首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
(1) This investigation studied the effects of dietary saturated and polyunsaturated fatty acids (PUFAs) from the n-3 and n-6 series on insulin action and glucose uptake in broiler chickens. (2) One-day-old male chicks were fed on a commercial starter diet for 3 weeks, randomly divided into three groups (n = 6) and fed ad libitum on isonitrogenous experimental diets of equal energy density for a further 6 weeks. The diets contained 20.8 g/100 g protein and 80 g/kg of either edible tallow, fish oil or sunflower oil, giving diets high in saturated fatty acids, n-S PUFAs or n-6 PUFAs, respectively. (3) Jugular catheterisation was performed under general anaesthesia during week 4 of the dietary treatments and the birds given 7 d post-surgery to recover. To estimate insulin action, a bolus glucose infusion (1 g/kg) was given to each chicken and sequential blood samples taken over a one-hour period. To estimate the disappearance rate of glucose from the plasma and its incorporation into tissues, 2-deoxy-D-3H glucose (2DG-3H glucose) was infused into each chicken (50 microCi) 2 d later. (4) Although there were no significant differences in glucose clearance rate following the glucose infusion, the maximal insulin release in response to the glucose infusion was higher in the tallow group than in either the n-3 or n-6 PUFA dietary groups. There were no significant differences in the clearance rate of 2DG-3H glucose. Labelled glucose incorporation into the breast muscle was greater in birds given fish oil than in birds given tallow and significantly greater than in birds given sunflower oil. (5) The data suggest that the type of dietary fat can influence glucose metabolism and that this change in glucose utilisation may alter the energy metabolism of the broiler.  相似文献   

2.
The influence of fish oil (highly unsaturated) and beef tallow (highly saturated) with vitamin E (100 IU/kg) supplementation on the antioxidant status of broiler chicken cockerels was investigated. Chicks were fed a control diet with no added fat, 40 g/kg each of fish oil and beef tallow diets, respectively, from 11 to 42 days of age. Tocopherol concentration and the rate of lipid peroxidation, thiobarbituric acid reactive substance (TBARS) in liver, fatty acid composition of the liver lipids, blood serum total antioxidant status (TAS), and reduced glutathione (GSH) content were determined. Vitamin E supplementation of the diet increased liver alpha-tocopherol content in chicks regardless of the type of dietary fat. Fish oil diet resulted in higher liver TBARS value while beef tallow diet showed lower values compared to the control diet. Vitamin E supplementation reduced liver TBARS as well as serum GSH, and raised serum TAS for all diets. Serum GSH was the same for vitamin E supplemented diets regardless of the fat supplement. Fish oil diets resulted in a significant increase in hepatic lipid n-3 PUFA content. A significant positive correlation was found between liver TBARS and n-3 PUFA content. No relationships were established, however, between liver TBARS and n-6 PUFA or saturated fatty acids. The results suggest that feeding oils rich in n-3 PUFA increases tissue concentration of these fatty acids, consequently increasing tissue lipid peroxidation and reducing the antioxidative status of broiler chickens. Supplementing high levels of vitamin E with such oils may increase tissue oxidative stability. Serum TAS or GSH may be used as a measure of antioxidative status in chickens.  相似文献   

3.
1. Three experiments were conducted with broiler chickens using hypobaric chambers and control pens, feeding diets containing 25 or 50 g flax oil/kg food or control diets with equivalent amounts of animal/vegetable (A/V) blend oil for 4 weeks. The effect of these diets on haematological variables and the extent of right ventricular hypertrophy (RVH) leading to ascites was determined. 2. Overall growth rate was not consistently affected by dietary treatment, although feeding the 25 g flax oil/kg diet reduced weight gain in week 4 of one experiment. Feeding the 50 g flax oil/kg diet but not the 25 g flax oil/kg diet reduced RVH in birds exposed to hypobaric conditions compared to feeding control diets. 3. Feeding the 50 g flax oil/kg diet under hypobaric conditions reduced the haematocrit and haemoglobin content, increased the erythrocyte deformability and the proportion of unsaturated fatty acids in the erythrocyte membranes, and reduced the whole blood viscosity compared to feeding control diets. These effects were not seen when the 25 g flax oil/kg diet was fed. The ratio of n-3 to n-6 fatty acids in erythrocyte membranes was increased in the 50 g flax oil/kg treatment group compared to controls. 4. Including 50 g flax oil/kg broiler diet reduces RVH in broiler chickens. This may be attributable in part to an increase in erythrocyte deformability from an increased proportion of unsaturated fatty acids in the erythrocyte membranes.  相似文献   

4.
本试验旨在研究饲粮中添加亚麻籽和鱼油对蛋鸡蛋黄n-3多不饱和脂肪酸含量、肝脏脂肪酸组成及其合成代谢基因表达的影响。选择28周龄海兰褐壳蛋鸡96只,随机分为4组,每组24只。对照组饲喂基础饲粮,试验组分别在基础饲粮中添加10%亚麻籽、10%亚麻籽+5%鱼油和5%鱼油。饲养21 d后连续收集7 d鸡蛋,然后每组随机选取4只鸡屠宰取样。结果表明,与对照组相比:1)添加亚麻籽和鱼油均显著增加蛋黄中n-3多不饱和脂肪酸含量(P0.05),其中单独添加鱼油的蛋黄中二十二碳六烯酸(DHA)和二十碳五烯酸含量最高;2)试验组肝脏单不饱和脂肪酸比例均显著降低(P0.05),肝脏n-3多不饱和脂肪酸比例均显著增加(P0.05);3)单独添加鱼油显著降低肝脏脂肪酸延长酶1、脂肪酸延长酶2和去饱和酶(脂肪酸去饱和酶1、脂肪酸去饱和酶2和硬脂酰辅酶A去饱和酶1)基因表达水平(P0.05)。由此可见,蛋鸡饲粮中单独添加亚麻籽或鱼油可以富集蛋黄n-3多不饱和脂肪酸沉积;添加亚麻籽促进肝脏α-亚麻酸转化生成DHA过程,表现为上调脂肪酸延长酶和去饱和酶基因表达,添加鱼油显示相反结果。  相似文献   

5.
OBJECTIVE: To determine effects of dietary n-3 fatty acids from Menhaden fish oil on plasma alpha-tocopherol concentrations in Beagles. ANIMALS: 32 female Beagles. PROCEDURE: For 82 days, dogs were fed diets that contained 1 of 2 ratios of n-6:n-3 fatty acids (40:1 [low n-3] and 1.4:1 [high n-3]) and 1 of 3 concentrations of all-rac-alpha-tocopheryl acetate (low, 17 mg/kg of diet; medium, 101 mg/kg; and high, 447 mg/kg) in a 2 X 3 factorial study. RESULTS: Diets high in n-3 fatty acids significantly increased total content of n-3 fatty acids in plasma (17.0 g/100 g of fatty acids), compared with low n-3 diets (2.02 g/100 g of fatty acids). Mean +/- SEM plasma concentration of cholesterol was significantly lower in dogs consuming high n-3 diets (4.59 +/- 0.48 mmol/L), compared with dogs consuming low n-3 diets (5.71 +/- 0.48 mmol/L). A significant interaction existed between the ratio for n-6 and n-3 fatty acids and amount of alpha-tocopheryl acetate in the diet (plasma alpha-tocopherol concentration expressed on a molar basis), because the plasma concentration of alpha-toco-pherol was higher in dogs consuming low n-3 diets, compared with those consuming high n-3 diets, at the 2 higher amounts of dietary alpha-tocopheryl acetate. Plasma alpha-tocopherol concentration expressed relative to total lipid content did not reveal effects of dietary n-3 fatty acids on concentration of alpha-tocopherol. CONCLUSIONS AND CLINICAL RELEVANCE: Plasma alpha-tocopherol concentration is not dependent on dietary ratio of n-6 and n-3 fatty acids when alpha-tocopherol concentration is expressed relative to the total lipid content of plasma.  相似文献   

6.
This study investigated the hypothesis that dietary supplementation of fish oil as a source of n‐3 polyunsaturated fatty acids (PUFA) influences the expression of target genes of sterol regulatory element‐binding proteins (SREBP)‐1 and (SREBP)‐2 involved in triacylglycerol (TAG) synthesis and fatty acid and cholesterol metabolism in the liver, and moreover activates the expression of target genes of peroxisome proliferation‐activated receptor (PPAR)‐α involved in TAG and fatty acid catabolism in liver and skeletal muscle. Twenty lactating sows were fed a control diet or a fish oil diet with either 50 g of a mixture of palm oil and soya bean oil (4:1, w/w) or fish oil per kg. The diet of the fish oil group contained 19.1 g of n‐3 PUFA (mainly 20:5 n‐3 and 22:6 n‐3) per 100 g of total fatty acids, while the diet of the control group contained 2.4 g of n‐3 PUFA (mainly 18:3 n‐3) per 100 g of total fatty acids. The fish oil group had reduced relative mRNA concentrations of various target genes of SREBP‐1 involved in fatty acid and TAG synthesis in comparison with the control group (p < 0.05). Relative mRNA concentrations of target genes of PPARα involved in fatty acid catabolism in both liver and muscle, and mRNA concentrations of target genes of SREBP‐2 involved in cholesterol synthesis and uptake were not influenced by fish oil supplementation. Concentrations of cholesterol and TAG in plasma, fat content of milk and weight gains of litters during the suckling period were not different between the two groups of sows. In conclusion, this study suggests that fish oil has only minor effects on hepatic lipid metabolism, which are non‐critical with respect to milk production in sows.  相似文献   

7.
This study was conducted to investigate the effects of feeding fermented fish (FF) to layers on laying performance, and polyunsaturated fatty acid and cholesterol levels in eggs and plasma. A total of 96, 13-week-old Babcock B380 pullets were used in this study. They were randomly assigned to four numerically equal groups with eight replicates per treatment, three birds per replicate. All the birds were housed in individual cages. The dietary treatments were: Control diet, without FF; FF3 diet containing 3% (w/w) FF, FF6 diet containing 6% (w/w) FF and FF9 diet containing 9% (w/w) FF. The study was carried out for 16 weeks inclusive of two weeks of adjustment. Weekly feed intake and egg production were recorded. Blood plasma cholesterol and fatty acid profiles were assayed at the end of the experiment. FF did not enhance ( P  > 0.05) egg mass but ( P  < 0.05) decreased egg weight slightly. However, egg yolk cholesterol and plasma cholesterol concentrations were reduced ( P  < 0.05) by FF. The n-6:n-3 fatty acids ratio in the egg yolk (Control = 7.9, FF9 = 6.2) and plasma (Control = 10.6, FF9 = 6.2) were decreased by feeding FF. Moreover, FF was able to increase ( P  < 0.05) the docosahexaenoic acid (DHA) concentrations in egg yolk and plasma. In conclusion, this study demonstrated that FF increased DHA and reduced egg yolk cholesterol in poultry eggs.  相似文献   

8.
Two experiments evaluated the ability of maternal fatty acid supplementation to alter conceptus and endometrial fatty acid composition. In Exp. 1, treatments were 1) the control, a corn-soybean meal diet; 2) flax, the control diet plus ground flax (3.75% of diet); and 3) protected fatty acids (PFA), the control plus a protected fish oil source rich in n-3 PUFA (Gromega, JBS United Inc., Sheridan, IN; 1.5% of diet). Supplements replaced equal parts of corn and soybean meal. When gilts reached 170 d of age, PG600 (PMSG and hCG, Intervet USA, Millsboro, DE) was injected to induce puberty, and dietary treatments (n = 8/treatment) were initiated. When detected in estrus, gilts were artificially inseminated. On d 40 to 43 of gestation, 7 gilts in the control treatment, 8 gilts in the PFA treatment, and 5 gilts in the flax treatment were pregnant and were slaughtered. Compared with the control treatment, the flax treatment tended to increase eicosapentaenoic acid (EPA: C20:5n-3) in fetuses (0.14 vs. 0.25 +/- 0.03 mg/g of dry tissue; P = 0.055), whereas gilts receiving PFA had more (P < 0.05) docosahexaenoic acid (DHA: C22:6n-3) in their fetuses (5.23 vs. 4.04 +/- 0.078 mg/g) compared with gilts fed the control diet. Both the flax and PFA diets increased (P < 0.05) DHA (0.60, 0.82, and 0.85 +/- 0.078 mg/g for the control, flax, and PFA diet, respectively) in the chorioallantois. In the endometrium, EPA and docosapentaenoic acid (C22:5n-3) were increased by the flax diet (P < 0.001; P < 0.05), whereas gilts receiving PFA had increased DHA (P < 0.001). The flax diet selectively increased EPA, and the PFA diet selectively increased DHA in the fetus and endometrium. In Exp. 2, gilts were fed diets containing PFA (1.5%) or a control diet beginning at approximately 170 of age (n = 13/treatment). A blood sample was collected after 30 d of treatment, and gilts were artificially inseminated when they were approximately 205 d old. Conceptus and endometrial samples were collected on d 11 to 19 of pregnancy. Plasma samples indicated that PFA increased (P < 0.005) circulating concentrations of EPA and DHA. Endometrial EPA was increased (P < 0.001) for gilts fed the PFA diet. In extraembryonic tissues, PFA more than doubled (P < 0.001) the EPA (0.13 vs. 0.32 +/- 0.013 mg/g) and DHA (0.39 vs. 0.85 +/- 0.05 mg/g). In embryonic tissue on d 19, DHA was increased (P < 0.05) by PFA (0.20 vs. 0.30 +/- 0.023 mg/g). Supplementing n-3 PUFA, beginning 30 d before breeding, affected endometrial, conceptus, and fetal fatty acid composition in early pregnancy. Dynamic day effects in fatty acid composition indicate this may be a critical period for maternal fatty acid resources to affect conceptus development and survival.  相似文献   

9.
Thirteen horses of Thoroughbred or Standardbred breeding were used to study the effect of dietary fish oil supplementation on blood lipid characteristics. Horses were assigned to either fish oil (n = 7) or corn oil (n = 6) treatment groups for 63 d. The fish oil contained 10.8% eicosapentaenoic acid (EPA) and 8% docosahexaenoic acid (DHA). Each horse received timothy hay and a mixed-grain concentrate at rates necessary to maintain BW. Oil (corn or fish) was top-dressed on the concentrate daily at a rate of 324 mg/ kg of BW. The n-6:n-3 ratio was approximately 3.6:1 for horses receiving the corn oil diet and 1.4:1 for horses receiving the fish oil diet. Horses were exercised 5 d/wk during the study. Before supplementation, there was no difference in the concentrations of any serum fatty acids between the 2 treatment groups. The mean basal concentrations of EPA and DHA on d 0 were 0.04 and 0.01 mg/mL, respectively. After 63 d, horses receiving the fish oil treatment, but not those receiving the corn oil treatment, had increased concentrations of EPA and DHA (P <0.05). Fish oil supplementation for 63 d also increased the concentrations of C22:0, C22:1, and C22:5 fatty acids (P <0.05). Overall, horses receiving fish oil had a decreased concentration of n-6 fatty acids (P <0.05) and a greater concentration of n-3 fatty acids (P <0.01), resulting in a lower n-6:n-3 fatty acid ratio after 63 d (P <0.05). Serum cholesterol concentrations increased (P <0.05) during the supplementation period in horses receiving the corn oil but not in horses receiving the fish oil. Compared with horses receiving corn oil, horses receiving fish oil had lower serum triglycerides at d 63 (P <0.05). These results demonstrate that 63 d of fish oil supplementation at 324 mg/kg of BW was sufficient to alter the fatty acid profile and blood lipid properties of horses receiving regular exercise.  相似文献   

10.
Fifty Suffolk-crossbred wether lambs, with an initial live weight of 29 +/- 2.1 kg, were allocated to one of five concentrate-based diets formulated to have a similar fatty acid content (60 g/kg DM), but containing either linseed oil (high in 18:3n-3); fish oil (high in 20:5n-3 and 22:6n-3); protected linseed and soybean (PLS; high in 18:2n-6 and 18:3n-3); fish oil and marine algae (fish/algae; high in 20:5n-3 and 22:6n-3); or PLS and algae (PLS/algae; high in 18:3n-3 and 22:6n-3). Lambs were slaughtered when they reached 40 kg. Growth performance and intake were similar (P > 0.35) among treatments. By contrast, gain:feed was higher (P < 0.05) in lambs fed the fish oil compared with the linseed oil or PLS/algae diets. Total fatty acid concentration (mg/100 g) in the neutral lipid of the longissimus muscle was not affected by treatment (P > 0.87) but was least (P < 0.05) in the phospholipid fraction in lambs fed the linseed oil diet. Lambs fed either diet containing marine algae contained the highest (P < 0.05) percentage of 22:6n-3 in the phospholipid (mean of 5.2%), 2.8-fold higher than in sheep fed the fish oil diet. In lambs fed the fish/algae diet, the percentage of 20:5n-3 was highest (P < 0.05), contributing some 8.7, 0.8, and 0.5% of the total fatty acids in the muscle phospholipid, neutral lipids, and adipose tissue, respectively. The percentage of 18:3n-3 in the phospholipid fraction of the LM was highest (P < 0.05) in lambs fed the linseed oil diet (6.9%), a value double that of sheep fed the PLS diet. By contrast, lambs fed the PLS diet had twice the percentage of 18:3n-3 in the muscle neutral lipids (3.8%) than those offered the linseed oil diet, and 5.5-fold greater than lambs fed the fish/algae treatment (P < 0.05), an effect that was similar in the adipose tissue. The percentage of 18:2n-6 was highest (P < 0.05) in lambs fed the PLS diet, where it contributed 33.7, 10.1, and 11.2% in the muscle phospholipid, neutral lipids, and adipose tissue, respectively. The highest (P < 0.05) muscle PUFA-to-saturated fatty acid (P:S) ratio was obtained in lambs fed the PLS diet (0.57), followed by the PLS/algae diet (0.46), and those fed the fish oil or linseed oil diets had the lowest ratios (0.19 and 0.26, respectively). The favorable P:S ratio of lambs fed the PLS/algae diet, in conjunction with the increased levels of 20:5n-3 and 22:6n-3, enhanced the nutritional qualities of lamb to more closely resemble what is recommended for the human diet.  相似文献   

11.
1. Two experiments were carried out to investigate the effect of dietary flaxseed, flax oil and n-3 fatty acid supplementation (Dry n-3) on hepatic fat content, plasma triglycerides, hepatic haemorrhage score, egg production, food intake and body weight in an inbred line of Single Comb White Leghorns (UCD-003) predisposed to fatty liver haemorrhagic syndrome (FLHS) and normal SCWL hens. 2. Feeding diets containing 100 g/kg ground flaxseed, 40 g/kg flax oil, or 100 g/kg Dry n-3 reduced body weight and significantly reduced hepatic fat content compared to feeding the control diet with animal and vegetable oil as a fat source. 3. Hepatic malondialdehyde, an indicator of lipid peroxidation within the liver, was not significantly affected by dietary treatment. 4. Normal SCWL hens tended to have higher egg production, greater body weight, greater food intake and higher blood triglyceride concentrations than UCD-003 hens, although the strain effects were not significant. Liver weight as a percent of body weight was significantly lower in normal SCWL hens. Treatments by strain interactions were not found. 5. The result suggested that dietary flaxseed, flax oil and Dry n-3 decrease hepatic fat content and reduce body weight, 2 of the predisposing factors believed to contribute to FLHS onset. However, haemorrhages were still apparent in both strains regardless of treatment, indicating that other unknown underlying mechanisms may also be responsible for FLHS.  相似文献   

12.
Two separate studies tested the hypothesis that plasma low-density lipoprotein cholesterol (LDL-C) can be decreased by conjugated linoleic acid (CLA) by depressing hepatic acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity.  In the first experiment, 3 groups of 6 early-weaned piglets were fed low-fat diets containing either 1.5% CLA, 1.5% corn oil or 1.5% beef tallow; fat provided 8% of the energy intake.  In the second experiment, 4 groups of 6 early-weaned piglets were fed high-fat diets containing either 15% beef tallow, 12% beef tallow plus 3% CLA, 15% corn oil, or 12% corn oil plus 3% CLA; fat provided 29% of energy intake.  Cholesterol was balanced across diets in both experiments.  In pigs fed the low-fat diets, all dietary fats increased LDL-C and triacylglycerols and decreased high-density lipoprotein cholesterol (HDL-C) and very low-density lipoprotein cholesterol (VLDL-C). LDL-C was the same in pigs fed low-fat tallow or low-fat CLA diets.  However, ACAT activity was nearly 80% higher in pigs fed the low-fat tallow diet than in pigs fed the low-fat CLA diets.  All high-fat diets increased LDL-C, HDL-C and triacylglycerols equally with no effect on VLDL-C.  There were no unique fatty acid effects of the high-fat diets on ACAT activity.  We conclude that supplemental fats had differential effects on hepatic ACAT activity and LDL-C, but only in pigs fed low-fat diets.  相似文献   

13.
Dietary fish oil supplementation provides n-3 long-chained polyunsaturated fatty acids for supporting fish growth and metabolism and enriching fillet with eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; c22:6n-3). Two experiments were performed as a 3 × 2 factorial arrangement of dietary treatments for 16 wk to determine effects and mechanisms of replacing 0%, 50%, and 100% fish oil with DHA-rich microalgae in combination with synthetic vs. microalgal source of astaxanthin in plant protein meal (PM)- or fishmeal (FM)- based diets for juvenile rainbow trout (Oncorhynchus mykiss). Fish (22 ± 0.26 g) were stocked at 17/tank and 3 tanks/diet. The 100% fish oil replacement impaired (P < 0.0001) growth performance, dietary protein and energy utilization, body indices, and tissue accumulation of DHA and EPA in both diet series. The impairments were associated (P < 0.05) with upregulation of hepatic gene expression related to growth (ghr1and igf1) and biosynthesis of DHA and EPA (fads6 and evol5) that was more dramatic in the FM than PM diet-fed fish, and more pronounced on tissue EPA than DHA concentrations. The source of astaxanthin exerted interaction effects with the fish oil replacement on several measures including muscle total cholesterol concentrations. In conclusion, replacing fish oil by the DHA-rich microalgae produced more negative metabolic responses than the substitution of synthetic astaxanthin by the microalgal source in juvenile rainbow trout fed 2 types of practical diets.  相似文献   

14.
The effect of n-3 fatty acid-enriched diets (in the form of 0.5% linseed oil with either 1.5% sunflower oil or 1.5% olive oil) and alpha-tocopheryl acetate supplementation (200 mg/kg feed) on lipid oxidation (thiobarbituric acid-reactive substances, TBARS) and cholesterol oxide products (COPS) in cooked pork was investigated. Longissimus muscle was studied. Meat from pigs fed 0.5% linseed oil-enriched diets had a higher proportion of n-3 fatty acid than meat from pigs in other dietary groups in neutral (P < 0.0001) and polar lipids (P < 0.0001), and a 20% reduction in the n-6:n-3 ratio was observed. Alpha-tocopheryl acetate supplementation increased (P < 0.05) monounsaturated fatty acids in polar lipids and increased (P = 0.0001) alpha-tocopherol levels in muscle. Alpha-tocopherol concentration in muscle was affected by dietary fat (P < 0.05). Groups receiving diets enriched with sunflower oil had significantly higher alpha-tocopherol levels (P < 0.05) in muscle than those groups receiving olive oil-enriched diets. Numbers of TBARS were significantly (P < 0.05) lower in the group fed supplemental olive oil than in those fed sunflower oil. Dietary linseed oil increased (P < 0.05) lipid oxidation principally at the initial period of storage in cooked pork. Overall, dietary alpha-tocopheryl acetate supplementation significantly increased (P < 0.001) lipid stability and decreased (P < 0.05) total COP production across the dietary groups. Alpha-tocopherol was a more effective antioxidant for decreasing TBARS values in cooked meat when adding sunflower oil to the diets instead of olive oil.  相似文献   

15.
Two separate studies tested the hypoth-esis that plasma low-density lipoprotein cholesterol (LDL-C) can be decreased by conjugated linoleic acid (CLA) by depressing hepatic acyl-coenzyme A: cholesterol acyltransferase (ACAT) activity. In the first experiment, 3 groups of 6 early-weaned piglets were fed low-fat diets containing either 1.5% CLA, 1.5% corn oil or 1.5% beef tallow;fat provided 8% of the energy intake. In the second experiment, 4 groups of 6 early-weaned piglets were fed high-fat di-ets containing either 15% beef tallow, 12% beef tal-low plus 3% CLA, 15% corn oil, or 12% corn oil plus 3% CLA; fat provided 29% of energy intake. Cholesterol was balanced across diets in both experi-ments. In pigs fed the low-fat diets, all dietary fats in-creased LDL-C and triacylglycerols and decreased high-density lipoprotein cholesterol (HDL-C) and very low-density lipoprotein cholesterol (VLDL-C). LDL-C was the same in pigs fed low-fat tallow or low-fat CLA diets. However, ACAT activity was near-ly 80% higher in pigs fed the low-fat tallow diet than in pigs fed the low-fat CLA diets. All high-fat diets increased LDL-C, HDL-C and triacylglycerols equally with no effect on VLDL-C. There were no unique fat-ty acid effects of the high-fat diets on ACAT activity.We conclude that supplemental fats had differential effects on hepatic ACAT activity and LDL-C, but on-ly in pigs fed low-fat diets.  相似文献   

16.
Two experiments were conducted to evaluate the effects of protein and lipid sources on cholesterol, AA, and fatty acid content, and on biological performance of juvenile Pacific white shrimp, Litopenaeus vannamei (Boone). In Exp. 1, seven isonitrogenous and isocaloric diets were prepared using fish meal; soybean meal; casein; fish meal + soybean meal; fish meal + casein; soybean meal + casein; and fish meal + soybean meal + casein. In Exp. 2, seven isonitrogenous and isocaloric diets were prepared using fish oil; soy oil; poultry fat; fish oil + soy oil; fish oil + poultry fat; soy oil + poultry fat; and fish oil + soy oil + poultry fat. Nine shrimp (average BW 570 mg) were stocked per 60-L tank, with three tanks per diet in each experiment. Shrimp were fed to apparent satiation twice daily for 28 d. Protein sources affected shrimp cholesterol, feed consumption, feed efficiency, protein consumption, protein efficiency ratio, and crude body fat (P < or = 0.05), but not weight gain, survival, hepatosomatic index, body protein, ash, and AA composition. Body (without hepatopancreas) cholesterol concentrations were the highest in shrimp fed the diet containing fish meal (0.81%), lowest for those fed the casein diet (0.64%), and intermediate in the other dietary treatment groups (range 0.71 to 0.74%). Lipid source also affected shrimp body cholesterol, body fatty acid profiles, and fatty acid profiles in the hepatopancreas (P < or = 0.05), but not growth performance, body protein, fat, ash, and cholesterol concentrations in the hepatopancreas. Shrimp fed the fish oil diet had the highest body cholesterol (0.75%), whereas those fed the soy oil or poultry fat diets were lowest (0.66 and 0.65%, respectively). Results indicate that by replacing fish meal and fish oil with soybean meal and soy oil, shrimp growth performance is not affected, but body cholesterol concentration is reduced.  相似文献   

17.
The purpose of the study was to test the hypothesis that the dietary oils with different content of n‐3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) affect plasma lipid level in rats in a different degree. The diets with 6% of fish oil (FO) and Schizochytrium microalga oil (SchO; EPA+DHA content in the diets 9.5 + 12.3 and 2.6 + 29.5% of the sum of total fatty acids, respectively) were used; the diet with 6% of safflower oil (high content of n‐6 PUFA linoleic acid, 65.5%; EPA+DHA content 0.7 + 0.9%) was used as a control. The difference between FO and SchO was established only in the case of plasma triacylglycerol (TAG) level: plasma TAG of the FO‐fed rats did not differ from the control rats (p > 0.05), while SchO decreased (p < 0.05) plasma TAG to 46% of the control. On the other hand, FO and SchO decreased (p < 0.05) total plasma cholesterol (TC) in rats in the same extent, to 73% of the control. Regarding the underlying mechanisms for the TC decrease, both SchO and FO up‐regulated hepatic Insig‐1 gene (181 and 133% of the control; p < 0.05), which tended (p = 0.15 and p = 0.19 respectively) to decrease the amount of hepatic nSREBP‐2 protein (61 and 66% of the control). However, neither SchO nor FO influenced hepatic 3‐hydroxy‐3‐methyl‐glutaryl‐CoA reductase gene expression (p > 0.05); SchO (but not FO) increased (p < 0.05) low‐density lipoprotein receptor mRNA in the liver. It was concluded that the decrease of total plasma cholesterol might be caused by an increased cholesterol uptake from plasma into the cells (in the case of SchO), but also by other (in the present study not tested) mechanisms.  相似文献   

18.
This study investigated the effect of modifying the n-6:n-3 fatty acid ratio (FAR) of diets using linseed, soybean, and cottonseed oils on apparent digestibility, ruminal fermentation characteristics, growth performance, key circulating hormones, and the fatty acid profile of ruminal digesta, liver, and fore-shank muscle of growing lambs fed a high concentrate diet. Forty individually housed Katadhin Dorper lambs (average of 20.0 kg of BW) were fed Bermudagrass hay in ad libitum amounts and concentrates at 3.7% of BW daily. The concentrate contained 68.9% corn, 23.8% soybean meal, 3.3% limestone, and 4.0% oil supplements (DM basis). The treatments consisted of dietary n-6:n-3 FAR of 2.3:1, 8.8:1, 12.8:1, and 15.6:1. After feeding for 35 d in metabolism crates, lambs were slaughtered 15 h after feeding, and samples of ruminal digesta, blood, liver, and foreshank tissue were collected. Increasing dietary n-6:n-3 FAR did not affect the intake of DM nor the apparent digestibility of DM, ether extract, NDF, or ADF, but did increase apparent digestibility of CP (linear, P < 0.05). Concentrations of ruminal butyrate increased linearly (P < 0.05) with increasing dietary n-6:n-3 FAR, whereas the valerate concentration decreased linearly (P < 0.001). Concentrations of plasma insulin and IGF-I were not affected by dietary n-6:n-3 FAR. Concentrations of C18:3n-3 increased linearly (P < 0.001), whereas that of C18:2n-6 decreased linearly (P < 0.001) in ruminal digesta with decreasing dietary n-6:n-3 FAR. Concentrations of transisomers of fatty acids in ruminal digesta did not change. Proportions of C18:0 in liver and foreshank muscle were unchanged by diet. The proportion of trans11 C18:1 and cis-9 trans11 CLA decreased (P < 0.05) in liver but increased (P < 0.05) in foreshank muscle as dietary n-6:n-3 FAR decreased. Proportions of all measured n-3 fatty acids were greater in liver when diets contained more C18:3n-3 from linseed oil. By decreasing the dietary n-6:n-3 FAR, the proportions of n-6 fatty acids in foreshank muscle decreased dramatically; specifically, C18:2n-6 decreased linearly (P < 0.001) from 28.0 to 16.5% and C20:4n-6 decreased linearly (P < 0.001) from 14.7 to 8.6%. Although feeding a diet that contained more n-3 fatty acids increased the n-3 fatty acid concentration of muscle, the ratio of PUFA to SFA was decreased.  相似文献   

19.
Supplementing diets with n-3 fatty acids from fish oil has been shown to improve reproductive performance in dairy cattle and sheep, but there is little published literature on its effects in sows. The aim of this study was to evaluate the reproductive performance of sows fed fish oil as a source of n-3 PUFA prefarrowing and during lactation. From d 107.7 ± 0.1 of pregnancy, 328 sows ranging in parity from 0 to 7 (parity 1.95 ± 0.09, mean ± SE) were fed either a diet containing tallow (control) or an isocaloric diet containing 3 g of fish oil/kg of diet (n-3). Diets were formulated to contain the same amount of DE (13.9 MJ/kg), crude fat (54 g/kg), and CP (174 g/kg). Sows were fed their treatment diet at 3 kg daily for 8 d before farrowing and continued on treatment diets ad libitum until weaning at 18.7 ± 0.1 d of lactation. After weaning, all sows were fed a gestation diet without fish oil until their subsequent farrowing. There was no effect (P > 0.310) of feeding n-3 diets prefarrowing on piglet birth weight, preweaning growth rate, piglet weaning weight, or sow feed intake. However, n-3 sows had a larger subsequent litter size (10.7 ± 0.3 vs. 9.7 ± 0.3 total born; 10.2 ± 0.3 vs. 9.3 ± 0.3 born live; P < 0.05). In conclusion, this is the first study to demonstrate that feeding sows a diet containing n-3 PUFA from fish oil fed before farrowing and during lactation increased litter size in the subsequent parity independent of energy intake.  相似文献   

20.
Our aim was to determine the effect of n-3 (2%, wt/wt, fish oil rich diet) and n-6 (2%, wt/wt, evening primrose oil rich diet) fatty acid dietary supplementation and their combination with two concentrations of vitamin E (40 vs 200 mg/kg) on semen variables and on fatty acid and vitamin E profiles of spermatozoa in broiler breeders at 32, 42 and 52 weeks of age. The inclusion of fish oil in the cockerel diets increased the docosahexaenoic acid proportion in the sperm phospholipid fraction, which was almost threefold higher compared to the other two groups irrespective of vitamin E supplementation. In contrast, an increase in the proportion of total n-6 polyunsaturates, mainly 22:4n-6, was observed in the evening primrose oil group compared to the control only when the dietary content of vitamin E was increased to 200 mg/kg. Sperm concentration was decreased in the fish and evening primrose oil groups if vitamin E was 40 mg/kg, but such an effect was prevented in the fish, not the evening primrose oil group, by increasing the vitamin E to 200 mg. The proportion of motile spermatozoa was improved by the increased supplementation of vitamin E in all oil treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号