首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
<正>保护性耕作收获后不翻耕,土壤表面至少有30%的残茬覆盖,秸秆和杂草使地轮的附着力减弱,地轮打滑更加严重,播种均匀性无法得到保证。北京德邦大为科技有限公司研究设计了一种播种机电子排种自动控制装置,采用旋转编码器测量播种机作业速度,并根据测得的速度动态调节电机转速,采用步进电机驱动的排种器,可以使步进电机及排种器  相似文献   

2.
本文研究的排种自动控制系统是依据前轮转速控制排种,在排种量、粒距和前轮转速之间建立关系,并以单片机为核心,配以测速装置、驱动装置及处理电路,输出合理驱动脉冲驱动步进电机的转动,进而带动排种器轴转动达到均匀排种目的的一种电子驱动系统方案.  相似文献   

3.
为提高玉米播种时的排种精度,设计制造一种基于PLC的玉米精量播种装置,代替传统的机械式地轮驱动播种。利用旋转编码器作为播种机的速度检测机构,将检测信号以脉冲形式传送到PLC, PLC处理后将信号输出到步进电机,实现排种器精准排种。采取步进电机驱动排种器的方式,避免了地轮驱动引起打滑造成的重播现象,同时设计了防滑编码器测速驱动轮,提高了测速精度和工作性能。试验结果表明:播种精度在95%以上,重播率最大值为2.5%,漏播率最大值为4.4%,满足现代播种农艺要求,提高了工作效率。  相似文献   

4.
播种过程中排种器的驱动方式对播种质量有很大影响。地轮驱动的排种器虽然控制简单,但因地轮滑移常造成排种器漏播;而以步进电机取代地轮来驱动排种器,可以精确控制播种株距,减少漏播现象的发生,提高播种质量。为此,以三菱FX3U系列PLC为控制器,分析控制步进电机的硬件电路和梯形图,通过数字编码器检测拖拉机行进速度,根据拖拉机行进速度和株距计算出步进电机所需脉冲的频率,并输出控制步进电机的速度。为操作方便,系统采用触摸屏进行参数设定和工作状态显示。研究结果对提高排种器的排种质量具有重要的应用价值。  相似文献   

5.
设计一款基于卫星测速并随速控制播种量的电驱式精量播种施肥机,以卫星接收模块单机接收地表速度数据,并调控排种排肥电机转速,驱动采用步进电机,从而实现精确的前进速度测量及随速度变化进行精确的排种控制;设计4种前进速度,以实测排种排肥量与计算值进行对比;试验结果表明:卫星测速控制和闭环步进电机驱动排种排肥时,排种实测值与计算值比较误差未超5%,可以保证不同前进速度时播种均匀,并且在前进速度提高时有着更高的播种精度,可以适用于高速播种。  相似文献   

6.
排种器在4BQD-40型气力喷播机工作过程中起着非常重要的作用,决定着喷播机喷播的质量。为此,对气力喷播机排种器进行了研究,设计出排种器自动控制系统。该控制系统以S7-200 CPU222 CN型PLC为控制核心,当霍尔开关传感器检测到转动的拖拉机后轮上的磁片时,发出数字开关信号,PLC接收到该信号后改变高速脉冲的周期,并输入到步进电机驱动器,从而控制步进电机带动排种器精确转动,实现了喷播机排种器的自动控制,提高了其工作性能和播种质量。  相似文献   

7.
播种是农业生产的重要环节,传统播种机使用地轮为排种器提供动力,地轮打滑对播种均匀性产生影响,不利于播种质量的提高.为此,设计了电控播种系统,使用旋转编码器采集行进速度,系统的微处理器结合设定播种信息和速度信息计算得出电机理论转速,驱动排种器转动,完成播种作业.JPS-12排种器试验台试验表明:播种合格指数大于96.64...  相似文献   

8.
气力滚筒式蔬菜播种机控制系统的性能直接影响播种的效果。为此,以单片机ATmega16为控制系统核心,采用光电传感器检测穴盘与播种原点,实现穴盘检测以及排种器的原点定位、启动与制动,采用THB6064与LMD18200集成芯片分别驱动步进电机和直流电机工作,以C语言编程实现穴盘进给速度与排种器播种速度的匹配。该系统能满足播种机的工作要求,通过硬件与软件的结合实现精确的原点定位及穴盘进给速度与排种器播种速度的准确匹配,播种效率可调节,同时该系统具有集成度高、成本低和操作便捷等特点。  相似文献   

9.
由于传统玉米播种机作业过程中存在的地轮打滑问题,严重影响玉米播种均匀性和玉米的产量。为此,开发了以单片机为控制中心、开关型霍尔传感器为测速元件、步进电机为动力源,利用触摸屏输入种子粒距以实现播种参数的显示,采用信息无线传输技术,通过实时控制步进电机的转速来带动排种器按需排种的玉米精量播种机智能化株距控制系统。  相似文献   

10.
排种器是水稻直播机的核心部件,其好坏决定着播种机播种质量的好坏和播种效率的高低.为此,针对现有排种器易漏播不易检测的弊端,结合我国国情设计了一款轻型带式排种装置.该装置旨在实现播种量的精量控制,可通过检测装置完成漏播率检测和出现连续漏播时实时报警.该排种器的播种速度可通过单片机对电机转速的调节实现方便控制.该装置属于轻便小型化类型,便于在丘陵地区普及推广.  相似文献   

11.
针对传统油菜精量直播机多采用被动式地轮驱动排种器,高速时地轮易打滑,导致漏播、断条等现象,影响高速作业精量播种效果,且手动变速箱调整播量难以实现播种粒距、播量的精准调节等问题,设计了一种以STM32为主控器,通过蓝牙模块与手机端微信小程序进行实时数据交互的油菜随速播种控制系统。该系统采用地轮编码器和北斗接收器两种模式分别获取拖拉机低速和中高速作业时的前进速度,主控器分析各传感器数据并生成电机控制指令驱动闭环步进电机带动排种轴转动,实现排种轴转速与拖拉机前进速度匹配及无级播量调节;同时利用微信小程序设置目标粒距、传动比、地轮直径等参数以适用于不同类型播种机,并显示总播量、播种面积等关键参数;分析得出吸附种子临界负压为1477Pa,切换测速方式临界速度为3.7km/h,测速范围为1.44~12.77km/h,电机调速频率为5Hz。台架试验结果表明:随速播种控制系统播种性能优于恒定转速播种,播种速度2.6~7.8km/h时粒距合格指数大于87%。田间试验结果表明:本系统搭载一器双行正负气压组合式油菜精量排种器在作业速度为1.44~7.99km/h时播量误差小于3.9%、粒距合格率不低于84%,满足随速播种要求。  相似文献   

12.
针对小白菜精量复式播种机采用单体排种器播种时传动系统复杂、各行出苗效果差异明显等不足,设计了2个排种盘可同时播8行的小白菜正负气压组合式排种器,阐明了排种器的工作过程、原理及主要结构参数,理论分析确定了排种盘和排种口结构参数及其种子迁移轨迹。利用DEM-CFD气固耦合动网格模型分析了排种盘转速、气室负压和气室正压对排种性能的影响,试验结果表明:负压对排种器合格指数、重播指数及漏播指数均有显著影响,负压为-3000Pa、正压为300Pa、转速为30r/min、品种为中箕青605时,各行平均合格指数为93.12%、重播指数为3.59%、漏播指数为3.29%。利用JPS-12型排种器检测试验台开展了台架试验,试验结果表明:排种盘转速为30r/min、负压为-3000Pa、正压为300Pa时,各行平均合格指数为91.32%、平均重播指数为6.19%、平均漏播指数为2.49%。以较优因素水平组合开展了田间试验,试验结果表明:小白菜平均苗数为10株/m、株距平均值为100.48mm,各行苗数一致性变异系数为8.05%,满足小白菜种植农艺要求。  相似文献   

13.
基于BLDCM的智能播种控制系统设计   总被引:1,自引:0,他引:1  
针对地轮驱动的玉米排种工作方式存在地轮打滑而造成漏播率增加的问题,设计了基于无刷直流电机驱动(Brushless Direct Current Motor,BLDCM)的智能播种控制系统。该系统以STM32单片机作为PID控制器的核心处理器,利用无刷直流电机作为排种器驱动源,并通过增量式编码器实时采集排种器的转速,同时利用霍尔传感器获取播种作业速度。为实现PID控制的最优化,在Simulink环境下建立无刷直流电机的仿真模型,并结合PSO(Particle Swarm Optimization,粒子群优化)算法对PID参数进行优化设计。仿真结果表明:经PSO整定后,PID控制器的阶跃响应效果良好,超调量为4%,调节时间为0.12s。田间试验结果表明:在低速、中速、高速和变速作业条件下,本电机驱动系统较传统地轮驱动系统在漏播指数方面分别降低了0.9%、1.1%、1.4%和1.3%,在播种合格指数方面分别提高了1.8%、3.8%、2.8%和1.7%。  相似文献   

14.
为提高倾斜圆盘排种器的排种性能,以中黄39大豆种子的物料学特性为基础,对该型排种器的充种、清种过程进行研究,得出其垂直倾角及工作转速是影响排种器工作性能的两个重要因素。利用离散元软件EDEM进行仿真研究,设计了二次回归正交旋转组合试验,运用SPSS软件进行试验数据处理,以排种器合格指数、重播指数和漏播指数作为排种器性能的评价指标,分别建立其与排种器垂直倾角、工作转速的回归方程。运用MatLab中非线性优化fmincon函数,获得该型排种器最优参数组合为垂直倾角1 9.5°、工作转速4 6.7 r/min时,合格率为97.28%,重播率为1.98%,漏播率为0.74%。  相似文献   

15.
针对小麦播种时发生地轮传动失效而造成漏播和播量不均等问题,设计了一种电控小麦播种系统。系统工作时能够结合设置的播种参数和检测的作业速度信号获得排种器的理论转速,并通过采集驱动器的脉冲输出频率计算出排种器的实时转速,将理论转速与实际转速形成的偏差e及偏差变化率ec作为输入变量,利用模糊PID自整定控制器进行电机转速的精准控制,使排种器到达目标转速,从而提高播种精度。室内试验结果表明:在中速及中高速状态下,小麦播种机电控系统的性能最为稳定,平均偏差在2.5%以内,控制精度为1.49%,并求得排种器在不同工作长度下排种量与转速的函数关系。田间试验结果表明:应用本电控系统进行田间小麦播种作业时,小麦播种机的总排种量变异系数为1.14%,各行排种量变异系数为2.89%,播种均匀性变异系数为5.64%,播深合格率为90%,电控播种系统能有效地提高小麦播种机的播种均匀性。  相似文献   

16.
对气吸式排种器工作性能影响参数进行了理论分析,应用正交试验的方法研究排种盘转速、真空室气压变化和种子形状对排种性能的影响。试验表明:影响排种性能的主要因素是排种器孔型、排种盘转速和吸盘两侧气压差。  相似文献   

17.
针对现有多行气吸式排种器因共用气室造成风压要求高、损失大的问题,设计一种单盘多行独立气道式蔬菜精量排种器,降低排种过程所需的风压值,减少风压损失.对排种盘、气道盘、搅种装置、清种器等关键部件进行结构设计,利用JPS 12型排种器性能试验台进行排种性能试验并对试验结果进行分析.通过单因素试验,得到在负压值1~2 kPa、...  相似文献   

18.
大豆播种机偏置双圆盘气吸式排种器   总被引:10,自引:0,他引:10  
设计了一种大豆播种机偏置双圆盘气吸式排种器。通过分析偏置双圆盘气吸式排种器取种、排种作业原理,对其关键部件进行了设计、优化。以排种器播种吸盘转速、气流运动速度为试验因素,漏播率为试验指标分别进行单因素试验和二次通用旋转组合试验,运用Design-Expert软件得出回归曲面并建立数学模型,得出最佳因素组合为气流速度220 m/s、排种器播种吸盘转速100 r/min,此时漏播率为2.72%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号