首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The presence of antiadhesive component(s) in the hen egg yolk against foodborne pathogens was anticipated from results of a previous animal study conducted by the authors. The previous work showed egg yolk powder without specific antibodies is effective in controlling Salmonella enteritidis,Salmonella typhimurium, and Escherichia coli O157:H7 colonization in laying hens. Therefore, this study was necessary to locate the activity and identify the effective component(s). In vitro experiments were conducted using confluent Caco-2 cell monolayers. S. enteritidis, S. typhimurium, and E. coli O157:H7 were investigated against the various extracted granule and plasma fractions in three different assays: adhesion elimination, adhesion prevention, and antimicrobial. This study revealed original findings and identified the protective yolk fraction against the foodborne pathogens as the granule component, high-density lipoproteins (HDL). The protective activity conveyed by HDL was confirmed to remain intact despite peptic and tryptic enzymatic digestion and to have antiadhesive but not antimicrobial effect.  相似文献   

2.
Meats need to be heated to inactivate foodborne pathogens such as Escherichia coli O157:H7. High-temperature treatment used to prepare well-done meats increases the formation of carcinogenic heterocyclic amines (HCAs). We evaluated the ability of plant extracts, spices, and essential oils to simultaneously inactivate E. coli O157:H7 and suppress HCA formation in heated hamburger patties. Ground beef with added antimicrobials was inoculated with E. coli O157:H7 (10(7) CFU/g). Patties were cooked to reach 45 °C at the geometric center, flipped, and cooked for 5 min. Samples were then taken for microbiological and mass spectrometry analysis of HCAs. Some compounds were inhibitory only against E. coli or HCA formation, while some others inhibited both. Addition of 5% olive or apple skin extracts reduced E. coli O157:H7 populations to below the detection limit and by 1.6 log CFU/g, respectively. Similarly, 1% lemongrass oil reduced E. coli O157:H7 to below detection limits, while clove bud oil reduced the pathogen by 1.6 log CFU/g. The major heterocyclic amines 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were concurrently reduced with the addition of olive extract by 79.5% and 84.3% and with apple extract by 76.1% and 82.1%, respectively. Similar results were observed with clove bud oil: MeIQx and PhIP were reduced by 35% and 52.1%, respectively. Addition of onion powder decreased formation of PhIP by 94.3%. These results suggest that edible natural plant compounds have the potential to prevent foodborne infections as well as carcinogenesis in humans consuming heat-processed meat products.  相似文献   

3.
中性电解水对鸡蛋表面的清洗灭菌效果   总被引:7,自引:4,他引:3  
为寻求一种高效、安全、无污染的禽蛋清洗消毒剂,采用无隔膜电解装置电解稀盐酸溶液制备中性电解水(pH值6.0~7.5)考查不同有效氯浓度、处理时间和温度条件下中性电解水对鸡蛋人工接种鸡白痢沙门氏菌(Salmonella pullorum,鸡蛋表面的初始菌落数对数为6.19~6.26 log10 (cfu/g))和大肠杆菌O157:H7(鸡蛋表面的初始菌落数对数为6.12~6.19 log10 (cfu/g))的杀灭效果。结果表明,中性电解水对2种病菌均具有较强的杀灭效果,其杀菌效果随着有效氯浓度和处理时间的增加而增强,但温度对中性电解水的杀菌效果影响不显著。对菌悬液的杀菌试验表明:当中性电解水有效氯质量浓度为1.5 mg/L时,可以在20℃下3 min内完全杀灭鸡白痢沙门氏菌(初始含菌数的对数为 8.12 log10 (cfu/mL));质量浓度为2 mg/L时,可以100%杀灭大肠杆菌O157:H7(初始含菌数的对数为7.78 log10 (cfu/mL))。当中性电解水清洗消毒被人工污染的鸡蛋表面时,有效氯质量浓度为12 mg/L、处理3 min可将鸡蛋表面的鸡白痢沙门氏菌全部杀灭,大肠杆菌O157:H7菌落数对数降低到1.0 log10 (cfu/g) 以下,且处理废液中没有残存菌,无二次污染问题。因此,中性电解水可以代替化学杀菌剂应用于鸡蛋清洗消毒。  相似文献   

4.
Digestion of green plants in the gastrointestinal (GI) tract produces degradation products from chlorophyll that cause ingesta and feces to be highly fluorescent. This property was exploited for development and construction of instruments to noninvasively detect minute quantities of feces on meat samples in real time. The presence of feces on meat products is a primary source of foodborne pathogens, such as Escherichia coli O157:H7 and Salmonella. This new technology provides a rapid and accurate alternative to the practice of visual inspection and augments more time-consuming biological testing methods. This innovation can assist meat processors and government inspectors in their efforts to provide safe and wholesome food to consumers.  相似文献   

5.
We evaluated 17 plant essential oils and nine oil compounds for antibacterial activity against the foodborne pathogens Escherichia coli O157:H7 and Salmonella enterica in apple juices in a bactericidal assay in terms of % of the sample that resulted in a 50% decrease in the number of bacteria (BA(50)). The 10 compounds most active against E. coli (60 min BA(50) range in clear juice, 0.018-0.093%) were carvacrol, oregano oil, geraniol, eugenol, cinnamon leaf oil, citral, clove bud oil, lemongrass oil, cinnamon bark oil, and lemon oil. The corresponding compounds against S. enterica (BA(50) range, 0.0044-0.011%) were Melissa oil, carvacrol, oregano oil, terpeineol, geraniol, lemon oil, citral, lemongrass oil, cinnamon leaf oil, and linalool. The activity (i) was greater for S. enterica than for E. coli, (ii) increased with incubation temperature and storage time, and (iii) was not affected by the acidity of the juices. The antibacterial agents could be divided into two classes: fast-acting and slow-acting. High-performance liquid chromatography analysis showed that the bactericidal results are related to the composition of the oils. These studies provide information about new ways to protect apple juice and other foods against human pathogens.  相似文献   

6.
An effective bacteriocin was identified and characterized. Lactic acid bacteria were screened against Campylobacter jejuni. One bacteriocin producer, Enterococcus faecium (NRRL B-30746), was studied. The isolate was grown, and the bacteriocin was purified to single-band homogeneity. Biochemical traits indicated that the peptide was a Class IIa bacteriocin, and it was named E 50-52. The bacteriocin had a molecular weight of 3339.7 and an isoelectric point of 8.0. The minimal inhibitory concentrations of E 50-52 against C. jejuni, Yersinia spp., Salmonella spp., Escherichia coli O157:H7, Shigella dysenteriae, Morganella morganii, Staphylococcus spp., and Listeria spp. ranged from 0.025 to 32 microg/mL. In therapeutic broiler trials, oral treatment with E 50-52 reduced both C. jejuni and Salmonella enteritidis by more than 100,000-fold in the ceca, and systemic S. enteritidis was reduced in the liver and spleen. The wide range of antibacterial activity of bacteriocin E 50-52 against pathogens provides a promising alternative to antibiotics.  相似文献   

7.
Chemical compositions and inhibitory effects of essential oils of Turkish oregano (Origanum minutiflorum O. Schwarz & P. H. Davis), bay laurel (Laurus nobilis L.), Spanish lavender (Lavandula stoechas subsp. stoechas L.), and fennel (Foeniculum vulgare Mill.) on Escherichia coli O157:H7, Listeria monocytogenes, Salmonella typhimurium, and Staphylococcus aureus were determined. After the essential oils were applied on the foodborne pathogens at doses of 0 (control), 5, 10, 20, 30, 40, 50, and 80 microL/mL, the resultant numbers of cells surviving were counted. Results revealed that all essential oils exhibited a very strong antibacterial activity against the tested bacteria (P < 0.05). Gas chromatography-mass spectrophotometry analyses revealed that carvacrol (68.23%), 1,8-cineole (60.72%), fenchone (55.79%), and trans-anethole (85.63%) were the predominant constituents in Turkish oregano, bay laurel, Spanish lavender, and fennel essential oils, respectively.  相似文献   

8.
《Applied soil ecology》2011,47(3):398-404
The inactivation of Escherichia coli O157:H7 (CCUG 44857) and Salmonella enterica serovar Typhimurium was investigated in two agricultural soils (sandy loam and silty clay) amended with poultry manure, cattle manure slurry or human urine. The study was performed in soil lysimeters placed outdoors, and was repeated over two consecutive years. The amendments, inoculated with E. coli O157:H7 and Salmonella Typhimurium, were mixed with soil on the top of the lysimeters. Samples were collected from the top 5-cm layer of each lysimeter at regular intervals, and the inactivation was monitored over 6 months, by the plate spread method and by enrichment. The inactivation was modelled by fitting a non-linear model to the data, and pathogen reduction times were calculated (90 and 99% reduction). The results showed that the inactivation of E. coli O157:H7 and Salmonella Typhimurium varied depending on the manure type used and its carbon content. The longest inactivation time occurred in samples amended with poultry manure, in which both E. coli O157:H7 and Salmonella Typhimurium were detected up to day 90 with the spread plate method. The most rapid inactivation for both pathogens occurred in soil amended with urine. However, low amounts of culturable E. coli O157:H7 and Salmonella Typhimurium were detected by enrichment throughout the study period (180 days), regardless of manure type.  相似文献   

9.
低温等离子体用于液体食品的低温杀菌   总被引:9,自引:5,他引:9  
介绍了一项新的非热(或低温)巴氏杀菌技术——低温等离子体(NTP)的初步研究结果。NTP一般由高压电场下的气体介质放电所诱发。该文作者的一项美国专利技术成功的在液体介质中诱发NTP。该研究表明这项新的NTP技术可以在常温下和极短的时间内杀死液体食品中的病源菌包括大肠杆菌O157:H7和沙门氏菌。实验中,NTP可使接种在橙汁和牛奶细菌总数降低5个对数值,而对橙汁中的维生素C和牛奶的氧化值影响甚微。能量消耗估算为1~2J/mL,比之于热杀菌和其它低温杀菌技术能耗率要低得多  相似文献   

10.
Escherichia coli O157:H7 has an unusually high resistance to acidic environments. Some research has revealed that acid-adapted cells, by exposure to moderately acidic conditions, are more resistant to a subsequent strong acidic challenge or other stress. This study was conducted to understand the protein expression regulation of acid tolerance response (ATR) of a local isolated E. coli O157:H7 TWC01 (TWC01) induced by an acidic environment. TWC01 cells were acid adapted by using hydrochloric acid (HCl) or lactic acid as acidifier to induce ATR. The total proteins of adapted cells were extracted for proteomic analysis and protein identification by matrix-assisted laser desorption ionization quadrupole time-of-flight tandem mass spectrometry (MALDI-Q-TOF MS/MS). Furthermore, the effects of acid adaptation on shiga-like toxin (stx) secretion were examined. Results revealed that acid adaptation depressed stx production of E. coli O157:H7 TWC01 during adaptation and did not improve post-stress toxin production. Image analysis of the gel indicated that numerous proteins were up-regulated and that lactic acid had a greater effect than HCl did (percentages of up-regulated proteins were 57.64 and 35.47%, respectively). Analysis of proteins by mass spectrometry revealed that most of the up-regulated proteins were metabolism-related, including phosphoglycerate kinase (PGK), glutamate decarboxylases alpha and beta (GadA, GadB), adenine phosphoribosyltransferase (APRT), and dihydrodipicolinate synthase (DHDPS). Others were related to translation (e.g., elongation factor Tu, elongation factor G), protein folding (e.g., alkyl hydroperoxide reductase), and membrane proteins (e.g., ompA precursor and ompR). The variation of protein expression showed that acid resistance was induced in TWC01 and was primarily manifested via expression of up-regulated proteins that contribute to increased energy conservation and polypeptide synthesis.  相似文献   

11.
Contamination of food and water by microorganisms from animal manure has become an important issue in public health. Escherichia coli O157:H7 is one of several emerging pathogens of concern. In this research, we studied how the self-heating, thermophilic phase of composting influenced laboratory-grown vs. bovine-derived E. coli O157:H7 mortality, specifically the relationship between temperature, time at temperature, and pathogen survival. Composting experiments were conducted in laboratory-scale bioreactors operated in three temperature ranges: 40°C to 50°C, 50°C to 60°C, and greater than 60°C. We measured the effects of temperature and composting time on E. coli O157:H7 mortality. Laboratory-grown E. coli O157:H7, inoculated into the initial compost material, were not detected after approximately 300 degree days of heating. In several experiments where compost temperatures did not rise above 50°C, an initial decline of E. coli O157:H7 with subsequent regrowth was observed. E. coli O157:H7 in compost materials from infected cattle were not detected after approximately 180 degree days of heating. Numbers of total coliform bacteria declined with temperature similarly to those of E. coli O157: H7. The results of this research provide information for reducing or eliminating E. coli O157:H7 in animal wastes.  相似文献   

12.
Major active compounds from essential oils are well-known to possess antimicrobial activity against both pathogen and spoilage microorganisms. The aim of this work was to determine the alteration of the membrane fatty acid profile as an adaptive mechanism of the cells in the presence of a sublethal concentration of antimicrobial compound in response to a stress condition. Methanolic solutions of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol were added into growth media of Escherichia coli O157:H7, Salmonella enterica serovar typhimurium, Pseudomonas fluorescens, Brochothrix thermosphacta, and Staphylococcus aureus strains. Fatty acid extraction and gas chromatographic analysis were performed to assess changes in membrane fatty acid composition. Substantial changes were observed on the long chain unsaturated fatty acids when the E. coli and Salmonella strains grew in the presence of limonene and cinnamaldehyde and carvacrol and eugenol, respectively. All compounds influenced the fatty acid profile of B. thermosphacta, while Pseudomonas and S. aureus strains did not show substantial changes in their fatty acid compositions.  相似文献   

13.
本研究利用SL培养基从蚯蚓粪中分离到54株具有产酸性能的菌株,并以E.coli O157:H7(EDL933株)作为指示菌株,采用点种法检测分离菌株的抑菌活性。结果表明其中6个菌株对指示菌具有拮抗作用,通过形态特征,结合16S rDNA序列分析,初步鉴定该6个菌株分别为食物魏斯特菌(Listeria welshimeri)、乳酸片球菌(Pediococcus acidilactici)、短乳杆菌(Lactobacillus brevis)和格氏乳球菌(Lactococcus garvieae)。分离到的乳酸菌对E.coli O157:H7(EDL933株)具有显著的抑制作用,发酵温度和初始pH值影响发酵液的抑菌作用,优化环境因子可以促进拮抗菌对E.coli O157:H7的抑制作用。本研究为进一步分离抗菌产物用于人畜共患病的预防和治疗提供了理论依据。  相似文献   

14.
The risk of enteropathogens to food and water is highly dependent on their survival in soil environments. Here, the effects of soil type, particle size, the presence of natural organic matter (NOM) or Fe/Al (hydro)oxides on pathogenic Escherichia coli O157:H7 survival in sterilized soil particles were assessed through survival, attachment, metabolic activity, and qRT-PCR analyses. The abundance of inoculated E. coli O157:H7 in Brown soil (Alfisol) particles increased 0.6–1.4 log10 CFU/g within 3 days (except for NOM-stripped clay), while that in Red soil (Ultisol) particles decreased rapidly in 8 days post-inoculation. Additionally, survival of bacteria was significantly enhanced when Fe/Al (hydro)oxides had been removed from Red soil particles. For the two soils, E. coli O157:H7 survived the longest in NOM-present clays and the bacterial adenosine 5′-triphosphate (ATP) levels were 0.7–2.0 times greater in clays than in sands and silts on day 8. Moreover, clays were more effective than silts and sands in binding cells and changing the expressions of acetate pathway-associated genes (pta and ackA). For silts and sands, E. coli O157:H7 decayed more rapidly in the presence of NOM and similar trends of bacterial ATP levels were observed between NOM-stripped and NOM-present soil particles, indicating that the primary role of NOM was not as a nutrient supply. These findings indicate that soil particles function mainly through attachment to change the metabolic pathway of E. coli O157:H7 and ultimately impact the survival of bacterial pathogens in soils.  相似文献   

15.
This study aimed to evaluate the potential of soybean-promoted acidic nitrite reduction and to correlate this activity with the content of phenolics and with the bactericidal activity against Escherichia coli O157:H7. Extracts of embrionary axes and cotyledons enriched in phenolics increased ?NO formation at acidic pH at values that were 7.1 and 4.5 times higher, respectively, when compared to the reduction of the nonenriched extracts. Among the various phenolics accumulated in the soybean extracts, five stimulated nitrite reduction in the following decreasing order of potency: epicatechin gallate, chlorogenic acid, caffeic acid, galic acid and p-coumaric acid. Extracts of embrionary axes presented higher contents of epicatechin gallate and caffeic acid, compared to that of cotyledons, indicating a positive correlation between activity of the extracts and content of phenolics with regard to nitrite reducing activity. Soybean extracts enriched in phenolics interacted synergistically with acidified nitrite to prevent E. coli O157:H7 growth. The results suggest that soybean phenolics may interfere with the metabolism of ?NO in an acidic environment by accelerating the reduction of nitrite, with a potential antimicrobial effect in the stomach.  相似文献   

16.
During animal waste agricultural applications, the major concern is pathogen spreading, which may contaminate surface water and groundwater. Among the pathogenic microorganisms found in animal waste, Salmonella typhimurium and Escherichia coli O157:H7 are of particular concern. When transported in sub‐surface agricultural soil, S. typhimurium and E. coli O157:H7 are captured at the air–water–sediment interfaces through physical interactions. Because in situ colloids contribute to the formation of air–water–sediment, their mobilization affects the transport of S. typhimurium and E. coli O157:H7. The impact of irrigation rates on in situ colloid mobilization and S. typhimurium and E. coli O157:H7 transport was investigated in intact soil columns collected from an agricultural site in Gadsden County of Florida, USA. The columns were irrigated with sterilized nano‐pure deionized water to mobilize the colloids in the soil by stepwise increases in flow rate. For each flow rate, after colloids were mobilized and steady state was reached, S. typhimurium and E. coli O157:H7 were introduced. The cumulative amount of released in situ colloids increased linearly with the irrigation rates (R2 = 0.986–0.996) and transport of the bacteria was enhanced after colloid mobilization. Interactions of the bacteria with the sediments and the air‐water interface were characterized: these played an important role in controlling S. typhimurium and E. coli O157:H7 retention in soil.  相似文献   

17.
All eight C6-aliphatic alcohol and aldehyde compounds in naturally occurring green leaves showed bacteriostatic effects against Staphylococcus aureus IFO 12732, methicillin-resistant S. aureus, Escherichia coli IFO 3301, E. coli O157:H7, and Salmonella enteritidis, with bacteriostatic activities of less than 12.5 microg mL(-1). In this study, the susceptibility of Gram-positive bacteria tested was observed to be greater than that of Gram-negative bacteria. The bactericidal action of the aldehyde compounds was found to be much stronger than that of the alcohol compounds under both liquid and gaseous conditions. The most effective compound was (3E)-hexenal at concentrations of 0.1 and 1 microg mL(-1), which killed 2.1 x 10(5) cfu mL(-1) of S. aureus IFO 12732 and 1.4 x 10(5) cfu mL(-1) of E. coli IFO 3301, respectively, by direct contact with the compound. Lethality of (3E)-hexenal against S. aureus IFO 12732 and E. coli IFO 3301 was also observed as a result of gaseous contact at concentrations of 3 and 30 microg mL(-1), respectively. The bactericidal effects of 30 microg mL(-1) (3E)-hexenal were thoroughly maintained throughout periods of 2 days and 1 day against S. aureus IFO 12732 and E. coli IFO 3301, respectively, by a complex formation with alpha-cyclodextrin.  相似文献   

18.
Escherichia coli O157:H7 contaminated wastes such as animal manures and abattoir wastes, may be applied directly onto vegetation, the soil surface, or injected deep into the soil. Our aim was to determine the influence of method of waste application to land on E. coli O157:H7 survival. Bovine slurry and ovine stomach contents containing E. coli O157:H7 were applied to the surface vegetation or sub-surface injected at 25 cm below the soil surface. E. coli O157 survived but did not proliferate on grassland vegetation for up to 6 weeks and in the underlying soil for 8 weeks. Our results suggest that sub-surface injection of organic wastes into soil may reduce the risk of pathogen persistence in the environment.  相似文献   

19.
Abstract. Slurry from farm animals may contaminate water supplies, rivers and bathing waters with faecal coliforms, such as Escherichia coli . Where animals harbour the O157 strain the hazard to human health is particularly high, but both the hazard level, and the low incidence and sporadic nature of the excretion of E. coli O157 make it difficult to study this strain under field conditions. The survival of total E. coli and of E. coli O157 were compared in the laboratory for two soils under controlled temperature and moisture. E. coli O157 die-off rate was the same as or quicker than for total E. coli . This result meant that field experiments studying the fate of total E. coli should give a satisfactory evaluation of the risk of water contamination by the O157 strain. In four field experiments at three sites, slurry containing total E. coli numbers of 2.2 × 104 to 5.7 × 105 colony forming units per mL (c.f.u. mL–1) was applied to drained field plots. Field die-off was faster than expected from laboratory experiments, especially in one experiment where two weeks dry weather followed application. In all but this experiment, the first drain flow events after slurry application led to very high E. coli concentrations in the drains (103 to 104 c.f.u. mL–1). E. coli O157 was present in the slurry used for two of the experiments (33 c.f.u. per 100 mL in each case). However the proportion of E.coli O157 was very low (about 1 in 105) and it was not detected in the drainage water. After the first week E. coli drainage water numbers decreased rapidly but they were 1–10 c.f.u. mL–1 for much of the sampling period after slurry application (1–3 months).  相似文献   

20.
A simple and rapid multiplexed sandwich chemiluminescent enzyme immunoassay has been developed for the simultaneous detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes. To achieve the multiplexed detection of the four pathogens, a new polystyrene 96 well microtiter plate format has been designed, in which each main well contains four subwells in the bottom. The monoclonal antibodies specific for each bacteria were separately immobilized in each subwell. When the samples were added to the main wells, the bacteria able to specifically bind to the corresponding monoclonal antibody were captured in one of the four subwells. Subsequently, a mixture of peroxidase-labeled polyclonal antibodies against the four bacteria was added and the peroxidase activity of the bound polyclonal labeled antibodies in each well was measured by an enhanced luminol-based chemiluminescent cocktail using a low-light charge-coupled imaging device. The assay was simple and fast, and the limit of quantification was in the order of 104-105 CFU/mL for all bacterial species. The accuracy of the method, evaluated by comparison of the results with a conventional culturing methodology, was satisfactory, with recovery values ranging from 90 to 120%. This method can be used as a screening test to evaluate the presence of these pathogen bacteria in different foodstuffs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号