首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of organic manure on organic phosphorus fractions in two paddy soils   总被引:11,自引:0,他引:11  
We investigated the transformation of the organic P fractions from organic manure in two paddy soils (Ultisol, Entisol) and the influence of organic manure or cellulose on organic P under anaerobic conditions. The results obtained from the P fractionation experiment indicated that during the incubation labile and moderately labile organic P fractions increased in the Ultisol and decreased in the Entisol, which might be related to the difference in the organic matter content of both soils. Immediately after the application of organic manure, a large part of labile and moderately labile organic P supplied with the manure was transformed into moderately resistant organic P, possibly Ca- or Mg-inositol P were transformed into Fe-inositol P. During anaerobic incubation, the labile forms of organic P in the soils treated with organic manure were increased along with the incubation period in the first 4 weeks. The change in the moderately labile fraction was dramatic. It increased sharply in the first 2 weeks, then decreased, which was more pronounced in the soils treated with pig faeces. The moderately resistant fraction decreased during the whole incubation period. This indicated that under anaerobic conditions, the moderately resistant fraction can be transformed into labile and moderately labile organic P fractions, perhaps as Fe3+-inositol P is reduced to Fe+2-inositol P. Cellulose as an organic substrate had an increasing effect on organic P, especially when it was combined with inorganic P. Therefore, it is suggested that the application of inorganic P fertilizer combined with organic manure may be an effective way of protecting inorganic P against intensive sorption in soils.  相似文献   

2.
《Soil Use and Management》2018,34(2):266-275
The build‐up of topsoil phosphorus (P) through excess fertilizer application can increase P losses in run‐off leading to negative impacts on aquatic ecosystems. To better understand the risk of P losses, the fractions of soil P in four aggregate size classes were quantified for two vegetable production sites (<10 and >25 yrs) and a conservation buffer site (8 yrs) in southwestern China. Sequential extraction methods of inorganic P (Pi) and organic P (Po) were carried out on samples from Nitisol and Gleysol soils from 0 to 5 cm and 5 to 10 cm depths. On average, soil Pi concentrations exceeded Po concentrations threefold, primarily in the bioavailable Pi fractions (labile Pi, loosely bound Pi and non‐occluded Pi). Soil Po fractions and bioavailable Pi fractions were significantly greater under the >25 yrs field than in the <10 yrs field. The conversion of fields under vegetable production to forested buffer substantially decreased the levels of the bioavailable Pi and labile Po in the Gleysol after 8 yrs. Soil macro‐aggregates (>0.25 mm) had greater concentrations of bioavailable Pi fractions and of labile and moderately labile Po than did micro‐aggregates and silt and clay size components. Although more P was stored in recalcitrant P forms, a larger percentage of all P fractions was found in macro‐aggregates in these soils. Small active P‐enriched aggregates potentially intensify export of P from the vegetable soils by run‐off, and therefore, management practices must be optimized to enhance agricultural P efficiencies.  相似文献   

3.
Abstract

Surface horizon samples from two Vertisols, an Andisol, and an Alfisol were collected from farmers’ fields, research station farms, and from uncultivated/ nonfertilized areas to characterize the organic and inorganic forms of phosphorus (P) in the highland plateau soils of Ethiopia using the Hedley soil P fractionation scheme. The total P values ranged from 226 mg‐kg‐1 in the Akaki Vertisol samples developed on alluvial deposits to 1570 mgkg‐1 in the Andisol samples, where the HCl fraction dominates the inorganic soil P pool. The Alfisol samples contained 400 mg‐kg‐1 of total P, with the NaOHand residual P being the dominant P fractions. The resin inorganic phosphorus (Pi) and bicarbonate Pi fractions generally accounted for less than 15% of the total P in all soils, and were positively correlated with organic C. The NaOH P fraction, which was most prominent in the surface horizon samples of the Alfisols, accounted for 4–15% of total P. The HCl P fraction, ranged from 1% in the Alfisols to 46% in the Andisols, and positively correlated with pH. All of the P fractions were negatively correlated with clay and extractable Al contents. The organic P (Po) fractions were positively related to organic carbon (C) and dithionate extractable iron (Fe). All samples collected from farmers’ fields showed a loss of P from the residual, and HCl fractions as compared to the uncultivated/nonfertilized samples. There is also a decrease in the labile P (resin Pi, bicarbonate Pi, and Po) fractions, except for the Akaki Vertisol samples. However, under research station management, the amount of labile P fractions either increased or remained at the same level as the uncultivated/nonfertilized samples, except for the Andisol. Addition of P fertilizer at the recommended rates to the Debre Zeit research station Vertisol appears to have resulted in a slight increase in the labile P and prevented loss of P from the HClP and residual P fractions.  相似文献   

4.
The phosphorus (P) forms in long-term fertilization determine the fate and transport of P in soil. However, the fate of various pools of organic P of added P in the long-term measured with sequential chemical fractionation is not well-understood. Four soil physical aggregates (>250, 125–250, 63–125 and <63 μm) from 0- to 20-cm depth after 35 years of long-term fertilization treatments including control (CK), nitrogen and phosphorus fertilizer (NP) and NP combined with farmyard manure (NPM) under continuous winter wheat were separated using settling tube apparatus. Results showed that the application of long-term P fertilization had no apparent effects on promoting the mass proportion of soil aggregates except for >250 μm, where the NP and NPM treatments significantly increased the mass proportion by 60% and 70% over CK, respectively. Compared with CK, P fertilizer (NP and NPM) treatments significantly increased organic P (Po) contents in each size aggregate. In particular, mean labile Po increased by 35% and 246%, moderately labile Po by 125% and 161%, nonlabile Po by 105% and 170% and total Po (TPo) by 101% and 178%, respectively, under NP and NPM treatments, respectively. There was a significant correlation between soil organic carbon (SOC) and Po fractions. SOC was exponentially positively correlated with labile Po but linearly positively correlated with moderately labile Po, nonlabile Po and TPo fractions among soil aggregates. A reduced C:Po ratio (<100) in soil aggregates among treatment indicates a large amount of available P accumulated in soils, and soil P loss risk in the study site is still high. Our results show that the Po pool measured by sequential chemical fractionation may represent an important, yet often overlooked, source of P in agriculture ecosystems. According to the result, long-term mineral P fertilizer combined with organic amendments better sustains soil structural stability in large aggregates, contributing more Po availability in the moderately labile P followed by labile P in soil aggregates.  相似文献   

5.
Changes are reported in the chemical and biological composition of soil phosphorus (P) in a Black Chernozemic silt loam (Blaine Lake Association) and a Dark Brown Chernozemic sandy loam (Bradwell Association) during 60–90 years of cultivation. Cultivated and adjacent uncultivated soils were sampled, separated into particle size fractions by physical dispersion and the fractions subjected to a sequential chemical extraction to remove several forms of inorganic phosphorus (Pi) and organic phosphorus (Po). In the uncultivated Bradwell soil significant amounts (7%) of secondary (NaOH extractable) Pi forms were associated with high levels of labile (bicarbonate and resin extractable) Pi. These secondary Pi forms, which were concentrated in the finer particle size fractions (<2μm), contributed to the P loss during cultivation of the coarse textured Bradwell soil, whereas all P loss in the Blaine Lake soils was due to Po losses alone. Sulphuric acid extractable P (thought to be mainly apatites) accumulated in both soils under cultivation, particularly in the coarse silt (50–5 μm) fraction. Labile P fractions were greatly reduced during cultivation, indicating a significant reduction in available P and P fertility of cultivated soils. This reduction in P fertility was closely tied to soil organic matter losses.  相似文献   

6.
A laboratory incubation study was conducted to examine the effects of exogenous humic acids on the forms of organic phosphorus (P) in three contrasting soil types: red soil, brown soil, and drab soil. Results indicated that the Olsen P concentration increased in all the three types of soil with addition of the humic acid extracts, with the magnitude of increment ranked in a sequence of brown soil > drab soil > red soil. For the soil organic P fractions, addition of the humic acid extracts increased the labile organic P and moderately labile organic P concentrations while reducing the moderately resistant organic P and highly resistant organic P concentrations, suggesting that the exogenous humic acids could enhance transformation of organic P from resistant forms to labile forms. The activation of organic P by addition of the humic acid extracts varied with soil type, and this variation was related to soil characteristics.  相似文献   

7.
Availability, fixation, and transformation of added P were studied in a 16-week incubation experiment with a Vertisol amended with farmyard manure in pots with 500 g soil each. P availability, as measured by Olsen P, decreased for up to 8 weeks with various rates of added P, when no manure was applied. In the presence of farmyard manure, P availability decreased during the first 6 weeks and then showed a considerable increase from the 8th week onwards. P fixation increased for up to 8 weeks with the rates of P in the absence of manure. With manure application, P fixation increased only during the first 6 weeks and thereafter decreased continuously. Thus the presence of farmyard manure shortened the period of P fixation and promoted its availability. After 16 weeks of incubation, when manure and fertilizer P were applied together, P was transformed into labile organic (NaHCO3–P), moderately labile organic P (NaOH-P), and calcium-bound inorganic P (HCl-P). When manure was not applied. P accumulated predominantly as labile inorganic (NaHCO3–P), moderately labile inorganic (NaOH-P), and inorganic HCl-P. The application of farmyard manure enriched long-term P fertility through NaHCO3–P and NaOH–P and a shortterm P supply as HCl-P. All fractions except inorganic NaOH-P showed good relationships with Olsen P.  相似文献   

8.
Abstract

Bray 1 phosphorus (B1P) and sequential phosphorus (P) fractions were determined on soils treated with triple superphosphate (TSP), Gafsa (GPR), and Christmas Island phosphate rocks (CIPR), respectively, with and without manure. The fractions extracted in decreasing lability were iron oxide–impregnated paper strip P (Pi‐strip P), inorganic (Pi), and organic (Po) bicarbonate (NaHCO3‐Pi and ‐Po), hydroxide [sodium hydroxide (NaOH)‐Pi and ‐Po], hydrochloric acid (HCl) P, and residual (residue P). The magnitude of B1P was in the order TSP>GPR=CIPR. Average B1P from PRs was two‐fold the amount in TSP, whereas that of the fractions was NaOH‐P>Residue P<sodium bicarbonate (NaHCO3) P<Pi‐strip P <HCl. Bray 1 extracted mainly the most labile fractions (Pi‐strip P and NaHCO3‐Pi), and plant P uptake was correlated mainly to NaOH‐Po and NaHCO3‐Pi. Magnitude of various fractions differed between TSP and PRs. Both B1P and the fractions were equally correlated to P uptake (R2=0.38**). Nevertheless, sequential fractionation appears to be a powerful tool to identify the P status and availability in soil.  相似文献   

9.
为探明施用磷肥对湖南稻田土壤有机磷组分的影响、有机磷组分的季节变化及其有效性,以湖南省5种不同母质发育的稻田土壤为供试土壤,通过盆栽试验,研究了稻田土壤有机磷组分的施磷效应、在植稻期间的动态变化及其生物有效性。结果表明,施用磷肥可以使土壤中活性有机磷得到较大的增加,而对活性有机磷、中稳性有机磷和高稳性有机磷影响较小。在施磷和不施磷条件下,土壤有机磷的变化主要是中活性有机磷,而其余3种形态有机磷在水稻生长期间几乎保持不变。不管土壤是否施用磷肥,土壤有效磷与有机磷总量总是呈极显著相关,说明土壤有机磷的确是植物可以利用的有效磷源;在早稻生长期间土壤各形态有机磷的生物有效性的大小顺序为:中活性有机磷中稳性有机磷高稳性有机磷活性有机磷;在晚稻生长期间土壤各形态有机磷的生物有效性一般随水稻生育期不同而不同。  相似文献   

10.
A field rhizosphere study was carried out over a period of 12 months on a 6-year-old silvopastoral trial in New Zealand. The trial comprised radiata pine (Pinus radiata) with lucerne (Medicago sativa) and perennial ryegrass (Lolium perenne) understoreys. The study was initiated because of the unique interrelationships between roots in silvopastoral systems and a paucity of understanding about the processes involved in phosphorus (P) dynamics in temperate silvopastoral systems. Improving our understanding in this area has important implications for nutrient management in silvopastoral systems. Rhizosphere soils were analysed to determine inorganic (Pi) and organic (Po) P fractions, macroporous resin Pi and Po, phosphatase enzyme activity, microbial biomass carbon and pH. Concentrations of labile Pi were consistently greater and Po lower in tree rhizosphere soil compared to the companion understorey, indicating that radiata pine when grown with a productive understorey mineralised Po to a greater extent than either understorey species. Tree rhizosphere soil from under lucerne and lucerne rhizosphere soil contained the lowest concentrations of total Pi and Po compared with tree under ryegrass and ryegrass rhizosphere soils. This was partly attributed to higher levels of phosphatase enzyme activity in the lucerne rhizosphere soils. The results suggest the combination of lucerne with radiata pine may enhance greater utilisation of soil P, although this requires further investigation. Lower levels of labile Po, and higher levels of labile Pi and phosphatase enzyme activity, were determined in tree and understorey lucerne and ryegrass rhizosphere soils in spring compared with autumn. This data confirmed that overall rates of soil organic P mineralisation are greatest in spring.  相似文献   

11.
Abstract

The distribution of phosphorus (P) in different organic and inorganic fractions was examined in five Argentinean soils of different pedogenesis. Soils were sequentially extracted to determine resin‐P, bicarbonate‐P, and hydroxide‐P fractions. Inorganic P (IP) predominated in all soils, specially moderately resistant IP (MRIP) in Entisol, Vertisol, and Ultisol. Both MRIP and labile IP (LIP) were important in Mollisol. Organic P (OP) was at a lower concentration in all soils and moderately resistant OP (MROP) was highest in all soils, except for the Mollisol. In intermediate evolution soils, labile P (LP) was very important, Mollisol had the highest value of LP%, and the lowest was for the Ultisol, demonstrating greater dynamics of P fractions in the Mollisol, soils of high productivity in the Pampean Prairie.  相似文献   

12.
Bowman-Cole土壤有机磷分组法的探讨   总被引:27,自引:1,他引:27  
贺铁  李世俊 《土壤学报》1987,24(2):152-159
采用Bowman-Cole法的几种浸提剂和浸提步骤大体上可将矿化难易不同的几种有机磷化合物区分开来.采用该法所测得的土壤有机磷四种组分,其矿化速率有随土壤有机磷组分活性增强而增加的趋势.因此,该法能用来监测土壤有机磷对植物有效性的高低.  相似文献   

13.
采用物理分组方法对长期不同施肥处理的旱地红壤有机碳组分进行了区分,布置室内培育试验观测了培养过程中土壤有机碳的矿化动态,通过拟合一级动力学方程计算土壤生物活性有机碳库量.研究结果表明,不同施肥处理的土壤中,轻组有机碳(LF-C)、团聚体包裹的粗颗粒有机碳(iPOMc-C)及细颗粒有机碳(iPOMf-C)、矿物结合态有机碳(mSOC)分别占总有机碳的7%~10%、0.5%~1.5%、4%~7%、76%~85%,并与总有机碳(TOC)含量显著相关;厩肥处理显著增加了各组分含量,其作用优于绿肥处理和单施无机肥处理(CK);培养过程中土壤有机碳矿化动态符合一级反应动力学方程;有机无机肥配施处理的土壤生物活性有机碳库(C0)显著提高;和绿肥相比,厩肥处理中生物活性有效碳库(C0)增加幅度更大,但其周转速率常数k更小;各组分有机碳含量与C0含量均达到极显著(p<0.01)相关,但除LF-C外其余有机碳组分占TOC的百分率均与C0达到极显著水平.  相似文献   

14.
有机肥对土壤磷吸附一解吸的直接影响   总被引:21,自引:5,他引:21  
本文采用自行设计的一种扣除来自有机肥中磷的方法,对有机肥影响土壤磷吸附与解吸的直接作用进行了研究。结果表明,猪粪和牛粪均能明显降低两种水稻土对磷的吸附,增加磷解吸;而纤维素只有在土壤磷水平较高时才起作用。上述作用在红壤性水稻土中优于青紫泥;在同一土壤上,对磷水平高的土壤的作用明显大于磷水平低的土壤。在有机肥对土壤磷吸附解吸的直接影响中,其中的可溶性有机机物起主要作用。  相似文献   

15.
有机肥对土壤磷吸附一解吸的直接影响   总被引:1,自引:0,他引:1  
本文采用自行设计的一种扣除来自有机肥中磷的方法,对有机肥影响土壤磷吸附与解吸的直接作用进行了研究。结果表明,猪粪和牛粪均能明显降低两种水稻土对磷的吸附,增加磷解吸;而纤维素只有在土壤磷水平较高时才起作用。上述作用在红壤性水稻土中优于青紫泥;在同一土壤上,对磷水平高的土壤的作用明显大于磷水平低的土壤。在有机肥对土壤磷吸附—解吸的直接影响中,其中的可溶性有机机物起主要作用。  相似文献   

16.
施用有机物料对土壤镉形态的影响   总被引:12,自引:1,他引:11  
采用室内培养试验,研究作物新鲜秸秆和腐熟猪粪对模拟镉(Cd)污染的土壤中Cd形态转化的动态影响。结果表明,各处理土壤交换态Cd含量随培养时间均逐渐降低。碳酸盐结合态和铁锰氧化物结合态Cd含量先增加后降低, 而有机质结合态和残渣态Cd含量则逐渐增加。添加秸秆可增加土壤交换态Cd含量,但随时间延长,增幅逐渐降低, 猪粪则可降低土壤交换态Cd含量。添加有机物后土壤交换态Cd含量的变化主要是由有机质结合态或残渣态Cd含量的变化而引起。秸秆和猪粪对土壤Cd形态的转化与土壤胡敏酸(HA)和富里酸(FA)的变化有关。秸秆对能活化土壤Cd的FA增加幅度大于对能钝化土壤Cd的HA增加幅度,降低HA/FA比,但降幅随时间逐渐减少; 猪粪在整个培养阶段对HA增加幅度均大于FA的增加幅度,增加HA/FA比。秸秆和猪粪均可降低潮土pH而提高红壤pH,但只有猪粪可通过提高红壤pH降低Cd向交换态转化。添加秸秆和猪粪后,Cd由低活性态向交换态转化与HA/FA呈显著负相关。  相似文献   

17.
采用逐级去磷的土壤研究在好气与淹水条件下猪粪、稻草和纤维素对土壤中不同形态磷的活化作用。结果表明,在好气条件下,猪粪、稻草和纤维素均能对土壤中各种形态的无机磷起活化作用,其效果为猪粪>稻草>纤维素。在淹水条件下,有机肥则表现为明显增加土壤对磷的固定,这主要是土壤中的铁氧化物强烈吸附磷所致。但当土壤去除Fe-P和O-P后,有机肥则能对土壤磷起明显的活化作用。采用人工合成磷酸铁加入去磷、去铁氧化物土壤的试验表明,有机肥对磷酸铁的活化率可高达30%。由于土壤中存在的铁氧化物对活化的磷起掩盖作用,因此,有机肥对土壤磷,尤其对Ca2-P、Ca8-P、Al-P和Fe-P的实际活化作用有可能比测定值还要高。  相似文献   

18.
采用逐级去磷的土壤研究在好气与淹水条件下猪粪、稻草和纤维素对土壤中不同形态磷的活化作用。结果表明,在好气条件下,猪粪、稻草和纤维素均能对土壤中各种形态的无机磷起活化作用,其效果为猪粪>稻草>纤维素。在淹水条件下,有机肥则表现为明显增加土壤对磷的固定,这主要是土壤中的铁氧化物强烈吸附磷所致。但当土壤去除Fe-P和O-P后,有机肥则能对土壤磷起明显的活化作用。采用人工合成磷酸铁加入去磷、去铁氧化物土壤的试验表明,有机肥对磷酸铁的活化率可高达30%。由于土壤中存在的铁氧化物对活化的磷起掩盖作用,因此,有机肥对土壤磷,尤其对Ca2-P、Ca8-P、Al-P和Fe-P的实际活化作用有可能比测定值还要高。  相似文献   

19.
Lower P‐input levels in organic than conventional farming can decrease soil total and available P, which can potentially be resupplied from soil organic P. We studied the effect of 30 y of conventional and organic farming on soil P forms, focussing especially on organic P. Soil samples (0–20 cm) were taken in a field experiment with a nonfertilized control, two organic systems receiving P inputs as animal manure, and two conventional systems receiving only mineral P or mineral P and manure. Soils were analyzed for total, inorganic, organic, and microbial P, by sequential P fractionation and by enzyme additions to alkaline soil extracts. Samples taken prior to starting the experiment were also analyzed. Average annual P balances ranged from –20 to +5 kg ha–1. For systems with a negative balance, labile and moderately labile inorganic P fractions decreased, while organic and stable inorganic P fractions were hardly affected. Similar quantities and proportions of organic P extracted with NaOH‐EDTA were hydrolyzed in all soils after addition of an acid phosphatase, a nuclease, and a phytase, and enzyme‐stable organic P was also similar among soils. Thus, neither sequential fractionation nor enzyme addition to alkaline soil extracts showed an effect of the type of applied P (manure vs. mineral) on organic P, suggesting that organic P from manure has largely been mineralized. Thus far, we have no indication that the greater microbial activity of the organic systems resulted in a use of stable P forms.  相似文献   

20.
黄土高原旱地长期施肥条件下土壤有机磷的变化   总被引:8,自引:1,他引:8  
来璐  郝明德  彭令发  张振明 《土壤》2003,35(5):413-418
采用Bowman和Cole提出的有机P分组方法,对长期施肥条件下土壤有机P的组成变化以及有机P及其组分与有机质、速效P的关系进行研究。结果表明,活性、中等活性、中等稳定性、高等稳定性有机P分别占有机P总量的 80.2%、9.8%、9.0 %、和2.0 %。有机无机肥配施可明显增加土壤有机P及活性、中等活性有机P、中等稳定性有机P含量,减少高等稳定性有机P含量。施肥对有机P各组分剖面分布规律影响不大。活性、中等活性有机P与速效P、有机质、有机P总量呈显著正相关,中等稳定性、高等稳定性有机P与速效P、有机质不相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号