首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The common bean is affected by several pathogens that can cause severe yield losses. Here we report the introgression of resistance genes to anthracnose, angular leaf spot and rust in the 'carioca-type' bean cultivar 'Rudá'. Initially, four backcross (BC) lines were obtained using 'TO', 'AB 136', 'Ouro Negro' and 'AND 277' as donor parents. Molecular fingerprinting was used to select the lines genetically closer to the recurrent parent. The relative genetic distances between 'Rudá' and the BC lines varied between 0.0% and 1.99%. The BC lines were intercrossed and molecular markers linked to the resistance genes were used to identify the plants containing the genes of interest. These plants were selfed to obtain the F2, F3 and F4 plants which were selected based on the presence of the molecular markers mentioned and resistance was confirmed in the F4 generation by inoculation. Four F4:7 pyramid lines with all the resistance genes showed resistance spectra equivalent to those of their respective donor parents. Yield tests showed that these lines are as productive as the best 'carioca-type' cultivars.  相似文献   

2.
M. Staniaszek    E. U. Kozik    W. Marczewski 《Plant Breeding》2007,126(3):331-333
Fusarium oxysporum f. sp. lycopersici inhabits most tomato-growing regions worldwide, causing tomato production yield losses. A molecular marker linked to resistance would be useful for tomato improvement programmes. Thus, a cleaved amplified polymorphic sequence (CAPS) marker TAO1902 was developed to identify tomato genotypes possessing the I-2 gene, which confers resistance to F. o. lycopersici race 2. The Rsa I or Fok I restriction fragments corresponded to the presence or absence of the I-2 allele in a segregating 100 F2 progeny, tomato cultivars, 16 resistant and 20 susceptible to Fusarium wilt, respectively, lines and F1 hybrids, representing various tomato gene pools. TAO1902 may be helpful for selection of F. o. lycopersici -resistant tomato germplasm.  相似文献   

3.
On a brown warp soil (Fluventic Eutrochrept) near Goettingen, Germany, conventional leafed pea ( Pisum sativum L. cvs Messire and Bohatyr) and semileafless types (cvs Profi, Juno and Azur) were grown in mixed stands together with oat ( Avena sativa cvs Alf and Lutz) in substitutively designed experiments from 1995 to 1997. Oat was the dominant component. Crowding coefficients for oat averaged 7.4. No relationship could be detected between the crowding coefficient of oat and any yield advantage from the mixture. Crowding coefficients for pea varied substantially, between 0.1002 (Juno and Alf in 1996) and 0.2979 (Bohatyr and Alf in 1996). Crowding coefficients for semileafless pea cultivars were smaller than for conventional leafed types. The yield advantage of the mixture increased as the crowding coefficient of pea increased. The maximum yield increase for the mixture was achieved when the relative yield total (RYT)=1.17 or + 11 dt grain DM ha–1 for mixtures of the long-strawed conventional leafed cultivars Bohatyr and Alf (in 1996). The crowding coefficients of pea were positively correlated with the level of symbiotically fixed N2 in the mixed stands. When N2 fixation with mixed cropping was about 30 kg N ha–1, RYT was unity. Increasing symbiotic N2 in the mixtures resulted in increasing yield advantages in the mixture. Short-strawed pea cultivars seem unsuitable for mixing with oat. Plant height of pea appeared to be more important than plant leaf type. Accordingly, mixtures containing the long-strawed semileafless pea cultivars Profi and Alf were more successful. It is concluded that increased competitiveness of the pea component in the mixture with oat entails increasing the level of symbiotic N2 fixation including resource complementarity and thus yield advantage in the mixed stands.  相似文献   

4.
A collection of 67 accessions of Pisum species originating from different countries was screened in a glasshouse test for resistance to Erysiphe pisi. All Pisum fulvum accessions were completely resistant. Incomplete resistance was identified in some accessions of P. sativum subsp. sativum var. arvense and P. sativum subsp. elatius and abyssinicum. Microscopy revealed several distinct cellular mechanisms governing resistance. In P. fulvum, it was mainly due to a high frequency of cell death that occurred both as a rapid response to attempted infection and a delayed response that followed colony establishment. Cell death following colony establishment was also key to the incomplete resistance in some accessions of P. sativum subsp. sativum var. arvense. In addition, impaired spore germination, and to a lesser extent appressorium formation, contributed to pre‐penetration resistance in some accessions. In some cases, resistance also retarded colony growth, possibly through effects on haustorial development or function in cells that survived the attack. Thus, these wild pea accessions offer diverse resistances that could be introduced to cultivated peas to increase the efficacy of powdery mildew resistance.  相似文献   

5.
G. H. Kim    H. K. Yun    C. S. Choi    J. H. Park    Y. J. Jung    K. S. Park    F. Dane    K. K. Kang 《Plant Breeding》2008,127(4):418-423
Resistance to anthracnose or black spot ( Elsinoe ampelina ), a serious fungal pathogen in viticulture and table grape production, was investigated on 25 grape cultivars. Bioassays performed with culture filtrates produced by the pathogen revealed 14 resistant genotypes. In most plants resistance originated from Vitis labrucsa but also genotypes with V. rupestris and V. riparia  ×  V. rupestris background showed resistance. Genetic analysis was conducted in F1, S1 and BC1 plants developed from various cultivars. In total, 326 F1 plants were evaluated, 172 genotypes proofed to be resistant, whereas 154 were susceptible to anthracnose. A Mendelian segregation ratio of 1 : 1 (χ2 = 0.30–0.65) indicating that anthracnose resistance is controlled by a single dominant gene. To facilitate the use of marker-assisted selection in grape-breeding PCR-based markers were developed by random amplified polymorphic DNA and amplified fragment length polymorphism in bulk segregant analysis. Finally, OPB 151247 was developed as a sequence characterized amplified region marker being diagnostic for the locus of resistance to anthracnose in all resistant genotypes tested. Within the 25 grape cultivars OPB 151247 is diagnostic in the genetic background of both V. labrucsa and V. rupestris and V. riparia  ×  V. rupestris .  相似文献   

6.
T. Mebrahtu    T. E. Devine 《Plant Breeding》2009,128(3):249-252
Few studies have evaluated vegetable soybean for sugar content at the green pod stage. Information on combining ability and type of gene action that governs inheritance of seed traits can help breeders to select suitable parents and devise an appropriate breeding strategy. Ten vegetable soybean accessions were crossed in a complete diallel mating design. Parent lines and F2 and F3 progenies were evaluated for two nutritional components. In this study, both general and specific combining ability and reciprocal effects were significant for sucrose and total sugar. Cultivars 'Kanrich', 'Pella', 'Verde' and V81-1603 had good general combining ability for high sucrose. In general, high sucrose content was observed in progeny of the early maturity group genotypes 'Kanrich', 'Pella' and 'Verde'. The best combiners for high total sugar content were 'Verde', V81-1603 and PI 399055. These genotypes could serve as genetic sources in a vegetable soybean breeding programme.  相似文献   

7.
The inheritance of the reaction of sunflower to downy mildew was investigated using resistant and susceptible near isogenic lines (NILs) and their F3 families. Resistance to race 730 was evaluated using the whole seedling inoculation technique. Seventy-three F3 families were inoculated, among which 54 families were resistant and 19 susceptible, fitting a 3 : 1 segregation ratio. F3 families were also studied using several PCR markers. Ten markers at the Pl6 locus, specific for the resistant line, also segregated in F3 families with a 3 : 1 ratio. The same segregation ratio occurred for microsatellite haplotypes that resembled the resistant parent, and were amplified with ORS 166 and ORS 1043. The only common fragment that was observed between resistant and susceptible parental lines was one of the TIR-NBS-LRR resistance gene analogue markers, having a restriction site. Two co-dominant cleaved amplified polymorphic sequence (CAPS) markers were obtained. The mapping data indicate that several dominant markers and two CAPS markers, developed here, completely co-segregate with the Pl6 gene conferring resistance to race 730. CAPS markers will facilitate efficient marker-assisted selection for sunflower resistance to downy mildew race 730.  相似文献   

8.
Summary Seventeen unreplicated field trials over nine sites and four years were used to classifyPisum germplasm (P. sativum L. &P. fulvum Sibth. & Sm) as potential sources of resistance to the pea weevil,Bruchus pisorum (L.). The emergence of adult weevils from <10% of harvested seed was used as the selection criterion to indicate possible resistance. A total of 1900Pisum accessions were assessed using the field trials and 1754 of theP. sativum accessions were eliminated. However in the 18P. fulvum accessions screened, the level of infestation by pea weevil was always below the arbitrary resistance threshold selected. This suggests thatP. fulvum accessions could be a valuable source of resistance to the pea weevil.  相似文献   

9.
Leafminer ( Liriomyza trifolii Burgess), Diptera Agromyzidae, is one of the insect pests that causes economic damage to castor bean ( Ricinus communis L.) foliage. Green leaf type is a common phenotype in castor bean and highly susceptible to leafminer. The rare purple leaf type germplasm accessions showed stable resistance to leafminer. Studies were carried out to understand the inheritance of purple leaf and the associated leafminer resistance. Direct and reciprocal crosses were made between a purple leaf parent RG1930 and a green leaf parent RG2788. RG1930 is resistant to leafminer while RG2788 is susceptible. Reciprocal differences were noted in segregation pattern of purple leaf colour as well as resistance to leafminer. Purple leaf phenotype was obtained only in purple × green (RG1930 × RG2788) cross where the female parent was a purple leaf phenotype. The reciprocal cross green × purple (RG2788 × RG1930) produced only the green leaf phenotype. Uniparental inheritance was observed for purple leaf phenotype and resistance to leafminer in F1, F2, F3 and backcross generations. Progenies with a dark purple leaf were resistant to leafminer while those with a green leaf were susceptible. Visual association between a purple leaf and resistance to leafminer and their uniparental inheritance were clearly established. The role of heritable epigenetic effects are discussed in expression of purple pigment in offspring.  相似文献   

10.
W. H. Wei    S. F. Zhang    L. J. Wang    J. LI    B. Chen    Z. Wang    L. X. Luo    X. P. Fang 《Plant Breeding》2007,126(4):392-398
By intergeneric sexual hybridization between Sinapis alba and Brassica oleracea , F1, F2 and BC1 progeny plants were produced. S. alba plants (genome SS, 2n = 24) were pollinated with B. oleracea (genome CC, 2n = 18), and the fertile F1 plants were pollinated with B. oleracea to obtain BC1 plants. GISH analysis showed that 10 out of 12 F1 plants had 12 S. alba chromosomes (one full S chromosome set) and nine B. oleracea chromosomes (one C chromosome sets), representing the expected hybrids. However, two F1 plants had 12 S chromosomes and 18 C chromosomes (two C chromosome sets), indicating unexpected hybrids. A maximum of three trivalents between C and S chromosomes were identified at metaphase I of semi-fertile F1 pollen mother cells (PMCs), which indicates homology and chromosome pairing between these two genomes. The C genome had obviously been doubled in two F2 plants from selfed semi-fertile F1 plants. BC1 plants consisted of 18 C chromosomes and different numbers of one, five and six additional S chromosomes, respectively. Monosomic alien addition lines developed in the present study can be used for B. oleracea breeding and Sinapis alba gene mapping.  相似文献   

11.
The heterosis of leaf photosynthesis was studied on the main characters included in the range from CO2exchange rate (CER) to enzymatic activity using a remote cross F, rice. The CER was significantly higher than those of the parental strains, showing a 111 % heterosis effect on average; at the same time strong heterosis was observed for the leaf area production and growth. Also stomatal and mesophyll conductances increased in the F1 rice, which may contribute to the increase in CER. Chlorophyll content (Ch1), soluble protein content (SPC) and ribulose 1,5-bisphosphate (RuBP) carboxylase activity (RCA) were measured as the internal factors related to photosynthesis, and compared between the F1, rice and the parents. For all these factors, the F1 rice showed low values compared to the parents. Positive heterosis was not expressed here. On the other hand, the specific activity of RCA (RCA/SPC) increased in the F1, rice, showing a 120% heterosis effect. This may be regarded as one of the main causes for the increase in CER of the F1, rice. High CER expressed as heterosis concurrently with large leaf area production is one of the important findings in our study, and this may suggest a high possibility of further improvement in biomass production or yield of rice by gathering the advantageous elements into a hybrid plant.  相似文献   

12.
K. S. Reddy 《Plant Breeding》2009,128(5):521-523
Powdery mildew (PM) is one of the important foliar diseases of mungbean. Resistance sources have been identified in India and the inheritance studies showed that complete resistance (RO) was controlled by two dominant genes, Pm1 , Pm2 . The breakdown of complete resistance (RO) into moderate resistance (R2) by race-2 (Akola) has been reported. It is assumed that the change in resistance reaction is due to a mutation in the pathogen. The present investigation was carried out with a view to screen germplasm, cultivars and mutants for identification of complete resistance (RO) sources against race-2 and to study their inheritance. 'Mulmarada', a local mungbean cultivar from Maharashtra state of India was identified as a complete resistance (RO) source for race-2. The inheritance of Mulmarada's resistance (RO) was studied. The F1 and the segregation in F2 and F3 showed that the complete resistance (RO) in 'Mulmarada' is controlled by a single dominant gene, which is different from the earlier identified Pm1 and Pm2 resistance genes. Mulmarada's resistance gene is designated as Pm3 for PM resistance.  相似文献   

13.
B. Yu    P. Liu    D. Hong    Q. He    G. Yang 《Plant Breeding》2010,129(1):39-44
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most severe diseases of rapeseed in China and other major growing regions. The objective of this study was to improve the S. sclerotiorum resistance of 'Hui5200', an elite 'Polima' CMS restorer line, by introgression and fixation of resistance alleles from the partially resistant cultivar 'NingRS-1' via phenotypic selection (PS), marker-assisted background selection (MAB) and microspore culture. A progeny designated as 'RSH' with greatly improved Sclerotinia resistance and a similar genetic background as 'Hui5200' was obtained by two backcrosses and one selfing. From a selected elite progeny line (named as 7-5) double haploid (DH) lines were developed. By three cycles of PS considering economic traits and genetic distance analysis, four resistant DH restorer lines with elite economic traits were finally selected. The obtained resistant restorer lines have been used to produce commercial F1 hybrids. The results indicated that backcrossing plus PS and MAB is effective and suitable for improving resistance of rapeseed to S. sclerotiorum .  相似文献   

14.
Little resistance against Mycosphaerella pinodes is available in pea. In this work 78 accessions of Pisum were screened for resistance to M. pinodes. Fourteen accessions showed a good level of resistance in seedlings under controlled conditions, and in mature plants in the field. The highest levels of resistance were found in P. fuivum, followed by P. sativum ssp. eiatius and P. sativum ssp. syriacum. Resistance of five selected accessions was effective against different isolates of M. pinodes originating from different countries. Resistant accessions reported in this paper have been successfully hybridized with field pea cultivars.  相似文献   

15.
S. M. Mohan    R. Madhusudhana    K. Mathur    C. J. Howarth    G. Srinivas    K. Satish    R. N. Reddy    N. Seetharama 《Plant Breeding》2009,128(5):532-535
Quantitative trait loci (QTL) analysis of resistance to three foliar diseases, viz. target leaf spot, zonate leaf spot and drechstera leaf blight was undertaken in sorghum using 168 F7 recombinant inbred lines derived from a cross between '296B' (resistant) and 'IS18551' (susceptible) parents. The genomic region flanked by plant colour locus ( Plcor ) and simple sequence repeat marker Xtxp95 on chromosome SBI-06 harboured disease-response QTL for all the three diseases caused by different fungal pathogens. It is hypothesized that this region on sorghum chromosome SBI-06 could harbour a cluster of disease-response loci to different pathogens as observed in the syntenic regions on rice chromosome 4 and maize chromosome 2. The information gained in this study can be used in deploying marker-assisted selection for foliar resistance and map-based isolation of important disease resistance genes in sorghum.  相似文献   

16.
豌豆抗白粉病资源筛选及分子鉴定   总被引:1,自引:0,他引:1  
由豌豆白粉菌引起的白粉病是豌豆生产上的重要病害,利用抗病品种是防治该病害最经济有效的方法。本研究在控制条件下苗期接种鉴定了396份豌豆资源对2个不同地理来源的豌豆白粉病菌分离物EPBJ和EPYN的抗性,用4个与豌豆抗白粉病基因er1连锁的SCAR标记对66份免疫或抗病资源进行标记基因型鉴定。结果表明,在鉴定的396份资源中,有101份资源表现免疫或抗病,其中对分离物EPBJ和EPYN免疫的资源分别为59份(14.9%)和60份(15.2%),对2个分离物均免疫的资源有54份(13.6%);在鉴定的82份中国资源中,有8份对2个分离物均表现免疫。分子标记将66份免疫或抗病资源鉴定为13个标记基因型,同一地理来源的抗性资源分属不同的标记基因型,其中8份来自中国云南的抗性资源分属7个标记基因型。研究表明,中国存在有效的豌豆白粉病抗源,抗性资源具有丰富的遗传多样性。  相似文献   

17.
This study describes an investigation to test whether genotypic differences for reproductive frost tolerance in field pea (Pisum sativum L.) can be measured in the field. The method involved individually tagging flowers or young pods at particular stages of development within 48 hr after a frost event and assessing pod survival and seed damage at maturity. Four field pea varieties were grown in 2011 in an experiment which measured the loss of pods following a specific frost event. This experiment also tested the impact of trellis and pathways sown with barley on the efficacy of the frost tolerance data. In 2012, an additional genotype was also tested and, in addition to pod loss, data were collected on seed damage in surviving pods. Results from both years showed significant genotypic differences. There was also a significant positive correlation between mean variety pod loss in 2011 and 2012 indicating reliability of this method across seasons.  相似文献   

18.
A pot experiment was conducted to investigate the translocation of N in pods during siliqua developing of oilseed rape using 15N-urea. The 15N was applied on the surface of pods at lower stem in three periods after flowering. At maturity the hulls and seeds of pods at different parts of plants were subjected to analyse N content and 15N abundance and calculate recoveries of N applied.
79.1–84.3 % of labelled N applied were recovered from the total pods including 75.3–80.4 % in labelled pods. A great part of the N was translocated in seeds, the later the labelled N application, the more proportion of N in seeds was. Application of MgSO4 combined with urea promoted the uptake and translocation of N, but not at a significant level.  相似文献   

19.
Z. J. Pu    G. Y. Chen    Y. M. Wei    W. Y. Yang    Z. H. Yan    Y. L. Zheng 《Plant Breeding》2010,129(1):53-57
Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most devastating diseases in common wheat ( Triticum aestivum L.). With the objective of identifying and tagging a new gene for resistance to stripe rust in wheat line P81, F1, F2 and F2:3 populations from the cross 'Chuanmai 28'/P81 were inoculated with Chinese PST race CYR32 in greenhouse and field trials. P81 carried a single dominant gene for resistance (designated YrP81 ) to CYR32. Tests of allelism showed that YrP81 was different from Yr5 , Yr10 , Yr15 and Yr26 . Simple sequence repeat (SSR) and resistance gene-analogue polymorphism (RGAP) between the parents were used for genotyping the F2 populations. YrP81 was closely linked to four SSR loci on chromosome 2BS with genetic distances of 18.3 cM ( Xwmc25 ), 1.8 cM ( Xgwm429 ), 4.1 cM ( Xwmc770 ) and 5.3 cM ( Xgwm148 ). Two RGAP markers RGA1 (NLRR/XLRR) and RGA2 (Pto kin4/NLRR-INV2) were also closely linked to YrP81 with genetic distances of 4.7 and 6.3 cM, respectively. The linkage map of YrP81 and molecular markers was established in the order Xwmc25 - RGA2 - RGA1 - Xgwm429 - YrP81 - Xwmc770 - Xgwm148 . Pedigree analysis, response patterns with Chinese PST races and associations with markers suggested that YrP81 is a novel stripe rust resistance gene. The PCR-based microsatellite and RGAP markers identified here could be applied in selection of YrP81 in wheat breeding.  相似文献   

20.
Grain legumes, especially peas, could play a key role in organic cropping systems. They could provide nitrogen (N) to the system via N2 fixation and produce grain rich in protein while improving soil N for the succeeding crop. Thus, maximising N2 fixation and optimising grain N production together with N contribution to soil is a challenging issue for organic pea crops. However, pest, disease and weed infestation are less easy to control in organic systems than in conventional systems. Therefore, the effects of weed infestation and pea weevil (Sitona lineatus L.) attacks on N nutrition and N2 fixation of organic pea crops were examined by on-farm monitoring over two years. The magnitude of the net contribution of the crops to the soil N balance in relation to their productivity was also assessed. In many situations, weed infestation together with pea weevil damage severely limited the nitrogen nutrition and grain yield. Percentage of N derived from fixation (%Ndfa) increased with weed biomass because weeds appeared more competitive than peas for soil N. But %Ndfa decreased with pea weevil leaf damage score. The interaction between these two biotic factors affected N yields and the net contribution of the crops to soil N. This latter ranged from −133 kg N ha−1 to 69 kg N ha−1 depending on %Ndfa and nitrogen harvest index (NHI). Optimising both grain N and net balance would require a reduction in root nodule damage by weevil larvae in order to maximise %Ndfa and a reduction in the NHI through the choice of cultivar and/or suitable crop management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号