanthin (CAN), and astaxanthin (AST). Visual yellow color intensity score was highest for fish fed LUT, followed by ZEA, AST, and CAN, and lowest for fish fed basal and BCA diets. Skin and tissue Commission Internationale de I’Eclairage yellowness value was the highest in fish fed LUT, followed by fish fed ZEA, AST, and CAN, and lowest for fish fed basal and BCA diets. Fish accumulated the supplemental carotenoids in muscle tissues, but concentrations of different carotenoids in the tissue varied greatly. Approximately 30% of the LUT added was converted to echineone; no conversion was observed among other supplemental carotenoids. Results from the present study indicate that channel catfish can accumulate yellow pigments LUT and ZEA and red or pink pigments CAN and AST in the flesh, resulting in yellow coloration. The yellow pigment BCA does not appear to deposit in skin or flesh at levels sufficient to alter the coloration.  相似文献   

13.
The effects of astaxanthin supplementationon the growth, innate immunity and antioxidant defence system of loach (Paramisgurnus dabryanus) were investigated in this study. A total of 450 fish (initial average weights of 3.00 ± 0.10 g) were fed five diets with graded levels of astaxanthin (0.00, 50.00, 100.00, 150.00 and 200.00 mg/kg) for 56 days. The results showed that astaxanthin supplementation significantly stimulated the growth (FBW, WG, FER, HSI), innate immunity (AKP activity in the hepatopancreas, intestinal tract, muscle and skin and LZM activity in the hepatopancreas, intestinal tract and skin), antioxidant ability (T‐SOD, GSH‐PX and CAT activities and T‐AOC, GSH and MDA contents in the hepatopancreas, intestinal tract, muscle and skin) of loach. Moreover, dietary astaxanthin supplementation significantly up‐regulated the relative mRNA levels of Nrf2 and Maf, and down‐regulated the relative mRNA level of Keap1 in the hepatopancreas when the supplementation levels of astaxanthin were 50–200 mg/kg. In conclusion, the diets with 100–151.06 mg/kg astaxanthin supplementation were optimal for loach, which based on the growth, immunity and antioxidant‐related indicators, and the astaxanthin supplementation regulated the antioxidant ability partially referring to Keap1‐Nrf2 signallings.  相似文献   

14.
Atlantic salmon, Salmo salar L., were fed nine experimental diets containing from 0 to 200 mg astaxanthin per kg?1 for six time periods, ranging from 3 to 21 months, in sea cages at Matre Aquaculture Research Station, Matredal, Norway. The sampled fish had an initial mean weight of 115 g and reached a weight of 3.2 kg at the termination of the experiment. Every third month, 10 fish from each dose and time group were sampled and the astaxanthin concentration in the flesh determined. The amount of astaxanthin in the flesh ranged from 0.7 to 8.9 mg kg?1 at the termination of the experiment. This paper discusses deposition of astaxanthin in the flesh of Atlantic salmon in relation to dietary carotenoid levels in the 0–200 mg kg?1 range and feeding times of 3–21 months. Under the conditions of this experiment, no significant effect on astaxanthin deposition rate could be achieved by increasing the astaxanthin level above 60 mg kg dry feed?1. Atlantic salmon should be fed astaxanthin-supplemented diets during the whole seawater stage in order to obtain maximal astaxanthin level in the flesh.  相似文献   

15.
The effect of dietary astaxanthin on growth, survival, and stress tolerance was determined in postlarval Litopenaeus vannamei. An experiment was performed with postlarval shrimp (mean initial wet weight 1.2 mg) fed four isoenergic and isonitrogenous diets containing four supplemented levels of astaxanthin (0, 100, 200, and 400 mg/kg diet, respectively). Shrimp fed diets containing 100, 200, and 400 mg astaxanthin/kg diet for 30 d showed higher weight gain (WG, %) and survival compared to the control (without supplementation of astaxanthin). Specific growth rate (SGR, %/day) and final body wet weight (FBW, mg) showed the same pattern as WG. There were no significant differences in growth performance (FBW, WG, and SGR) among the groups fed the diets with astaxanthin supplementation at the termination of feeding trial. Survival of shrimp in the control and 100 mg/kg diet treatments was significantly lower than that of shrimp in the treatments with 200 and 400 mg/kg diet. After 9 d of a stress tolerance test, survival of shrimp in the 200 and 400 mg astaxanthin/kg treatments was significantly higher than that of shrimp in the 0 and 100 mg astaxanthin/kg treatments (P < 0.05). We concluded from this experiment that astaxanthin was a necessary ingredient for the development of larval L. vannamei. Considering the effect of astaxanthin on both, growth performance and survival of postlarval L. vannamei, the level of astaxanthin supplemented in the diet should be between 100 mg and 200 mg/kg of diet.  相似文献   

16.
Abstract. The interactions of astaxanthin and vitamin A on the growth and survival of Atlantic salmon, Salmo salar L., during the first-feeding period were examined using semi-purified diets. Alevins, with a mean initial weight of 0.18g, were fed diets supplemented with 0, 20 and 40 mg astaxanthin/kg dry diet and 0, 750 and 1500 μg vitamin A/kg dry diet for 20 weeks. The weights of the fish were recorded throughout the experimental period and carcasses were collected for proximate composition, vitamin A and astaxanthin analyses at the beginning and end of the experiment. The feeds were analysed for proximate composition, vitamin A and astaxanthin levels.
No interaction between astaxanthin and vitamin A was found in relation to the growth, survival or vitamin A content of the fry. Astaxanthin was found to strongly influence the growth, survival and vitamin A concentration in the fish. Poor growth and low survival rates were observed in groups fed diets without astaxanthin, including the group fed a diet with sufficient vitamin A. The results indicate both a provitamin A function of astaxanthin and a specific function of astaxanthin. Astaxanthin was found to be essential to alevins during the first-feeding period.  相似文献   

17.
A 12-wk feeding trial was conducted in a flow-through system to determine whether juvenile golden shiner Notemigonus crysoleucas have a dietary requirement for ascorbic acid. Triplicate groups of 30 fish each weighing 0.44 g initially were fed semi-purified (casein) diets supplemented with 0 or 250 mg ascorbic acid/kg, or practical (fish meal) diets supplemented with 0 or 250 mg ascorbic acid/kg. The form of ascorbic acid used was L-ascorbyl-2-polyphosphate. Survival was higher in fish fed the semi-purified diet with 250 mg ascorbic acid/kg than in those fed the unsupplemented semi-purified diet, while weight gain did not differ between treatments. Weight gain was higher in fish fed the practical (fish meal) diet supplemented with 250 mg ascorbic acid/kg than in those fed the unsupplemented practical diet, while survival did not differ between treatments. No other signs of ascorbic acid deficiency were observed, but fish fed the casein diets had skin and fin erosion indicative of a possible bacterial infection. Whole-body concentrations of ascorbic acid (total, reduced, and percent of reduced ascorbic acid) were higher in fish fed semi-purified or practical diets supplemented with 250 mg ascorbic acid/kg than in fish fed unsupplemented diets. Golden shiners appear to require a dietary source of ascorbic acid for growth or survival, depending on experimental conditions. The two main differences in the study were in diet composition (semi-purified versus practical diets) and apparent health status of fish fed the different diet types. Additional studies are needed to define requirements further.  相似文献   

18.
A single‐factor experiment was conducted to investigate the effects of dietary astaxanthin concentration on the skin colour of snapper. Snapper (mean weight=129 g) were held in white cages and fed one of seven dietary levels of unesterified astaxanthin (0, 13, 26, 39, 52, 65 or 78 mg astaxanthin kg?1) for 63 days. Treatments comprised four replicate cages, each containing five fish. The skin colour of all fish was quantified using the CIE L*, a*, b* colour scale after 21, 42 and 63 days. In addition, total carotenoid concentrations of the skin of two fish cage?1 were determined after 63 days. Supplementing diets with astaxanthin strongly affected redness (a*) and yellowness (b*) values of the skin at all sampling times. After 21 days, the a* values increased linearly as the dietary astaxanthin concentration was increased before a plateau was attained between 39 and 78 mg kg?1. The b* values similarly increased above basal levels in all astaxanthin diets. By 42 days, a* and b* values increased in magnitude while a plateau remained between 39 and 78 mg kg?1. After 63 days, there were no further increases in measured colour values, suggesting that maximum pigmentation was imparted in the skin of snapper fed diets >39 mg kg?1 after 42 days. Similarly, there were no differences in total carotenoid concentrations of the skin of snapper fed diets >39 mg kg?1 after 63 days. The plateaus that occurred in a* and b* values, while still increasing in magnitude between 21 and 42 days, indicate that the rate of astaxanthin deposition in snapper is limited and astaxanthin in diets containing >39 mg astaxanthin kg?1 is not efficiently utilized. Astaxanthin retention after 63 days was greatest from the 13 mg kg?1 diet; however, skin pigmentation was not adequate. An astaxanthin concentration of 39 mg kg?1 provided the second greatest retention in the skin while obtaining maximum pigmentation. To efficiently maximize skin pigmentation, snapper growers should commence feeding diets containing a minimum of 39 mg unesterified astaxanthin kg?1 at least 42 days before sale.  相似文献   

19.
Fancy carp were fed seven dietary treatments with natural pigment sources (tea, mulberry, cassava) at a specific rate to achieve a total carotenoid (TC) concentration in the diet of 25 mg/kg. Growth performance among treatments was not significantly different (p ≥ 0.05). TC and skin redness (a*) of fish fed tea leaves was higher than the other treatments (p ≤ 0.05). Fish fed with tea extract and cassava leaves had higher serum astaxanthin concentrations than the other groups (p ≤ 0.05). This group also retained serum astaxanthin and red color better than other groups two weeks post treatment (p ≤ 0.05). Phagocytic activity was significantly greater in fish fed carotenoid supplements compared with the control group (P ≤ 0.05). Therefore, dietary supplementation with 25 mg/kg tea leaves is sufficient to obtain good coloration in fancy carp as well as enhance immunity.  相似文献   

20.
Atlantic salmon, Salmo salar L., juveniles, with a mean initial weight of 1.75 g, were fed casein-based purified diets which had been supplemented with different levels of astaxanthin for a 10-week period. The astaxanthin content of the diets ranged from 0 to 190 mg kg?1 dry diet. The growth and survival of the juveniles were recorded throughout the experiment. The proximate composition, astaxanthin and vitamin A content were determined from whole-body samples at the start and termination of the experiment. The dietary treatment was found to affect growth significantly (P < 0.05). A reduction in the mean weight of the juveniles was observed in the groups fed the diets without astaxanthin supplementation. There was no difference in growth rate between the fish in the groups fed the diets containing 36 or 190 mg astaxanthin kg?1 dry diet, whereas the fish in the group fed the diet containing 5.3 mg astaxanthin kg?1 dry diet had a lower growth rate. There was a tendency to higher survival in the groups fed the diets containing astaxanthin when compared with the groups fed the non-supplemented diets. The moisture and ash contents were significantly lower and the lipid content was higher in the groups fed the astaxanthin-supplemented diets. The astaxanthin and the vitamin A concentrations in the fish were found to be dependent upon the dietary astaxanthin dose; the highest values were found in the fish fed the diet with the highest astaxanthin content. These results strongly indicate that astaxanthin functions as a provitamin A for juvenile Atlantic salmon. The body storage of vitamin A increased in the fish fed the diets containing astaxanthin. However, the increase was low in the fish fed the diet containing 5.3 mg astaxanthin kg?1 dry diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号