首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT The virulence of Meloidogyne hapla, M. chitwoodi, and M. fallax was studied on genotypes of Solanum spp. in a greenhouse. Juveniles of 11 M. hapla race A isolates, 3 M. hapla race B isolates, and 5 mono-female lines of a M. hapla race A isolate were inoculated on S. chacoense, S. hougasii, and S. sparsipilum. Juveniles of eight M. chitwoodi isolates, five M. fallax isolates, and six mono-female lines of a M. chitwoodi isolate were inoculated on S. bulbocastanum, S. chacoense, S. hougasii, S. stoloniferum, and S. tuberosum. Virulence was expressed as nematode reproduction 8 weeks after inoculation. Nematode reproduction was estimated by the number of egg masses and, in one experiment, by the number of hatched second-stage juveniles per inoculated juvenile. Considerable variation in virulence and resistance was observed among M. hapla isolates and plant genotypes, respectively. The M. hapla isolate-plant species interaction was highly significant. The response to M. chitwoodi ranged from susceptible (S. tuberosum and S. chacoense) to highly resistant (S. bulbocastanum and S. hougasii). S. tuberosum was susceptible to M. fallax, whereas all four wild species were resistant. In contrast to M. hapla, no significant isolate-plant genotype interaction was obtained for M. chitwoodi or M. fallax, indicating no or little intraspecific variation in virulence. M. chitwoodi juveniles in species mixtures with M. fallax isolates appeared to be able to break the resistance of S. bulbocastanum and S. hougasii. Significant differences among mono-female lines of M. hapla and M. chitwoodi were observed, indicating heterogeneity of pathogenicity within meiotic parthenogenic Meloidogyne populations.  相似文献   

2.
A molecular protocol is presented for distinguishing seven of the most common and economically important Meloidogyne spp. DNA was extracted from individual second-stage juvenile (J2) nematodes of Meloidogyne spp. and amplified by PCR (polymerase chain reaction). Fifteen PCRs including amplification of rDNA, specific SCAR (sequence characterized amplified region) and RAPD (random amplified polymorphic DNA) fragments were possible from the extracted DNA. This enabled a molecular diagnostic key for M. incognita , M. javanica , M. arenaria , M. mayaguensis , M. hapla , M. chitwoodi and M. fallax to be designed. The key unifies published methods into a single logical schematic using primer combinations that were previously validated and shown to work reliably and specifically. The protocol can be used with single juvenile or adult nematodes and the schematic can readily be expanded to accommodate more species. The use of RAPD amplification to assist with identification of samples which do not yield diagnostic amplification products after the first three steps of the molecular key is also described.  相似文献   

3.
ABSTRACT Polymerase chain reaction amplification of the intergenic spacer region between the 5S and 18S genes from Meloidogyne chitwoodi, M. fallax, and M. hapla enabled these three important temperate species to be differentiated. Length polymorphism was found between M. chitwoodi and M. fallax as a result of differing numbers of short repeats located between the 5S and 18S genes. The presence of the 5S gene within the rDNA cistrons was confirmed in the Meloidogyne spp. included in this study. The region between the 28S and 5S genes for M. chitwoodi and M. fallax was short and lacked variability in repeated sequences compared with the main tropical Meloidogyne spp. and M. hapla. Differences in the number of these repeats resulted in intraspecific length polymorphism for M.hapla.  相似文献   

4.
ABSTRACT Meloidogyne chitwoodi and M. fallax are serious pests of potato, and both species have been recently designated as quarantine organisms in the European Community and in Canada. The sympatric and less damaging species M. hapla is often found associated with both of them under temperate climates. Here, we describe the use of satellite DNA (satDNA) sequences previously isolated from these three root-knot nematode species for the development of specific diagnostic procedures. In dot-blot experiments, it was unambiguously possible to separate M. chitwoodi and M. fallax from M. hapla using satDNA monomers as probes. In squash-blot experiments, satDNAs allowed discrimination between single individuals of M. chitwoodi or M. fallax from M. hapla, even within root tissues, without the need for DNA purification. The same results were obtained with radioactive or digoxigenin-labeled probes with no loss of sensitivity in detection. M. fallax and M. chitwoodi could not be distinguished. From this study, it is concluded that such cloned satDNA sequences may constitute a powerful tool for the identification and management of Meloidogyne spp. populations in the field and for the implementation of quarantine regulations against these pests.  相似文献   

5.
实时荧光定量PCR法检测十字花科细菌性黑斑病菌   总被引:2,自引:2,他引:0  
为有效防控我国的检疫性有害生物十字花科细菌性黑斑病菌Pseudomonas syringae pv.maculicola在国内的传播与蔓延,通过设计1对特异性引物3539,利用132株靶标和非靶标菌为模板进行PCR扩增,建立了实时荧光定量PCR法,并进行了模拟种子带菌试验。结果显示,引物3539为只针对十字花科细菌性黑斑病菌扩增出的特异性产物;在模拟种子带菌检测中,常规PCR对菌悬液的检测限为10~5CFU/m L,实时荧光定量PCR的检测限为10~3CFU/m L,其中10~8CFU/m L菌液的Ct值最低,为22.90,10~3CFU/m L菌液的Ct值最高,为35.73,且不同浓度菌液间的Ct值均有显著差异;不同带菌率模拟种子的检测结果表明,常规PCR和实时荧光定量PCR能检测到的带菌率分别为0.5%和0.1%。研究表明,实时荧光定量PCR法不仅可用于病种的检测,也可用于病害的早期诊断。  相似文献   

6.
利用叠氮溴乙锭(ethidium monoazide bromide,EMA)与实时荧光定量PCR技术相结合(EMA-qPCR),建立了一种有效快速检测猕猴桃溃疡病菌活菌的方法。以猕猴桃溃疡病菌ITS序列为检测靶标,菌体经EMA渗透处理,再进行qPCR特异性扩增。结果显示,qPCR检测灵敏度为2cfu;当EMA的浓度为2.0μg/mL时,能有效抑制1.0×10~7 cfu/mL经高温灭活的死菌的扩增,对活菌的扩增没有影响。当活菌数在1.0×10~1~1.0×10~5 cfu范围内,每个qPCR反应体系中活菌数与Ct值呈线性相关(R~2=0.988)。不同温度处理活菌菌悬液后用EMA-qPCR检测猕猴桃溃疡病菌的存活情况并与平板计数法进行比较,结果表明待检样品可在4℃和20℃短期保存。对疑似带病猕猴桃材料进行EMA-qPCR检测,结果表明能减少猕猴桃溃疡病菌PCR的假阳性结果。本研究建立的EMAqPCR方法是一种有效检测猕猴桃溃疡病菌活菌的方法,能有效避免PCR检测实际样品可能造成的假阳性结果。  相似文献   

7.
ABSTRACT Hybridization between two meiotic parthenogenetic species of root-knot nematodes, Meloidogyne chitwoodi and M. fallax, was investigated in two different crossing experiments on tomato plants grown in sand. The first experiment was a controlled cross between the two species. The second experiment was a bulk mating in a 1:1 mixture of two isolates. The haploid chromosome number of the parental isolates was n = 18. Successful interspecific hybridization was obtained, and the resulting hybrids produced egg masses. In eggs, cell division was observed, but most of them were without clear differentiation and consequently were sterile. Hatched F(2) juveniles were small in number, not viable, and showed morphological distortions. In the progeny of the isolate mixture of the bulk mating experiment, parental-type females of the two isolates were present in equal numbers, and 10% of all females were nonviable hybrids. Similar ratios of parental-type and hybrid females were detected in roots of test plants grown in soil from a field sample that contained a mixture of M. chitwoodi and M. fallax populations. In the controlled cross experiment, isozyme electrophoresis of malate dehydrogenase was applied to distinguish the two species and their hybrids. In the bulk mating experiment, malate dehydrogenase, esterase, and glucose 6-phosphate dehydrogenase were used as markers, two by two simultaneously on the same individual females, providing conclusive evidence for the occurrence of hybrids. This is the first report on interspecific hybridization in Meloidogyne. The possible role of interspecific hybridization in species differentiation and interspecific exchange of genetic material within Meloidogyne is discussed.  相似文献   

8.
Powdery mildew can be found in most sunflower fields during the winter season in Taiwan and causes severe yellowing on the blade, petiole, stem, and calyx, as well as serious defoliation. Two types of powdery mildew fungi isolated from sunflower leaves showed variable status for fibrosin bodies. But only the cleistothecium of Podosphaera xanthii, one of the pathogens causing this disease, was observed on samples from Chungpu County at the beginning of 2005. With a species-specific primer pair, PN23/PN34, no specific PCR product was amplified from the pathogen’s genomic DNA. Based upon the ITS sequence of rDNA, three PCR primer sets (S1/S2, G1/G2, and L1/L2) specific to P. xanthii, Golovinomyces cichoracearum and Leveillula taurica, respectively, were designed to detect and differentiate pathogens causing powdery mildews on sunflower. Only the primer pairs S1/S2 and G1/G2 could amplify PCR products, with product sizes of 454 and 391 bp, respectively. Four samples of fungal DNA were subjected to a multiplex PCR amplification with primer pairs S1/S2 and G1/G2; P. xanthii and G. cichoracearum were successfully detected. These results suggest that the multiplex PCR method is a rapid, simple, and effective technique to detect and differentiate powdery mildews, for example P. xanthii and G. cichoracearum, found on sunflower. With morphologic characteristics, ITS sequence analysis and pathogenicity testing, P. xanthii and G. cichoracearum, the first case, are two powdery mildews on sunflower in Taiwan.  相似文献   

9.
 为了快速、准确地检测丁香疫霉病菌 (Phytophthora syringae, PSY),根据GeneBank中PSY的ITS序列设计特异引物Psy1/Psy2和探针P-Psy,建立了常规PCR和实时荧光PCR检测方法。利用引物Psy1/Psy2扩增供试的26株PSY能得到585 bp的预期目标条带,但扩增其它61个非PSY供试菌株不能得到预期产物,检测灵敏度为12 pg菌丝DNA;探针P-Psy对供试26株PSY表现为阳性扩增,而对其它菌株和空白对照均表现为阴性扩增,检测灵敏度可达120 fg菌丝DNA,比常规PCR高100倍;引物Psy1/Psy2和探针P-Psy对5 g土壤中PSY卵孢子的检测灵敏度分别为20 000个和200个。样品检测试验表明两种PCR方法可用于口岸植物检疫中快速、准确和特异地检测丁香疫霉病菌。  相似文献   

10.
Tumour tissue samples were collected from vines grown in various regions of Italy and other parts of Europe and extracted for detection of Agrobacterium vitis. Fifty strains were isolated on agar plates and screened by PCR with consensus primers from the virD2 gene. They were confirmed as A. vitis with a species-specific monoclonal antibody. The isolates were further analyzed by PCR for their opine synthase genes and ordered into octopine, nopaline and vitopine strains. Primers designed on the octopine synthase gene did not detect octopine strains of Agrobacterium tumefaciens. For quantitative PCR, virD2 fragments were sequenced: two classes of virD2 genes were found and two primer sets designed, which detected octopine and nopaline strains or only vitopine strains. For simultaneous identification of all opine-type strains, multiplex real-time PCR with either primer pair and SYBR Green was performed: the combined sets of primers gave signals with DNA from any A. vitis strain. Specificity of the new primers for real-time PCR was evaluated using several unidentified bacterial isolates from grapevines and other plant species. An elevated level of non-specific background was observed when the combined primer sets were used in multiplex PCR assays. The real-time PCR protocol was also used to detect A. vitis cells directly from grapevine tumours; avoiding direct isolation procedures a sensitivity in the range of one to ten cells per assay was found. Inhibition of the PCR reaction by plant material was overcome by treating tumour extracts with a DNA purification kit as a step for the isolation of nucleic acids.  相似文献   

11.
ABSTRACT A technique based on the polymerase chain reaction (PCR) was developed for the identification of Venturia nashicola using nucleotide sequence information of the ribosomal DNA region. The complete internal transcribed spacer (ITS) region of V. nashicola strains and phylo-genetically related species was amplified with the two universal ITS1 and ITS4 primers, sequenced, and digested with five restriction enzymes. The alignment of nucleotide sequences and analyses of digestion patterns indicated constant polymorphisms between V. nashicola and related species at nucleotides 126 and 127, which overlapped a TaqI restriction site. An oligonucleotide primer named A126 was designed for identifying this variable region. A primer set (A126 and ITS4) that allowed the amplification of a 391-bp DNA fragment within the ITS region by PCR was specific to V. nashicola when it was checked against fungal genomic DNAs of related fungi. This primer set was a good candidate for a species-specific reagent in a procedure for identification of V. nashicola by PCR.  相似文献   

12.
L. Qin  Y. Fu  J. Xie  J. Cheng  D. Jiang  G. Li  J. Huang 《Plant pathology》2011,60(2):271-277
This study established a quick and accurate method to detect petal infection of oilseed rape (Brassica napus) by Sclerotinia sclerotiorum using a nested‐PCR technique. DNA samples were extracted from each petal using a microwave method, followed by two rounds of PCR amplification. The first‐round PCR amplification was performed using the universal fungal primer pair ITS4/ITS5, and the second‐round amplification with a specific primer pair XJJ21/XJJ222, which was designed using the single‐nucleotide polymorphisms among nuclear rDNA ITS sequences of Sclerotinia spp., Botrytis spp. and other selected fungi. The established technique is rapid and inexpensive, and has a high degree of specificity and sensitivity. This assay can distinguish Sclerotinia spp. from other fungi, including Botrytis cinerea, a closely related and frequent cohabitant on oilseed rape petals, and can detect 50 fg genomic DNA, five ascospores of S. sclerotiorumin vitro or 50 ascospores of S. sclerotiorum on one petal in approximately 6 h, even in the presence of a high background of oilseed rape DNA. This technique was successfully applied in detecting natural petal infections.  相似文献   

13.
Meloidogyne ethiopica is an important nematode pathogen causing serious economic damage to grapevine in Chile. In Brazil, M. ethiopica has been detected with low frequency in kiwifruit and other crops. The objectives of this study were to evaluate the intraspecific genetic variability of M. ethiopica isolates from Brazil and Chile using AFLP and RAPD markers and to develop a species‐specific SCAR‐PCR assay for its diagnosis. Fourteen isolates were obtained from different geographic regions or host plants. Three isolates of an undescribed Meloidogyne species and one isolate of M. ethiopica from Kenya were included in the analysis. The results showed a low level of diversity among the M. ethiopica isolates, regardless of their geographical distribution or host plant origin. The three isolates of Meloidogyne sp. showed a high homogeneity and clustered separately from M. ethiopica (100% bootstrap). RAPD screenings of M. ethiopica allowed the identification of a differential DNA fragment that was converted into a SCAR marker. Using genomic DNA from pooled nematodes as a template, PCR amplification with primers designed from this species‐specific SCAR produced a fragment of 350 bp in all 14 isolates of M. ethiopica tested, in contrast with other species tested. This primer pair also allowed successful amplification of DNA from single nematodes, either juveniles or females and when used in multiplex PCR reactions containing mixtures of other root‐knot nematode species, thus showing the sensitivity of the assay. Therefore, the method developed here has potential for application in routine diagnostic procedures.  相似文献   

14.
Wang Y  Zhang W  Wang Y  Zheng X 《Phytopathology》2006,96(12):1315-1321
ABSTRACT Root and stem rot caused by Phytophthora sojae is one of the most destructive diseases of soybean (Glycine max) worldwide. P. sojae can survive as oospores in soil for many years. In order to develop a rapid and accurate method for the specific detection of P. sojae in soil, the internal transcribed spacer (ITS) regions of eight P. sojae isolates were amplified using polymerase chain reaction (PCR) with the universal primers DC6 and ITS4. The sequences of PCR products were aligned with published sequences of 50 other Phytophthora species, and a region specific to P. sojae was used to design the specific PCR primers, PS1 and PS2. More than 245 isolates representing 25 species of Phytophthora and at least 35 other species of pathogens were used to test the specificity of the primers. PCR amplification with PS primers resulted in the amplification of a product of approximately 330 bp, exclusively from isolates of P. sojae. Tests with P. sojae genomic DNA determined that the sensitivity of the PS primer set is approximately 1 fg. This PCR assay, combined with a simple soil screening method developed in this work, allowed the detection of P. sojae from soil within 6 h, with a detection sensitivity of two oospores in 20 g of soil. PCR with the PS primers could also be used to detect P. sojae from diseased soybean tissue and residues. Real-time fluorescent quantitative PCR assays were also developed to detect the pathogen directly in soil samples. The PS primer-based PCR assay provides a rapid and sensitive tool for the detection of P. sojae in soil and infected soybean tissue.  相似文献   

15.
The root-lesion nematode Pratylenchus thornei is one of the most important pests restricting productivity of wheat in the Pacific Northwest (PNW). It is laborious and difficult to use microscopy to count and identify the nematodes in soils. A SYBR Green I-based real-time polymerase chain reaction (PCR) assay was developed to detect and quantify this species from DNA extracts of soil. A primer set, designed from the internal transcribed spacer region (ITS1) of rDNA, was highly specific to P. thornei and did not amplify DNA from 27 isolates of other Pratylenchus spp., other nematodes, and six fungal species present in PNW wheat fields. A standard curve relating threshold cycle and log values of nematode number was generated from artificially infested soils. The standard curve was supported by a high correlation between the numbers of P. thornei added to soil and the numbers quantified using real-time PCR. Examination of 15 PNW dryland field soils and 20 greenhouse samples revealed significant positive correlations between the numbers determined by real-time PCR and by the Whitehead tray and microscopic method. Real-time PCR is a rapid, sensitive alternative to time-consuming nematode extractions, microscopic identification, and counting of P. thornei from field and greenhouse soils.  相似文献   

16.
湖南柑橘根结线虫种类鉴定及特异性PCR检测   总被引:1,自引:0,他引:1  
根结线虫病是严重危害湖南柑橘生产的主要病害,快速准确地进行病原线虫鉴定,从而制定针对性的防治措施,对柑橘产业的稳定发展至关重要。运用形态学和分子生物学技术对湖南永州地区柑橘根结线虫进行病原种类鉴定,确定其为番禺根结线虫Meloidogyne panyuensis。通过引物设计与筛选,建立了番禺根结线虫特异性PCR检测技术。结果表明,该检测方法特异性好,灵敏度高,操作简单,能有效地从多种根结线虫中特异性检测出番禺根结线虫,为柑橘病原线虫的快速检测鉴定提供技术支撑。  相似文献   

17.
A new multiplex PCR assay was developed for the detection of Clavibacter michiganensis subsp. sepedonicus in potato tubers. The assay combines two different tests in one reaction mixture. First, a highly specific and sensitive detection of the pathogen and second, an indicator test for successful amplification (internal PCR control), which monitors potentially false-negative PCR results, caused by inhibition of the PCR. For the simultaneous amplification of two different targets in one reaction mixture, a mix of two different primer sets was used. For the detection of C. michiganensis subsp. sepedonicus, a pathogen-specific primer set PSA-1/PSA-R was used, based on the intergenic spacer region of the 16S–23S rRNA genes of C. michiganensis subsp. sepedonicus. For the simultaneous amplification of the internal PCR control, the plant-specific primer set NS-7-F/NS-8-R was employed, permitting amplification of target sequence from plant DNA present in DNA extractions from potato core fluid. The applicability of the multiplex PCR was verified in 3500 composite samples of 200 seed potato tubers from 143 different cultivars in a survey for C. michiganensis subsp. sepedonicus by parallel testing using immunofluorescence, a bioassay in eggplant seedlings and multiplex PCR.  相似文献   

18.
土壤中生防菌粉红粘帚霉67-1的荧光定量PCR检测方法   总被引:1,自引:0,他引:1  
为了建立重要植病生防真菌粉红粘帚霉67-1菌株的荧光定量PCR检测方法,收集了目标菌株、粘帚霉属其它多个种及近缘木霉属的多个种等共18个菌株,并进行了ITS区测序。以200bp左右差异较大区段设计出探针和引物。该引物及探针能有效扩增目标菌株,而其它17株非目标菌株没有扩增,表明所设计的引物和探针具有高度特异性。以目标菌株的阳性克隆质粒作为标准物质,建立了标准曲线,相关系数为0.9989,且扩增效率较高(95.0%)。经过土壤样品试验,得出标准曲线相关系数为0.9979,表明所建立的粘帚霉67-1菌株荧光定量PCR检测方法合理有效、快速实用,适合生态学研究的要求。  相似文献   

19.
Seven root-knot nematodes (RKN), including Meloidogyne exigua, M. incognita, M. paranaensis, M. enterolobii, M. arabicida, M. izalcoensis and M. arenaria are major pathogens of coffee crop in the Americas. Species-specific primers for their identification have been developed for five of them and constitute a fast and reliable method of identification. Here we report a PCR-based assay for specific detection of M. arabicida and M. izalcoensis. Random Amplified Polymorphic DNA fragments specific for these two species were converted into sequence characterized amplified region (SCAR) markers. PCR amplification using the SCAR primers produced a specific fragment of 300 bp and 670 bp for M. arabicida and M. izalcoensis, respectively, which were absent in other coffee-associated Meloidogyne spp. tested. SCAR primers also allowed successful amplification of DNA from single second-stage juveniles (J2), males and females. In addition, these primers were able to unambiguously detect the target species in nematode suspensions extracted from soil and roots samples, in different isolates of the same species or when used in multiplex PCR reactions containing mixtures of species. These results demonstrated the effectiveness of these SCAR markers and their multiplex use with those previously developed for M. exigua, M. incognita, M. paranaensis, M. enterolobii and M. arenaria constitute an essential detection tool. This diagnostic kit will contribute for specific J2 identification of the major RKN infecting coffee from field samples in the Americas.  相似文献   

20.
ABSTRACT The stem nematode Ditylenchus dipsaci is of great economic importance worldwide as a parasite of agricultural crops and horticultural plants. The internal transcribed spacer (ITS) of rDNA from 23 populations of the D. dipsaci complex from various host plants were amplified and sequenced. Seven previously studied populations were also included in the study. The phylogenetic analysis of the full ITS and ITS2 sequence alignments using minimum evolution, maximum parsimony, and Bayesian inference under the complex model of DNA evolution revealed trees with two main clades: (i) D. dipsaci sensu stricto with diploid chromosome numbers and comprising most isolates from agricultural, ornamental, and several wild plants, and (ii) Ditylenchus spp. with polyploid chromosome numbers, reproductively isolated from diploid populations, and subdivided into six subclades ("giant race" from Vicia faba, Ditylenchus species parasitizing various Asteraceae, and a Ditylenchus sp. from Plantago maritima). Using the energy minimization approach and comparative sequence analysis, it has been found that the secondary structure of ditylenchid ITS2 is organized in three main domains. The importance of knowledge on the RNA structure for phylogenetic analysis is discussed. Conventional polymerase chain reaction (PCR) and real-time PCR with SYBR green dye I with a species specific primer have been developed for detection and quantification of D. dipsaci sensu stricto Validation tests revealed a rather high correlation between real numbers of fourth-stage juveniles of the stem nematodes in a sample and expected numbers detected by real-time PCR. Problems of accuracy of quantification are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号