首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consistent evidence suggests that the probable human carcinogen acrylamide is formed in starch-rich foodstuffs through heat-induced interaction of asparagine and reducing sugars during Maillard browning. However, information regarding the influence of processing parameters on acrylamide formation is scarce. We investigated the impact of temperature, heating time, browning level, and surface-to-volume ratio (SVR) on acrylamide generation in fried potatoes. Acrylamide content was determined by liquid chromatography (LC) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). In potato shapes with low SVR, acrylamide content consistently increased with increasing temperature and processing times. By contrast, in shapes with intermediate to high SVR, maximal acrylamide formation occurred at 160-180 degrees C, while higher temperatures or prolonged processing times caused a decrease of acrylamide levels. Moreover, browning levels were not a reliable measure of acrylamide content in large-surface products.  相似文献   

2.
The moisture sorption isotherms of a commercial potato powder were investigated at 20 degrees C for water activities ranging from 0.11 to 0.97. The sorption isotherms were typical type-II sigmoidal curves, with a steep increase in moisture content for water activities above 0.9 and exhibiting hysteresis over the whole water activity range. On the basis of the isotherms, the influence of the initial water activity and moisture content on both Maillard browning and acrylamide formation was determined by heating oil containing potato powder mixtures in a closed stainless-steel tubular reactor. The Maillard browning, as determined spectrophotometrically, showed an optimum at intermediate water activities. The yields of acrylamide, expressed relatively to the molar amount of asparagine, remained constant below 0.8 aw and below moisture contents of about 20% (on a dry basis). For the more intense heat treatments, an increased acrylamide yield was however observed at higher moisture contents, with an optimum at water contents of about 100% (on a dry basis). However, this increase and optimum was not observed at less intense heat treatments. At moisture contents above 100%, a significant decrease in acrylamide yields was assessed, although the water activity increased only marginally in this area of the sorption isotherms. It was thus observed that the acrylamide content was rather dependent upon the moisture content than upon the water activity in the high-moisture potato powder model system.  相似文献   

3.
Acrylamide is formed from reducing sugars and asparagine during the preparation of French fries. The commercial preparation of French fries is a multistage process involving the preparation of frozen, par-fried potato strips for distribution to catering outlets, where they are finish-fried. The initial blanching, treatment in glucose solution, and par-frying steps are crucial because they determine the levels of precursors present at the beginning of the finish-frying process. To minimize the quantities of acrylamide in cooked fries, it is important to understand the impact of each stage on the formation of acrylamide. Acrylamide, amino acids, sugars, moisture, fat, and color were monitored at time intervals during the frying of potato strips that had been dipped in various concentrations of glucose and fructose during a typical pretreatment. A mathematical model based on the fundamental chemical reaction pathways of the finish-frying was developed, incorporating moisture and temperature gradients in the fries. This showed the contribution of both glucose and fructose to the generation of acrylamide and accurately predicted the acrylamide content of the final fries.  相似文献   

4.
The influence of water activity on the formation and elimination reactions of acrylamide was examined by means of multiresponse modeling on two different levels of complexity: basic equimolar asparagine-glucose systems and equimolar potato-based asparagine-glucose systems. To this end, model systems were first equilibrated to initial water activities in the range of 0.88-0.99 (corresponding roughly to the moisture gradient observed in French fries) and then heated at temperatures between 120 and 200 degrees C during different reaction times. For each sample, the concentration of acrylamide, glucose, asparagine, and aspartic acid was measured, as well as the extent of browning. A mechanistic model was proposed to model the five measured responses simultaneously. For both types of model systems, the model prediction was quite adequate, with the exception of the extent of browning, especially in the case of the potato-based model system. Moreover, the corresponding estimated kinetic parameters for acrylamide formation and elimination did not change significantly (based on a 95% confidence level) within the range of water activities tested, nor between the systems in the absence or presence of the potato matrix. The only remarkable difference was observed for the activation energy of acrylamide elimination, which was lower in the presence of the potato matrix, although not always significant. In general, these results confirm the generic nature of the model proposed and show that the influence of different moisture levels on acrylamide formation and elimination is minimal and that the addition of a potato matrix has little or no influence on the kinetic model and corresponding kinetic parameters.  相似文献   

5.
The relations between the formation of acrylamide and color, pyrazines, or antioxidants in an asparagine/d-glucose browning model system under various conditions were investigated. The highest level of acrylamide was produced in the asparagine/glucose (1:3) system heated at 170 degrees C for 30 min (2629 microg/g asparagine). Color intensity increased with temperature and heating time. The formation of pyrazines increased steadily with an increase of temperature (140-170 degrees C) and heating time (15-60 min). Antioxidant formation varied among the samples heated under different conditions. A clear correlation between formation of acrylamide and browning color was obtained. The formation of acrylamide was linearly correlated with the formation of total pyrazines during the initial stages of the Maillard reaction. No obvious correlation between formation of acrylamide and antioxidants was observed. However, excess amounts of asparagine increased the formation of antioxidants, whereas excess amounts of glucose reduced its formation.  相似文献   

6.
In this paper the relationship between virgin olive oil (VOO) phenol compounds and the formation of acrylamide in potato crisps was investigated. The phenol compositions of 20 VOO samples were screened by LC-MS, and 4 oils, characterized by different phenol compound patterns, were selected for frying experiments. Slices of potatoes were fried at 180 degrees C for 5, 10, and 15 min, and acrylamide content was determined by LC-MS. Results demonstrated that VOO phenolic compounds are not degraded during frying, and crisp color was not significantly different among the four VOOs. Acrylamide concentration in crisps increased during frying time, but the formation was faster in the oil having the lowest concentration of phenolic compounds. Moreover, the VOO having the highest concentration of ortho-diphenolic compounds is able to efficiently inhibit acrylamide formation in crisps from mild to moderate frying conditions. It was concluded that the use of ortho-diphenolic-rich VOOs can be proposed as a reliable mitigation strategy to reduce acrylamide formation in domestic deep-frying.  相似文献   

7.
The aim of this work was to examine the effect of blanching or soaking in different acid solutions on the acrylamide content in potato crisps. Furthermore, the effects of a shorter frying time and a lower frying temperature combined with a postdrying were investigated. Soaking or blanching of potato slices in acidic solutions decreased the pH of potato juice and increased the extraction of amino acids and sugars. Potato crisps obtained after such pretreatments were characterized by lower acrylamide content. The most effective extraction of free amino acids and sugars as well as the largest decrease of acrylamide content (90%) in crisps was obtained when potato slices were soaked in acetic acid solution for 60 min at 20 degrees C. Shorter frying time followed by postdrying resulted in low-moisture potato crisps. Furthermore, the postdrying treatment gave a decreases in acrylamide content of approximately 70% when potato slices were fried at 185 degrees C and approximately 80% when potato slices were fried at 160 degrees C. Effective ways of decreasing acrylamide content in crisps production have been found. Crisps with low acrylamide content and good sensory quality can be obtained either by blanching in acetic acid as pretreatment or by a short frying followed by postdrying.  相似文献   

8.
A number of parameters linked to the selection of potato tubers were evaluated with regard to their potential to influence acrylamide formation in French fries. The formation of acrylamide, which is a potential human carcinogen, can be minimized for a big extent by the selection of an appropriate tuber. This study focused on the following selection criteria: variety as influenced by storage time and soil type, underwater weight, and tuber size. A total of 16 varieties were compared, concerning their potential for acrylamide formation. From that survey, certain varieties, such as Tebina and Quincy, could be appointed as unsuitable for frying. The differences in the potential of acrylamide formation between the varieties could mainly be explained by the reducing sugar content of the potato (R2 = 0.82, n = 96). The investigated type of soil and storage time at 8 degrees C appeared to have a minor influence on the acrylamide formation during frying. On the other hand, the tuber size of the potato did contribute in a significant manner to the acrylamide formation. Smaller tubers were more susceptible to acrylamide formation and should be avoided in the frying process. The last selection parameter, the underwater weight, appeared to be of minor importance in the acrylamide formation. On the basis of these simple selection criteria, it is possible to make a first screening of potatoes to reduce the acrylamide formation during frying.  相似文献   

9.
Added (glucose addition) versus accumulated (in situ sugar development via cold-temperature storage) sugar treatments were investigated in relation to acrylamide formation within fried potato strips at standardized levels of finish-fried color (Agtron color scores ranged from 36 to 84). The added sugar treatment exhibited a relatively reduced rate of acrylamide formation and generally possessed a lower and less variable acrylamide content (61-1290 ng/g) than the accumulated sugar scheme (61-2191 ng/g). In a subsequent experiment, added fructose applied to strip surfaces via dipping prior to frying favored acrylamide formation over color development relative to added glucose, for which the reverse trend was observed. Thus, where acrylamide differences were noted between added and accumulated sugar treatments (given equivalent Agtron color scores), this result was likely aided by the relative higher fructose content in strips of the accumulated sugar scheme rather than simply a greater relative concentration of total reducing sugars.  相似文献   

10.
In this study, the effect of employing an oil temperature program during frying on the acrylamide content of French fries was investigated. The frying conditions that could lead to lower acrylamide levels in French fries were first simulated by means of an experimentally validated frying model. Then, experiments were conducted to test the simulated conditions in real frying process. Different time/temperature combinations (4 min at 170 degrees C, 2 min at 170 degrees C + 2 min at 150 degrees C, 1 min at 170 degrees C + 3 min at 150 degrees C, 1 min at 190 degrees C + 3 min at 150 degrees C) were employed for frying potato strips (8.5 x 8.5 x 70 mm), and the resultant acrylamide levels were determined with a gas chromatography-mass spectrometry (GC-MS) method. The results indicated that acrylamide levels in French fries can be reduced by half if the final stage of the frying process employs a lower oil temperature. Therefore, the method appears to be an effective way of controlling the acrylamide level in the final product.  相似文献   

11.
Acrylamide formation was studied by use of a new heating methodology, based on a closed stainless steel tubular reactor. Different artificial potato powder mixtures were homogenized and subsequently heated in the reactor. This procedure was first tested for its repeatability. By use of this experimental setup, it was possible to study the acrylamide formation mechanism in the different mixtures, eliminating some variable physical and chemical factors during the frying process, such as heat flux and water evaporation from and oil ingress into the food. As a first application of this optimized heating concept, the influence on acrylamide formation of the type of deep-frying oil was investigated. The results obtained from the experiments with the tubular reactor were compared with standardized French fry preparation tests. In both cases, no significant difference in acrylamide formation could be found between the various heating oils applied. Consequently, the origin of the deep-frying vegetable oils did not seem to affect the acrylamide formation in potatoes during frying. Surprisingly however, when artificial mixtures did not contain vegetable oil, significantly lower concentrations of acrylamide were detected, compared to oil-containing mixtures.  相似文献   

12.
The present study was to demonstrate the efficiency of antioxidant of bamboo leaves (AOB) on the reduction of acrylamide during thermal processing and to summarize the optimal level of AOB applied in potato-based products. Potato crisps and French fries were immersed into different contents of AOB solution, and the frying processing parameters were optimized. The acrylamide content was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The sensory evaluation was performed in double blind manner. Our results showed that nearly 74.1% and 76.1% of acrylamide in potato crisps and French fries was reduced when the AOB addition ratio was 0.1% and 0.01% (w/w), respectively. The maximum inhibitory rate was achieved when the immersion time was designed as 60 s. Sensory evaluation results showed that the crispness and flavor of potato crisps and French fries processed by AOB solution had no significant difference compared to normal potato matrixes (P > 0.05) when the AOB addition ratio was <0.5% (w/w). These results suggested that AOB could significantly reduce acrylamide formation in potato-based foods and keep original crispness and flavor of potato matrixes. This study could be regarded as a pioneer contribution on the reduction of acrylamide in various foods by natural antioxidants.  相似文献   

13.
Buckwheat grit cakes were prepared with a rice cake machine using the following independent variables: tempering moisture contents (15, 17, and 19%, wb), heating temperatures (240, 246, 252, and 258 degrees C), and heating times (5, 6, 7, and 8 s). Higher moisture, higher heating temperature, or longer heating time produced cakes with a higher cake specific volume. Cakes became lighter in color at a lower heating temperature or a shorter heating time. The hardest cake was produced at 252 degrees C for 5 s at 19% moisture content. The percent weight loss after tumbling decreased with increasing heating times and heating temperatures. Increased heating time resulted in more expanded products. The average rutin content decreased as the heating temperature or heating time increased. These results suggest that processing conditions, including tempering moisture, heating temperature, and heating time, significantly influenced physical and chemical qualities of buckwheat grit cakes such as specific volume, hardness, integrity, color, internal structure, and rutin content.  相似文献   

14.
Fried potato products may accumulate substantial amounts of acrylamide due to high precursor contents, namely reducing sugars and asparagine. In a two-factorial experiment increasing N supply, increased the contents of reducing sugars in most cases, and resulted in higher contents of free amino acids. α -amino-N, which was tightly correlated with the contents of free amino acids, can be regarded a suitable rapid test for free asparagine for a given variety. Increasing K addition always raised the citrate contents, but lessened the contents of reducing sugars. Selected treatments were processed into French fries. Highest acrylamide contents were observed in tubers grown with high N and inadequate K supply, which also contained the highest contents of precursors. The experiment clearly demonstrates that nutrient supply has significant impact on the contents of acrylamide precursors and thus for the acrylamide formation during frying.  相似文献   

15.
The acrylamide content of heated foodstuffs should be considered to be the net result of complex reactions leading to the formation and elimination/degradation of this compound. The present study, involving primarily homogenized potato heated in an oven, was designed to characterize parameters that influence these reactions, including the heating temperature, duration of heating, pH, and concentrations of various components. Higher temperature (200 degrees C) combined with prolonged heating times produced reduced levels of acrylamide, due to elimination/degradation processes. At certain concentrations the presence of asparagine or monosaccharides (in particular, fructose and also glucose and glyceraldehyde) was found to increase the net content of acrylamide. Addition of other free amino acids or a protein-rich food component strongly reduced the acrylamide content, probably by promoting competing reactions and/or covalently binding acrylamide formed. The dependence on pH of the acrylamide content exhibited a maximum around pH 8; in particular, lower pH was shown to enhance elimination and decelerate formation of acrylamide. In contrast, the effects of additions of antioxidants or peroxides on acrylamide content were small or nonexistent.  相似文献   

16.
A number of parameters linked to storage of potatoes were evaluated with regard to their potential to influence the acrylamide formation in French fries. Acrylamide, which is a potential human carcinogen, is reported to be formed during the frying of potatoes as a result of the reactions between asparagine and reducing sugars. This study was conducted using three potato varieties (Bintje, Ramos, and Saturna) typically used in Belgium, The Netherlands, and the northern part of France for French fry and crisp production. Saturna, mainly used in crisp production, appeared to be the least susceptible for acrylamide formation during frying. Especially storage at low temperatures (4 degrees C) compared to storage at 8 degrees C seemed to enhance acrylamide formation due to a strong increase in reducing sugars caused by low-temperature storage. Because of the reversible nature of this physiological reaction, it was possible to achieve a significant reduction of the reducing sugars after a reconditioning of the cold-stored potatoes for 3 weeks at 15 degrees C. All changes in acrylamide concentrations could mainly be explained by the reducing sugar content of the potato (R2 = 0.84, n = 160). This means that, by ensuring a low reducing sugar content of the potato tuber, the risk for acrylamide formation will largely be reduced. Finally the use of a sprout inhibitor did not influence the composition of the potato, and thus acrylamide formation was not susceptible to this treatment.  相似文献   

17.
Effects of water contents on nonenzymatic browning (NEB) rates of amorphous, carbohydrate-based food model systems containing L-lysine and D-xylose as reactants were studied at different temperatures (40, 50, 60, 70, 80, and 90 degrees C) applicable to spray drying conditions. Water sorption was determined gravimetrically, and data were modeled using the Brunauer-Emmett-Teller and Guggenheim-Anderson-deBoer equations. Glass transition, Tg was measured by DSC. NEB was followed spectrophotometrically. The rate of browning increased with water content and temperature, but a lower T-Tg was needed for browning at decreasing water content. Water content seemed to affect the activation energy of NEB, and higher water contents decreased the temperature dependence of the NEB. At higher temperatures, the NEB became less water content dependent and enhanced browning in spray-drying. The temperature dependence of nonenzymatic browning could also be modeled using the Williams-Landel-Ferry (WLF) equation, but the WLF constants were dependent on the water content.  相似文献   

18.
A repeatable procedure for studying the effects of internal and external factors on acrylamide content in yeast-leavened wheat bread has been developed. The dough contained wheat endosperm flour with a low content of precursors for acrylamide formation (asparagine and reducing sugars), dry yeast, salt, and water. The effects of asparagine and fructose, added to the dough, were studied in an experiment with a full factorial design. More than 99% of the acrylamide was found in the crust. Added asparagine dramatically increased the content of acrylamide in crusts dry matter (from about 80 microg/kg to between 600 and 6000 microg/kg) while added fructose did not influence the content. The effects of temperature and time of baking were studied in another experiment using a circumscribed central composite design. Mainly temperature (above 200 degrees C) but also time increased the acrylamide content in crust dry matter (from below 10 to 1900 microg/kg), and a significant interaction was found between these two factors. When baked at different conditions with the same ingredients, a highly significant relationship (P < 0.001) between color and acrylamide content in crust was found. Added asparagine, however, did not increase color, showing that mainly other amino compounds are involved in the browning reactions.  相似文献   

19.
Glucose, fructose, sucrose, free asparagine, and free glutamine were analyzed in 74 potato samples from 17 potato cultivars grown in 2002 at various locations in Switzerland and different farming systems. The potential of these potatoes for acrylamide formation was measured with a standardized heat treatment. These potentials correlated well with the product of the concentrations of reducing sugars and asparagine. Glucose and fructose were found to determine acrylamide formation. The cultivars showed large differences in their potential of acrylamide formation which was primarily related to their sugar contents. Agricultural practice neither influenced sugars and free asparagine nor the potential of acrylamide formation. It is concluded that acrylamide contents in potato products can be substantially reduced primarily by selecting cultivars with low concentrations of reducing sugars.  相似文献   

20.
The relationship between acrylamide and its precursors, namely, free asparagine and reducing sugars, was studied in cakes made from potato flake, wholemeal wheat, and wholemeal rye, cooked at 180 degrees C, from 5 to 60 min. Between 5 and 20 min, major losses of asparagine, water, and total reducing sugars were accompanied by large increases in acrylamide, which maximized in all three products between 25 and 30 min, followed by a slow linear reduction. Acrylamide formation did not occur to a large degree until the moisture contents of the cakes fell below 5%. Linear relationships were observed for acrylamide formation with the residual levels of asparagine and reducing sugars for all three food materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号